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Abstract: Plant phenotyping is the primary task of any plant breeding program, and accurate
measurement of plant traits is essential to select genotypes with better quality, high yield, and
climate resilience. The majority of currently used phenotyping techniques are destructive and time-
consuming. Recently, the development of various sensors and imaging platforms for rapid and
efficient quantitative measurement of plant traits has become the mainstream approach in plant
phenotyping studies. Here, we reviewed the trends of image-based high-throughput phenotyping
methods applied to horticultural crops. High-throughput phenotyping is carried out using various
types of imaging platforms developed for indoor or field conditions. We highlighted the applications
of different imaging platforms in the horticulture sector with their advantages and limitations.
Furthermore, the principles and applications of commonly used imaging techniques, visible light
(RGB) imaging, thermal imaging, chlorophyll fluorescence, hyperspectral imaging, and tomographic
imaging for high-throughput plant phenotyping, are discussed. High-throughput phenotyping
has been widely used for phenotyping various horticultural traits, which can be morphological,
physiological, biochemical, yield, biotic, and abiotic stress responses. Moreover, the ability of high-
throughput phenotyping with the help of various optical sensors will lead to the discovery of new
phenotypic traits which need to be explored in the future. We summarized the applications of image
analysis for the quantitative evaluation of various traits with several examples of horticultural crops
in the literature. Finally, we summarized the current trend of high-throughput phenotyping in
horticultural crops and highlighted future perspectives.
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1. Introduction

The world population keeps increasing and is expected to reach ten billion by 2050,
so as the demand for food and energy. This alarms the need to maximize the yield and
quality of food crops as well as reduce postharvest losses. Breeding for high yield, better
quality, and resistance to biotic (disease, pest, weed) and abiotic (drought, salt, heat, cold)
stresses should be the priority to meet the projected food demand. Plant phenotyping
is the core of any plant breeding program, and accurate measurement of plant traits is
essential for the selection of the best genotypes. Phenotype is the result of the interactions
between genotype and all the surrounding environmental conditions during the plant
growth cycle, whereas phenotyping refers to the measurement of any aspect of plant
traits, including growth, development, and physiology [1]. Plant phenomics is the high-
throughput collection and analysis of multidimensional phenotypes of the whole plant
through its life span [2,3]. The advancement of next-generation sequencing and marker
technology has accelerated genomic study, allowing the mapping and identification of
genes controlling complex traits [4]. However, phenomic information is not adequately
available due to the effect of environmental factors and lack of accurate measurements
limiting the phenotypic characterization of crop traits.

Plants 2023, 12, 2061. https://doi.org/10.3390/plants12102061 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12102061
https://doi.org/10.3390/plants12102061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://doi.org/10.3390/plants12102061
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12102061?type=check_update&version=2


Plants 2023, 12, 2061 2 of 23

Conventional phenotyping has been the bottleneck for breeding for a long time as
it is labor-intensive, time-consuming, and does not have high throughput [5]. The recent
introduction of high-throughput phenotyping methods is accelerating plant phenotyping,
enabling high-throughput measurement of several phenotypic data nondestructively and
objectively [3,6]. Furthermore, high-throughput phenotyping with the help of optical
sensors, computer vision, and robotics will bring new traits under consideration which
were difficult to measure via the conventional method.

High-throughput phenotyping platforms can image hundreds of plants daily using
various types of optical sensors, allowing the measurement of morphological, physiological,
biochemical, and performance traits in a non-destructive way [7–10]. The principle of image-
based phenotyping is based on the interaction of electromagnetic radiation and the plant
surface, including absorption, reflection, emission, transmission, and fluorescence, which
differ between normal and stressed plants or among genotypes [9]. These interactions
will help to estimate various types of phenotypic traits of the plant with the help of
optical sensors. Image-based high-throughput phenotyping aims to quantify numerous
traits, which requires the use of various types of optical sensors. Some of the currently
available sensors for plant phenotyping include visible light (red–green–blue), thermal,
fluorescence, hyperspectral, multispectral, light detection and ranging (LiDAR), magnetic
resonance (MRI) imaging, X-ray computed tomography (X-ray CT), and positron emission
tomography (PET) [3,11,12]. The applications of various types of sensors may differ
depending on imaging platforms, accessibility, cost, and the target trait under consideration.
The different sensors can be used separately or in combination for fast and accurate plant
phenotyping, each of which comes with its own advantages and limitations.

