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Abstract: The chemical composition of the n-hexane extract of Tamarindus indica’s various organs—bark,
leaves, seeds, and fruits (TIB, TIL, TIS, TIF)—was investigated using gas chromatography-mass
spectrometry (GC/MS) analysis. A total of 113 metabolites were identified, accounting for 93.07,
83.17, 84.05, and 85.08 % of the total identified components in TIB, TIL, TIS, and TIF, respectively.
Lupeol was the most predominant component in TIB and TIL, accounting for 23.61 and 22.78%,
respectively. However, n-Docosanoic acid (10.49%) and methyl tricosanoate (7.09%) were present
in a high percentage in TIS. However, α-terpinyl acetate (7.36%) and α-muurolene (7.52%) were the
major components of TIF n-hexane extract. By applying a principal component analysis (PCA) and
hierarchal cluster analysis (HCA) to GC/MS-based metabolites, a clear differentiation of Tamarindus
indica organs was achieved. The anti-inflammatory activity was evaluated in vitro on lipopolysac-
charide (LPS)-induced RAW 264.7 macrophages. In addition, the wound healing potential for the
n-hexane extract of various plant organs was assessed using the in-vitro wound scratch assay us-
ing Human Skin Fibroblast cells. The tested extracts showed considerable anti-inflammatory and
wound-healing activities. At a concentration of 10 µg/mL, TIL showed the highest nitric oxide (NO)
inhibition by 53.97 ± 5.89%. Regarding the wound healing potential, after 24 h, TIB, TIL, TIS, and
TIF n-hexane extracts at 10 g/mL reduced the wound width to 1.09 ± 0.04, 1.12 ± 0.18, 1.09 ± 0.28,
and 1.41 ± 0.35 mm, respectively, as compared to the control cells (1.37 ± 0.15 mm). These findings
showed that the n-hexane extract of T. indica enhanced wound healing by promoting fibroblast migra-
tion. Additionally, a docking study was conducted to assess the major identified phytoconstituents’
affinity for binding to glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8),
and nitric oxide synthase (iNOS). Lupeol showed the most favourable binding affinity to GSK3-β
and iNOS, equal to −12.5 and −13.7 Kcal/mol, respectively, while methyl tricosanoate showed the
highest binding affinity with MMP-8 equal to −13.1 Kcal/mol. Accordingly, the n-hexane extract of
T. indica’s various organs can be considered a good candidate for the management of wound healing
and inflammatory conditions.

Keywords: Tamarindus indica L.; GC/MS; anti-inflammatory; wound healing; molecular docking;
chemometric analysis; drug discovery; public health
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1. Introduction

Tamarindus is a monospecific genus belonging to the Fabaceae family and usually has
been identified under the name Tamarind [1]. Tamarindus indica Linn. is a tropical fruit tree
that can be found growing wild in many tropical and subtropical areas [2]. Tamarind is a
semi-deciduous tree, slow growing but long-lived, that can reach a height of up to 30 m.
The leaves are alternate and paripinnate, and its fruit is a legume appearing as indehiscent
pods with 1–10 seeds, which represent the main criteria of plants belonging to the Fabaceae
family [3–6]. The fruit was especially well-known and commonly used by the ancient
Egyptians and widely consumed and traded in Africa [3]. The fruit has usually been used
in food dishes through different applications as a condiment and spice and could be eaten
fresh or raw. Tamarind is sold as an entire pod, paste, or concentrate in speciality food
stores all throughout the world [7,8]. Its fruit has been reported in the literature for its
pharmacological antioxidant, anti-inflammatory, antidiabetic, anti-Alzheimer, and antihy-
perlipidemic properties [9–11]. Tamarind has been commonly used in folk medicine for the
treatment of diarrhoea and dysentery, helminth infections, fever, and abdominal pain. It is
also used as an anti-malarial and laxative and has a role in wound healing [3]. Traditional
Indian and African medicine has made substantial use of different tamarind products, in-
cluding its leaves, fruit, and seeds [12]. Across many areas of central West Africa, tamarind
leaves and bark are used traditionally to alleviate wounds [3,13]. Leaves of Tamarind have
nutritional value due to their richness in vitamins and minerals [12]. Its leaves have exhib-
ited potential antioxidant, antibacterial and antifungal, anti-inflammatory, and analgesic
activities [14–17]. Additionally, the leaves of Tamarind have an anti-inflammatory role in
Indian folk medicine [18].