High-throughput phenotyping is used in breeding, crop cultivation, and even posthar-
vest, depending on the purpose of phenotyping. In plant breeding, phenotyping a large
number of samples (population) aims to increase the selection intensity and accuracy and
characterize various crop traits to select the best genotypes, while phenotyping in crop
cultivation is used to monitor the occurrence of any plant stresses such as disease, pests,
nutrient stress, weeds, or abiotic stress at early stages [1,8]. Real-time phenotypic data
acquisition and analysis will help to make immediate management decisions for the crop.
Hence, image-based phenotyping will play a pivotal role in the precision cultivation of
horticultural crops. Horticultural crops are mostly utilized in the fresh state and are highly
perishable due to their high water content, such as vegetables and fruits. The market value
of horticultural products is highly dependent on external appearance (color, shape, size,
texture) and internal (soluble solid content and firmness) quality attributes. The status
of these quality attributes changes over time during maturity, ripening, and postharvest
storage and should be routinely monitored [13,14]. Currently, external quality attributes
are mostly evaluated using visual inspection in the horticulture chain, which is slow and
subjective. On the other hand, internal quality attributes are quantified using destructive
laboratory analysis or handheld/portable instruments, which are also limited in speed and
sample size. Due to the highly perishable nature and the dynamics of quality attributes
over time in horticultural products, image-based phenotyping will greatly improve the
speed, volume, and accuracy of postharvest phenotyping.

In this paper, we reviewed the applications of image-based phenotyping for the as-
sessment of various traits in horticultural crops. Commonly used imaging platforms and
sensors for high-throughput phenotyping are described. The application of these technolo-
gies for phenotyping various traits of horticultural crops is discussed with several examples
in the literature. Finally, the current trends and future perspectives of high-throughput
phenotyping in horticultural crops are highlighted. Using multiscale imaging platforms
equipped with state-of-the-art imaging technologies will enable rapid and accurate quan-
titative measurement of diverse plant phenotypic traits to accelerate crop improvement,
precision agriculture, and objective postharvest phenotyping (Figure 1).
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Figure 1. Schematic overview of image-based high-throughput phenotyping in horticultural crops.
UAP, unmanned aerial platform; MAP, manned aerial platform; RGB, red–green–blue; LiDAR, light
detection and ranging; X-ray CT, X-ray computed tomography; MRI, magnetic resonance imaging.
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2. High-Throughput Phenotyping Platforms

High-throughput phenotyping is carried out using various types of imaging platforms.
The suitability of high-throughput phenotyping platforms may vary depending on the
imaging environment, e.g., laboratory, growth chamber, greenhouse, or field. In most
controlled environment conditions, imaging is carried out by moving the sensor towards
the plant (sensor movement type) or the plant is transported to the fixed imaging setup
using a conveyer belt or other transporting methods (plant movement type) for routine
phenotypic measurement. For example, a greenhouse-based sensor-to-plant platform was
used to measure static and dynamic traits such as geometric, structural, color, and textural
phenotypes of lettuce [15]. Image-based phenotyping in controlled environment conditions
has the advantage of high precision, high repeatability, continuous automated operation,
and absence of interference from external environmental conditions. However, they are
generally expensive and can monitor a very limited number of samples. The conveyer
type and benchtop-type platforms are mostly used and have well-established systems for
controlled environment conditions [6].

Imaging platforms for field-based conditions can be ground or aerial-based, tar-
geting phenotyping of plant characteristics at individual plant or area levels. They
are grouped into ground-based or aerial-based on the structures where the sensor is
mounted. Ground-based imaging platforms such as pole/tower-based, mobile platform
(vehicle), gantry-based, and cable suspended are flexible for deployment and have a
good spatial resolution. However, they are subject to varying environmental conditions
due to the slow speed of covering a large field. Aerial-based imaging platforms include
unmanned aerial platforms, manned aerial platforms, and satellites. These imaging
platforms can cover a wide area in a short period of time and are able to overcome
varying environmental conditions. The disadvantage of the platforms is that they have
a limited payload, and the spatial resolution of the image is affected by the speed and
altitude of the aerial structure [6,9]. Unmanned aerial vehicle (UAV) platforms were used
for the measurement of various traits in horticultural crops. For example, UAV-based
remote sensing coupled with different machine learning approaches was used for dis-
ease detection and classification in potato, tomato, banana, pear, and apple [16–22], for
tree detection in orchards such as banana and citrus [23–25], for aboveground biomass
estimation in onion, potato, tomato, and strawberry [26–29], and other traits of fruits
and vegetables [23,30,31].

3. Commonly Used Imaging Techniques for High-Throughput Plant Phenotyping
3.1. Visible Light Imaging

Visible light sensors detect light in a wavelength spectrum of 400–700 nm and provide
reflected values of red, green, and blue (RGB). Visible light imaging is widely used for
high-throughput phenotyping because of its accessibility, simplicity, and low cost [32].
High-resolution RGB images can be used to accurately measure plant biomass [28,33–37],
root architecture [38,39], plant growth rate [40–43], germination rate [44], yield [45–47],
disease detection and quantification [17,48–50], and abiotic stresses [51]. Their application
in the field can be affected by minimal color variation between the leaf and the background
and the influence of light for automatic image processing [32].

3.2. Thermal Imaging

Thermal infrared imaging allows the visualization and distribution of infrared ra-
diation over a leaf or plant surface. A thermal camera converts infrared radiation (heat)
emitted from the object into visible images showing the spatial distribution of surface
temperature. The thermal sensor records the emitted light from the object in the thermal
range of 3–5 µm or 7–14 µm with an image showing the temperature values per pixel.
Thermal imaging can be used to detect the physiological status of the plant in response to
biotic and abiotic stress, such as canopy or leaf temperature [52], transpiration and stomatal
conductance [53], and plant water status [9,11]. Under water deficit conditions, plants
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close their stomata and reduce water loss through transpiration which is also highly linked
with the soil moisture content. The reduction in transpirational cooling results in increased
leaf temperature. Hence, thermal imaging can be used to manage water and irrigation in
precision agriculture [54].

3.3. Hyperspectral Imaging

Hyperspectral imaging captures electromagnetic spectra (λ) and spatial (x, y) data at
every pixel in an image to reconstruct the 3D data matrix called hypercube, containing
thousands of images in the spectral range of 250–2500 nm encompassing UV, VIS, NIR,
and SWIR [55]. It offers a large amount of information, allowing the extraction of a wide
range of phenotypic traits, while the storage and analysis of the vast amount of hyperspec-
tral data is challenging. Some of its applications include estimation of nutrient content,
disease detection [16,56–58], fruit maturity and ripening [59,60], and other physiological
and biochemical traits which are used to infer plant growth and development as well as
yield [55].

3.4. Fluorescence Imaging

The light energy absorbed by chlorophyll can be used for photosynthesis, dissipated
as heat, or re-emitted. Fluorescence is the light emitted when the plant absorbs radiation
of shorter wavelengths, mainly via the chlorophyll complex, and is very small (<3%)
compared to the total amount of radiation emitted to the object from the light sources. The
amount of re-emitted light (fluorescence) is a good indicator of the plant’s ability to utilize
the absorbed light and is used to estimate the overall plant health status [61]. Fluorescence
imaging is used to estimate photosynthetic efficiency and other associated metabolic
processes of the plant affected by biotic and abiotic stresses [62–65]. The fluorescence
pattern of plants under stress conditions will show an altered pattern compared to no
stressed plants. Sensors sensitive to fluorescence are used to capture fluorescence signals
after illumination of the plant or tissue with visible light, infrared, or UV light. Maximum
quantum efficiency (Fv/Fm), non-photochemical quenching (energy dissipated as heat from
photosynthetic reaction center), the effective quantum yield of PSII (ΦPSII or Fq

′/Fm
′),

and relative electron transport rate are some of the parameters derived from chlorophyll
fluorescence which are used to assess the physiological status of the plant in relation to
different stress conditions, where Fm is maximum fluorescence of a dark-adapted leaf and
Fv is the difference between Fm and minimum fluorescence from dark-adapted leaf (F0) [10].
The problem with fluorescence imaging in the field condition is that it does not specify
the cause of signal changes in the plant, e.g., light, temperature, or other environmental
factors [11,61].

3.5. Tomographic Imaging

Other imaging techniques such as magnetic resonance imaging (MRI), X-ray com-
puted tomography (X-ray CT), and positron emission tomography (PET) provide high-
resolution 3D images of a single plant or plant parts [66]. MRI captures the 3D images
of the internal structures of the sample enabling non-invasive quantification of both
static and dynamic traits such as structural, biochemical, and temporal changes inside
the plant. MRI can be used to monitor changes in growth and development (seed and
bulb germination, seed development, fruit growth, and root growth), water dynamics
within the plant, drought stress responses (drought stress, salt stress, cold stress, and
heat stress), and the plant–pathogen interaction [67]. X-ray CT is used to visualize
the 3D structures of internal and external features of the plant at the micro or macro
level. When the X-ray beam passes through the sample, part of the beam is absorbed,
and the remaining radiograph is recorded by the detector. Multiple 2D projections
are recorded by moving the sample or the sensor, which are then used to reconstruct
the 3D images [68]. For example, it has been used for the characterization of size and
shape-related morphological traits of seed and fruit [69,70]. These imaging techniques
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are time-consuming and are not suitable when a large number of samples are under
consideration. In addition, due to the larger size and heavy weight of the equipment it is
not usable on aerial imaging platforms [55]. Examples of images from commonly used
sensors in high-throughput phenotyping are shown in Figure 2.
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Figure 2. Examples of images from commonly used sensors in high-throughput phenotyping and
their spectral range. (a) RGB; (b) NIR [71]; (c) SWIR [72]; (d) thermal (Qubit phenomics, Canada);
(e) X-ray [73]; (f) MRI [66]; (g) fluorescence; (h) LiDAR and photogrammetry point cloud (Pix4D S.A.,
Prilly, Switzerland). RGB and fluorescence images were captured in our lab.

Imaging technology is the primary component of high-throughput plant phenotyping
as acquired phenotypic traits are determined by the type of sensor (imaging technique).
Visible light (RGB) imaging and multi/hyperspectral imaging techniques are widely used
to acquire morphological, physiological, biochemical, biotic, and abiotic stress-related
traits. Fluorescence imaging and thermal imaging are used to capture the photosynthetic
and surface temperature of the plant, respectively, which are physiological traits. LiDAR,
X-ray CT, and MRI are mainly used to acquire morphological traits [3]. Different imaging
techniques come with their specific advantages and disadvantages to capture certain plant
traits. The summary of imaging techniques and measurable phenotypic traits with potential
applications in high-throughput plant phenotyping is presented in Table 1. Among the
variety of commercially available sensors for different imaging techniques, the choice
depends on the cost, robustness, and other specifications of the sensor to capture the target
trait [74]. Examples of different sensors used for high-throughput phenotyping of some
horticultural crops are presented in Table 2. High-throughput phenotyping will benefit
from the increasing capabilities and advancements of sensor technologies.
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Table 1. Summary of most common imaging techniques used in high-throughput plant phenotyp-
ing [11,75].