Regarding the bark, it is effective as an astringent and tonic agent in lotions or poultices
to relieve sores, ulcers, boils, and rashes, owing to its richness with tannins [12]. In
addition, the bark showed in vivo antihyperglycemic, anti-inflammatory, and analgesic
activities [17,19]. Moreover, leaves and bark have been reported for their anthelmintic
activity [20].

Wound healing is a normal complex repair process that requires synchronisation
between various biological and immunological systems, including many phases of inflam-
mation, proliferation, and contraction of the wound, with the formation of granulation
tissues and remodelling [21–23]. Plants and plant products, such as Aloe vera, Sophora
flavescens, Punica granatum L., Mimosa pudica L., and Hibiscus rosa sinensis L., have been used
in traditional medicine to cure and prevent diseases, especially wounds [24–26].

Recently, there has been a great demand for the development of natural products to
cure different conditions owing to their safety, availability, versatile biological activities,
and unique secondary metabolites [27–31]. Consequently, the exploration of medicinal
plants as new candidates for wound healing would be valuable and beneficial, especially
medicinal plants that are characterised by biocompatibility, wound healing, and anti-
inflammatory properties [22,23,32,33]. Many reports have revealed that using n-hexane
as an extracting solvent targets non-polar compounds [21,34,35], and many studies have
proven the role of n-hexane extract from various plants in anti-inflammatory and wound
healing conditions [36–39].

Thus, the purpose of this present study was to compare and determine the chemical
composition of the n-hexane extract of T. indica L.’s various organs using GC/MS analysis.
Further, the principal component analysis (PCA) and hierarchical cluster analysis (HCA)
were applied to discriminate among various plant organs based on their chemical profiles,
which could be used as a tool for the detection of similarities and differences among the
four organs. Furthermore, the n-hexane extract obtained from T. indica L.’s various organs
were investigated for their anti-inflammatory and wound healing properties for the first
time along with a molecular docking study to correlate the chemical composition with the
mentioned biological activity. To the best of our knowledge, this is the first study on the
wound-healing properties for the various organs of T. indica L. n-hexane extract.
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2. Results and Discussion
2.1. GC/MS Analysis of the N-Hexane Extract of Tamarindus indica L. Various Organs

The chemical composition of the n-hexane extract of T. indica, bark, leaves, seeds,
and fruit (TIB, TIL, TIS, and TIL) were investigated using GC/MS analyses (Table 1).
The yields of extraction of TIB, TIL, TIS, and TIL using n-hexane were 4.20, 6.10, 2.07,
and 3.12% w/w, respectively. The samples encompassed 113 constituents that accounted
for 93.07, 83.17, 84.05, and 85.08 % of the total identified components in bark, leaves,
seeds, and fruits of T. indica, respectively. The major constituents identified in the n-
hexane extract of TIB were lupeol (23.61%), lupeol acetate (23.02%), lupenone (9.36%),
n-tetratriacontane (8.16%), 24-methylenecycloartanol (5.87%), 1-heptatriacontanol (4.25%),
and γ-sitosterol (4.17%). Regarding the n-hexane extract of TIL, lupeol (22.78%), lupenone
(13.08%), γ-sitosterol (8.83%), (17E)-Cholesta-17,24-diene-3,6-diol (8.23%), n-nonacosane
(4.13%), Betulinaldehyde (3.70%), and β-Amyrone (2.05%) were characterised as the chief
metabolites. In this case, lupenone and lupeol were present in higher percentages as
compared to other organs. Moreover, n-Docosanoic acid (10.49%), methyl tricosanoate
(7.09%), tetracosanal (5.42%), 2-methylhexacosane (4.31%), 11-methylpentacosane (4.22%),
and heneicosyl acetate (2.94%) displayed the highest percentages in the n-hexane extract
of TIS. Additionally, among the major constituents, especially in TIS, are n-octacosane
(4.63%), n-heptacosane (4.17%), cis-13,16-docosadienoic acid (3.70%), n-hexacosane (2.47%),
n- pentacosane (2.46%), and methyl tetracosanoate (2.17%). Furthermore, the n-hexane
extract of TIF showed a predominantly high percentage of α-terpinyl acetate (7.36%),
α-muurolene (7.52%), 2-methyl hexadecane (5.70%), methyl pentadecanoate (4.53%), α-
eicosene (3.44%), and linolenic acid (3.26%) in addition to chief constituents n-heptacosane
(6.67%), n-nonacosane (5.42%), squalene (4.17%), cis-13,16-docosadienoic acid (3.76%),
lupeol (3.76%), n-tetratriacontane (3.38%), and hentriacontane (3.32%). It was notable that
γ-sitosterol is the chief component in the four organs ranging from (3.79%) in TIS to (11.28%)
in TIF. It was notable that squalene, n-nonacosane, n-hentriacontane, 5α-stigmast-22-en-3β-
ol, and γ-sitosterol were detected in the four organs. The major compounds present in the
four various organs of T. indica are represented in (Figure 1).