Imaging Technique a Phenotypic Traits Advantages Limitations Potential Applications

Visible light imaging

Shape, color, size,
biomass, pigment

content, disease and
pest, stress responses,

nutrient stress,
vegetation indices

Cheap, easy operation
and maintenance,

provide color
information, high

resolution, fast data
acquisition

Limited to three spectral
bands (RGB), affected by

light, only provide
relative measurement

Growth monitoring,
plant stress detection,

fruit maturity and
ripening estimation,
grading and sorting,
quality evaluation,

yield prediction, 3D
modeling, crop

management, robotic
harvesting

Thermal imaging

Leaf greenness, leaf
color, leaf chlorophyll
content, leaf/canopy
temperature, disease
and pest, phenology,
photosynthetic status

Wide measurement
range, background
interference can be

removed

Require sensor calibration
and atmospheric

correction, difficulty of
through time comparison

due to changes in
ambient condition
affecting canopy

temperature, need
reference for comparison,
difficult to separate soil

and plant temperature in
sparse canopies (limiting
the automation of image

processing)

Plant stress detection,
irrigation scheduling

Hyperspectral
imaging

Leaf/canopy water
status, canopy coverage

and volume, leaf
greenness, disease and

pest, photosynthetic
rate, nutrient stress,

metabolites

High spectral
resolution, background

interference can be
removed

Expensive, low spatial
resolution, too large

image data challenging
for storage and analysis,

affected by ambient
light condition

Growth monitoring,
biotic and abiotic stress

detection, fruit
maturity and ripening

estimation, quality
evaluation, biomass

estimation, metabolite
prediction

Fluorescence imaging

Chlorophyll content,
canopy coverage,
disease and pest,

photosynthetic status

Sensitive to
fluorescence and water

stress

Limited in field
application, difficult to
measure at the canopy
scale due to the small
signal-to-noise ratio

Growth monitoring,
early detection of biotic

and abiotic stress

Multispectral imaging

Canopy coverage and
volume, chlorophyll

content, leaf greenness,
plant diseases and

pests, photosynthetic
status, water content

Easy in image
processing; mature

technology

Limited to several
spectral bands; spectral

data should be
frequently calibrated

using referenced objects;
effects of camera

geometrics, illumination
condition, and sun angle

on the data signal

Growth monitoring,
biotic and abiotic stress

detection

LiDAR Plant height, canopy
volume, shoot biomass

Provide
three-dimensional

shape

Expensive, sensitive to
the small difference in
path length; specific

illumination required
for some laser scanning

instruments, data
processing is

time-consuming

Growth monitoring,
structure capture
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Table 1. Cont.

Imaging Technique a Phenotypic Traits Advantages Limitations Potential Applications

3D laser scanner

Geometrical plant traits
such as shape, length,

height, canopy
structure and volume

Long measurement
distance; high precision;

good penetration

Expensive, affected by
external factors such as

wind and fog

Growth monitoring,
organ morphogenesis

MRI

Internal structures,
metabolites,

development of root
systems, water

presence

Available for screening
3D structural
information

Expensive, low
throughput, slow data

acquisition

Acquire 3D structures
of the whole plant or

plant parts

X-ray CT Size and shape

Large penetration
depth, scalable field of
view, minimal sample

preparation

Expensive, low
throughput

Growth monitoring,
seed and fruit

development, organ
morphogenesis, 3D

visualization of plant
organs and tissues

a Imaging technique: LiDAR—light detection and ranging; MRI—magnetic resonance imaging; X-ray CT—X-ray
computed tomography.

Table 2. Examples of sensors used for different imaging techniques in high-throughput plant
phenotyping.

Imaging Technique Sensor (Manufacturer) Resolution Crop Reference

Visible light
imaging

DJI Phantom 4 Pro (DJI Technology Co.,
Shenzhen, China) 3000 × 4000 px Strawberry [76]

Sony Cyber-shot DSC-H3 camera (Sony
Corporation, Tokyo, Japan) 3264 × 2448 px Tomato [38]

Fujifilm X20 (Fujifilm Corporation,
Tokyo, Japan) 3000 × 4000 px Apple [77]

Thermal
imaging

3DR Solo quadcopter (3D Robotics,
Berkeley, CA, USA) 1280 × 960 px Banana [23]

Vario CAM hr inspect 575 (Jenoptic,
Jena, Germany) 768 × 576 px Mango [78]

Hyperspectral imaging Pika L 2.4 (Resonon Inc., Bozeman,
MT, USA) unknown Tomato [58]

HySpex VNIR 1800, HySpex SWIR 384
(Norsk Elektro Optikk A/S,
Skedsmokorset, Norway)

unknown Grape [79]

Fluorescence imaging
PlantScreenTM Transect XZ system

(Photon Systems Instruments, Drásov,
Czech Republic)

1360 × 1024 px Lettuce [64]

Multispectral Parrot Sequoia camera (Parrot Drone SAS,
Paris, France) 1280 × 960 px Banana [80]

RedEdge-M, (MicaSense, Seattle, WA, USA) 1280 × 960 px Citrus [81]

LiDAR PlantEye F400 (Phenospex, Heerlen,
The Netherlands) unknown Potato [82]

3D laser scanner
FARO Focus 3D 120 terrestrial laser scanner

(Faro Technologies Inc., Lake Mary,
FL, USA)

1/5 Cassava [83]

X-ray CT X-ray imaging system (Xeye-5100F, SEC,
Suwon, Republic of Korea) 2304 × 1300 px Watermelon [70]
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4. Applications of Image-Based High-Throughput Phenotyping in Horticultural Crops
4.1. Measurement of Morphological Traits

The morphological traits, including color, size, shape, and surface texture, determine
the appearance of the produce and are used as quality parameters for visual inspection of
horticultural crops. Although visual evaluation is a widely used nondestructive method
for grading and sorting in horticultural crops, utilization of high-throughput phenotyping
platforms is essential to obtain robust, faster, and objective results [14]. Nowadays, quan-
titative measurement of these traits (color, size, shape, and surface texture) using image
analysis is increasingly used in different horticultural crops [13,84–87].

For example, grape berry color is a very important trait in grape breeding, which is
qualitatively classified into six classes (green, yellow, rose, red, grey, dark red violet, or blue–
black) according to the International Organization of Vine and Wine [88] or simply as noir
(red, blue, or black) and non-noir (green or white). However, a qualitative assessment is
very difficult to differentiate between noir and non-noir groups. Image-based phenotyping
using different color spaces, RGB (red–green–blue), L*a*b (lightness, red–green, blue–
yellow), and HSI (hue, saturation, intensity), allows for the easy discrimination of grape
berry genotypes with different colors. RGB and HSI are able to separate within the noir
and non-noir groups and enable the identification of minor QTLs controlling grape berry
color, which were not identified previously using qualitative evaluation [89]. Quantitative
measurement of strawberry fruit shape based on elliptic Fourier descriptors (EFDs) [90]
and image analysis allowed the identification of two QTLs for shape via a genome-wide
association study [84]. The fruit shape was highly correlated with the fruit length-to-width
ratio.

The application of computer vision for shape quantification using images of sweet
potatoes has shown that shape features, length-to-width ratio, curvature, cross-section
roundness, and cross-sectional diameters, are highly predictive of shape classes. A neural
network-based shape classifier was able to predict marketable (high market value) and
non-marketable sweet potato classes with 84.59% accuracy [13]. In most food industries,
quality is mainly assessed by experts based on subjective evaluation, which is very slow
and inconsistent. The application of image-based phenotyping in the food industry is
very important for fast, reliable, and objective evaluation. The browning of apple slices
was quantified using color space, L*a*b, and textural features (entropy, contrast, and
homogeneity) from the RGB images taken over time and showed that cv. Golden Delicious
has less browning compared to Honey Crispy and Granny Smith [87].

In most horticultural crops, color, size, and texture are used as indicators of maturity
and ripening. The maturity and ripening of plum and banana fruits were estimated based
on these features using image analysis in which color was the dominant feature for the
classification of maturity and ripening levels [91,92]. In general, color, size, shape, and
texture are used to evaluate the external qualities of horticultural crops that greatly affect the
market value of the produce. The applications of these quality attributes for the assessment
of external qualities of horticultural crops based on hyperspectral imaging were previously
reviewed [14].

4.2. Measurement of Physiological Traits

Physiological traits indicate the processes that occur within the plant, such as photo-
synthesis, transpiration, and canopy temperature. These traits determine how the plant
is functioning under certain environmental conditions and are used to characterize the
plant response to biotic and abiotic stresses, plant growth, and plant development [3].
Physiological traits can be quantified using various types of sensors, including RGB, ChlF,
multispectral/hyperspectral, and thermal.

In horticultural crops, the physiological processes continue after harvesting (posthar-
vest physiology). Postharvest physiology deals with the response of horticultural produce
during postharvest storage and handling conditions along the processing or marketing
chain. It determines the ripening, shelf life, and the quality of the produce. Due to their
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highly perishable nature, the quality and shelf life of horticultural crops is dependent on
pre/postharvest handling and storage conditions [14]. Hence, high-throughput postharvest
phenotyping is necessary for rapid, robust, and accurate measurement of ripening, shelf
life, quality, food safety, and biochemical contents of the horticultural produce [86]. This
will help to track the physiological status of the produce and make immediate decisions
to avoid economic losses. For example, visual inspection and analytical methods such as
spectroscopy and HPLC (high-performance liquid chromatography) analysis are widely
used for fruit quality assessment, which is labor-intensive, destructive, time-consuming,
and not robust. Therefore, using high-throughput methods which can accurately and
efficiently measure fruit and vegetable quality attributes is essential. Chilling injury, one
of the most common postharvest physiological disorder in horticultural products was
detected using hyperspectral imaging and achieved more than 91% detection accuracy in
apple, peach, and kiwi fruit [93–96].

4.3. Biochemical Component Analysis

Horticultural crops are rich sources of pigments such as anthocyanin, carotenoid, and
chlorophyll, which serve as strong antioxidants and promote human health [31]. Quantifi-
cation of these pigments has been mainly based on laboratory extraction, which is laborious
and time-consuming. Handheld nondestructive devices such as chlorophyll meters and
chroma meters were developed as an option to overcome destructive measurement, but
they are still limited to be used in large-scale production or breeding programs. Hence,
image-based phenotyping of pigment content is receiving increasing attention because it is
nondestructive, robust, and fast. Anthocyanin, carotenoid, and chlorophyll content of red
lettuce genotypes showed a high correlation with the vegetation indices calculated from
images taken by remotely piloted aircraft [31]. The total carotenoid content in cassava root
was estimated from the colorimetric indices extracted from the RGB images of root pulp.
The total carotenoid content of cassava root showed a high correlation with color indices b*
and chroma [97]. In addition, optical sensors can be used to nondestructively measure the
amount of nutrients in the plant, such as nitrogen, phosphorus, and potassium, enabling
accurate monitoring of plant growth and precise management of crop production [98].

4.4. Disease Detection and Quantification

Plant diseases are one of the challenges of crop production worldwide, causing sig-
nificant yield loss every year. Early detection and accurate measurement of disease is a
vital part of phytopathology and breeding [10]. Assessment of disease using conventional
visual scores and laboratory-based analysis is time-consuming, laborious, and subjective.
In recent years, rapid and high-throughput methods for the measurement of disease ex-
tent and severity have been widely used based on image analysis captured by various
types of sensors [22,48,79,99,100]. High-throughput detection and quantification of dis-
ease is especially essential in horticultural crops which are prone to diverse pathogens
during pre-harvest and post-harvest handling stages. Image analysis has been widely
used for the detection and quantification of horticultural crop diseases such as apple
scab [101,102], fire blight [20,21,56,103], powdery mildew [48,104–106], Fusarium wilt [22],
bacterial blight [107], bacterial wilt [108], early blight, and late blight [19,99,109–111]. Image
analysis can be used to closely monitor the plant health status as the disease infection can
be detected at early stages before the development of typical symptoms. This enables us to
take appropriate management measures to reduce the yield or quality loss.

4.5. Abiotic Stress Responses

Abiotic stresses are any kind of environmental conditions that affect normal plant
growth and yield, such as drought, salinity, heat stress, and cold stress. Rapid and accurate
phenotyping of plant responses to various abiotic stresses is essential to accelerate plant
breeding programs dealing with the development of climate-resilient genotypes. Image-
based high-throughput phenotyping is especially important when screening a large number
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of accessions. Various imaging techniques have been used to measure the response of
horticultural plants to different abiotic stresses [82,112–114]. Hyperspectral images were
used to detect heat stress tolerance in ginseng [115]. Cadmium stress in kale and basil
was detected using high-throughput hyperspectral images. Among the vegetation indices
analyzed, only the anthocyanin reflectance index was able to detect all levels of cadmium
stress in both kale and basil. The anthocyanin reflectance index was significantly higher
in cadmium-stressed plants than in the respective controls [116]. The applications of
high-throughput phenotyping using image analysis to assess various traits in selected
horticultural crops are summarized in Table 3.

Table 3. Applications of image-based high-throughput phenotyping in horticultural crops.

Crop Trait Sensor a Environment Reference

Apple Seed morphology RGB Laboratory [117]
Plant growth RGB Field [40,118,119]

Fruit detection and counting RGB Field [77,120,121]
Yield prediction MS, RGB Field [45,122]
Fruit ripening Aerial video Field [123]

Winter dormancy ChlF Field [124]
Low oxygen stress ChlF Laboratory [125]

Apple scab Thermal, MS Controlled [101,102]
Fire blight MS, HS Field [21,56,103]

Powdery mildew RGB, MS Field [48]
Drought stress Thermal, MS Field [112]

Banana Plant growth Laser scanning Field [80,126]
Plant counting MS, laser scanning Field [23,126]
Fruit maturity RGB Laboratory [92]

Yellow Sigatoka RGB Field [17]
Multiple diseases RGB Field [49]

Fusarium wilt MS Field [22]

Cabbage Seed morphology RGB Laboratory [127]
Plant growth RGB Field [41]

Shoot biomass RGB Field [33]
Heat stress MS Field [41]

Carrot Root morphology RGB Laboratory [39,128,129]

Cassava Root bulking rate GPR Field [130]
Root morphology RGB Field and Laboratory [131,132]

Shoot biomass LiDAR Field [83]
Root biomass GPR Field [133]

Carotenoid content RGB Laboratory [97]
Starch content Thermal Field [134]
Plant growth RGB, MS Controlled and field [42,135]

Bacterial blight RGB Laboratory [107]

Citrus Plant counting RGB Field [24,81,136,137]
Plant water status Thermal Controlled [54]

Citrus canker HS Field [57]
Huanglongbing (HLB) GPR, MS, ChlF Field [62,138,139]

Grape Bunch architecture 3D scanner Field [140–142]
Berry counting RGB Field [143,144]
Berry maturity RGB Laboratory [145]

Yield prediction RGB, HS Field [47,146–148]

Grape yellows HS Field [79]
Grape leafroll HS Laboratory [149]

Powdery mildew RGB Laboratory [104]
Drought stress RGB, Thermal Field [113]
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Table 3. Cont.

Crop Trait Sensor a Environment Reference

Lettuce Seed morphology RGB Laboratory [150]
Leaf semantic components RGB Laboratory [151]

Plant growth RGB Controlled [43,152,153]
Shoot biomass ChlF Controlled [154]

Anthocyanin content RGB Field [31,155]
Carotenoid content RGB Field [31,156]
Chlorophyll content RGB Field [31]

Drought stress HS. ChlF Controlled [63,157,158]
Salt stress ChlF Controlled [64]

Mango Fruit maturity HS, LiDAR Field [159]
Fruit ripening HS Field [60]
Fruit detection RGB Field [30]
Drought stress Thermal Field [78]

Pear Plant growth RGB Field [160]
Fire blight HS Field [20]

Russet RGB Laboratory [50]

Pepper Seed quality X-ray CT Laboratory [161]
Leaf area RGB Controlled [162]

Potato Crop emergence RGB Field [44]
Plant growth RGB Controlled [163]

Tuber growth and development X-ray CT Controlled [164]
Tuber skin color RGB Laboratory [165]

Tuber size RGB Laboratory [166]
Shoot biomass RGB, HS Field [35,167,168]

Nitrogen content RGB Field [169]
Tuber moisture content HS Laboratory [170]
Stomatal conductance Thermal Field [53]

Yield prediction RGB, Thermal, HS Field [46,171]
Early blight HS Field [172]
Late blight RGB, MS Field [19,99,173,174]

Bacterial soft rot RGB Laboratory [51]
Verticillium wilt MS Field [18]
Drought stress LiDAR Controlled [82]

Strawberry Plant growth LiDAR Field [175]
Fruit morphology RGB Laboratory [84,176–178]

Shoot biomass RGB, Thermal Field [28,179,180]
Yield prediction RGB Field [76]
Leaf gray mold HS Laboratory [100]
Verticillium wilt RGB, MS Field [181]

Heat and drought stress HS Controlled [182]

Tomato Root architecture RGB Controlled [38]
Shoot biomass RGB Controlled [29,37]

Fruit morphology RGB Laboratory [183]
Nitrogen, phosphorus,

potassium content MS Controlled [98]

Chlorophyll content RGB, MS Controlled [184]
Yield prediction RGB, MS Field [185,186]

Bacterial wilt ChlF Controlled [108,187]
TYLC, early blight, bacterial spot HS Field [16,58]

Drought stress RGB, Thermal, HS Controlled, field [188,189]
Chilling injury (seedling) ChlF Controlled [65]

Salt stress RGB, MS, Thermal Field [36]
a Sensor: RGB—red, green, blue; IR—infrared; HS—hyperspectral; MS—multispectral; NIR—near infrared;
ChlF—chlorophyll fluorescence; LiDAR—light detection and ranging; GPR—ground penetrating radar.
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5. Current Status and Future Perspectives

The statistics of publications related to high-throughput phenotyping in horticultural
crops for the last two decades were surveyed and summarized in Figure 3. The number of
publications dealing with high-throughput phenotyping using image analysis is increasing
every year and is mostly used in agriculture and biological sciences (Figure 3a,b). Among
the search keywords, ‘fruit’ was the most mentioned word in these publications and
showed an exponential increase in the last five years (Figure 3c), indicating the increasing
interest of the researches to automate the measurement of various fruit traits during growth,
maturity, ripening, and postharvest stages. Most of these documents are research articles
(71%), followed by review papers (16%) (Figure 3d). Image-based phenotyping studies
are actively conducted in many countries, with USA and China taking the lead with
more number publications (Figure 3e). The applications of various types of sensors may
depend on imaging platforms, accessibility, cost, and the target trait under consideration.
Hyperspectral sensors are most popular for the phenotyping of horticultural crops, followed
by thermal sensors (Figure 3f).

One of the upcoming challenges in phenomics is the handling of massive amounts of
data generated from image-based phenotyping and the ability to extract important knowl-
edge from big data [3]. Here, the application of computer science is inevitable when dealing
with digital phenotyping. Specialized in handling multidimensional and multivariate
data automatically, it is suitable for application to high-throughput phenotyping [190]. In
machine learning (ML), humans are interpretable to the mathematical algorithm models
that solve given problems such as classification, regression, and cluster. ML provides
prompt results for classifying and identifying the plants or their phenotypes, predicting
and estimating the yield or influences of external factors [191].

ML models start by training the dataset. Various algorithms/methods, such as support
vector machine (SVM), decision tree, random forest, k-nearest neighbors (KNNs), logistics,
regressions, clustering, dimensionality reduction, and artificial neural network (ANN),
empower the training. All models require the accumulation of data for their accurate and
efficient outputs [192]. Lack of sufficient data learning results in common errors in the
output. This issue can be easily fulfilled by massive data processing from image-based
high-throughput phenotyping.

However, when the amount of data to be processed is extremely large, deep learning
will be more compatible than the other ML algorithms [193,194]. The machine learning
applied ANNs is well known as ‘deep learning’. Deep learning has similar features but is
slightly different from conventional ML types such as supervised learning, unsupervised
learning, and reinforcement learning [195]. They differ depending on the absence or
presence of human interventions in feature extraction after their training process. Deep
learning requires no human intervention if the training data well annotates the targeted
feature, while ML requires feature extraction before classification [196]. The most common
algorithms used in deep learning are convolutional neural networks (CNN), long short-
term memory networks (LSTM network), recurrent neural networks (RNN), multi-layer
perceptron (MLP), and radial basis function networks (RBFN).

Despite their differences, both conventional MLs and deep learning provide powerful
results. Therefore, appropriate selection based on the purpose and limitations would
provide more advantages during the process. For instance, ML is generally used in the eval-
uation and prediction of stress, biomasses, and yields [16,28,171,173,186]. Deep learning is
more proper in the detection, recognition, and counting of objects in large and complex
datasets such as biotic/abiotic stresses and individual plants [197,198]. Recently, ML and
DL methods have been increasingly used in high-throughput plant phenotyping of various
traits (Table 4).
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Table 4. Examples of machine learning and deep learning applications in high-throughput plant
phenotyping.

Algorithm
Application Algorithm Type Imaging

Technique Plant Species Phenotypic
Trait Reference

Classification Faster R-CNN RGB Strawberry Yield
prediction [76]

Classification Convolution Network X-ray CT Watermelon Seed quality [70]

Classification

Linear Discriminance Model,
Partially Least Square,

Multi-Layer Perceptron,
Radial-Basis Function Network

Hyperspectral Grape Grape yellows [79]

Classification YOLOv3 Multispectral Hamlin citrus Plant counting [81]

Detection 3D Point clouds Visible light Apple Fruit detection
and counting [77]

Detection
Convolutional Neural Network,

Template Matching, Local
Maximum Filter

Thermal Banana Plant counting [23]

Identification Neural Network Radial Basis
Function, K-Nearest Neighbor Hyperspectral Tomato bacterial spot [58]

Identification PCA Fluorescence Letucce Salt stress [64]
Identification EVI2 Threshold Multispectral Banana Plant growth [80]
Identification Logistic Regression LiDAR Potato Drought stress [82]

Available aerial high-throughput phenotyping platforms target the measurement of
above-ground parts, while field-scale root phenotyping using images remains a bottleneck.
Novel technologies enabling root phenotyping at the field level will be a breakthrough,
especially for root and tuber crops, to capture root system architecture and to predict
the yield of these underground parts at the field level. With the development of novel
technologies with respect to sensing and data analysis methods, image-based phenotyping
can discover new traits which were difficult to measure or detect using conventional
phenotyping [3]. The newly discovered traits, in combination with the available omics
data, need to be explored for the new frontier of crop improvement. The storage and
sharing of the large amount of phenomic data obtained from image-based phenotyping
are still challenging and need to be resolved. The data should be standardized and easily
accessible among research communities, academia, industry, and farmers. Minimizing the
cost of sensors and phenotyping platforms, along with the automation of big data analysis
methods, will greatly increase the significance of phenomics in crop improvement to meet
the projected global food demand.

6. Conclusions

Image-based phenotyping methods have become an integral part of plant breeding,
cultivation, and quality assessment of economically important crops. This review highlights
the progress and applications of image-based phenotyping as applied to horticultural
crops. We explored commonly used imaging techniques: RGB, thermal, hyperspectral,
fluorescence, and tomographic imaging with their advantages and drawbacks in relation
to high-throughput phenotyping of horticultural crop traits. They are used to measure
morphological, physiological, biochemical, disease and pest, and abiotic stresses.

In addition to accelerating the breeding cycle by enabling rapid and accurate mea-
surement of phenotypic traits in a large population, image-based phenotyping will help
to monitor the plant condition and make immediate decisions such as pesticide spray,
fertilization, or harvesting, which will greatly improve yield and the quality of the produce.
Moreover, the physiological processes of horticultural crops continue even after harvest,
and their quality is highly dependent on postharvest storage and handling conditions.
Hence, image-based phenotyping is especially important for postharvest phenotyping of
horticultural crops. This will allow real-time monitoring of internal and external qualities of
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the horticultural product and will continue to play a significant role along the horticultural
chain. Machine learning and deep learning technologies should be well integrated into
image-based phenotyping to mine knowledge from the massive amount of data generated.
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