Table 1. Chemical profile of n-hexane extract from various organs of T. indica: TIB (bark), TIL (leaves),
TIS (seeds), and TIF (fruits) using GC/MS analysis.

No. Rt

(min)
Compound Name RIExp.a RILit

b Molecular
Formula

Peak Area (%)

TIB TIL TIS TIF

1 6.94 α-pinene 930 930 C10H16 - - - 0.38
2 8.16 α-Sabinene 971 971 C10H16 - - - 0.57
3 9.90 D-Limonene 1028 1028 C10H16 - - - 1.35
4 9.97 1,8-Cineole 1030 1030 C10H18O - - - 0.61
5 13.93 Isoborneol 1156 1156 C10H18O - - - 0.87
6 19.00 α-Terpinyl acetate 1328 1327 C12H20O2 0.03 - - 7.36
7 23.59 α-Muurolene 1494 1494 C15H24 0.04 - - 7.52
8 27.69 2-Methylhexadecane 1668 1666 C17H36 0.03 - - 5.70
9 31.07 Hexadecanal; Palmitaldehyde 1810 1811 C16H32O - - - 0.36

10 31.25 Methyl pentadecanoate 1819 1820 C16H32O2 - - - 4.53
11 31.52 Neophytadiene 1833 1837 C20H38 - 0.2 - -
12 31.67 Hexahydrofarnesyl acetone 1841 1842 C18H36O - 0.09 - -
13 32.43 Heptadecan-2-one 1880 1892 C17H34O 0.03 0.07 - -
14 33.37 Methyl palmitate 1928 1928 C17H34O2 0.11 - - -
15 34.42 α-Eicosene 1980 1986 C20H40 - - - 3.44
16 35.62 Octadecanal 2040 2034 C18H36O - - 0.58 -
17 36.73 n-Heneicosane 2098 2100 C21H44 0.05 - - -
18 36.85 Methyl linolenate 2104 2108 C19H32O2 0.07 - - -
19 37.06 Phytol 2116 2116 C20H40O - 1.97 - -
20 37.32 Linolenic acid 2130 2134 C18H30O2 - - 1.23 3.26
21 37.88 Ethyl linolate 2160 2164 C20H36O2 0.08 - - -
22 38.48 Stearic acid=n-Octadecanoic acid 2192 2180 C18H36O2 - - 0.64
23 38.59 n-Docosane 2198 2200 C22H46 0.07 - 0.82 -
24 38.89 Phytol acetate 2215 2218 C22H42O2 - - 0.67 -
25 39.17 Methyl nonadecanoate 2231 2230 C20H40O2 - - 0.59 -
26 40.12 Heneicosan-3-one 2285 2283 C21H42O - - 0.54 -
27 40.20 1-Eicosanol 2289 2292 C20H42O 0.09 - - -
28 40.36 n- Tricosane 2298 2300 C23H48 0.17 0.04 - -
29 40.65 Methyl cis-11-eicosenoate 2315 2302 C21H40O2 - - 1.83 -
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Table 1. Cont.

No. Rt

(min)
Compound Name RIExp.a RILit

b Molecular
Formula

Peak Area (%)

TIB TIL TIS TIF

30 41.15 Methyl eicosanoate 2344 2339 C21H42O2 - - 0.77 -

31 41.41 4,8,12,16-Tetramethylheptadecan-
4-olide 2360 2364 C21H40O2 - 0.07 0.40 -

32 41.57 n-Eicosanoic acid 2369 2380 C20H40O2 - - 1.01 -

33 42.07 2,2′-Methylene-bis-(6-tert
butyl-4-methylphenol) 2398 2398 C23H32O2 0.10 0.06 - -

34 42.24 n-Tetracosane 2409 2400 C24H50 - - 0.53 -
35 42.48 Docosanal 2424 2426 C22H44O - - 0.64 1.48
36 42.61 Methyl heneicosanoate 2431 2430 C22H44O2 0.07 - - -
37 42.85 1-Docosanol 2446 2456 C22H46O - - 0.54 -
38 43.1 2-Methyltetracosane 2461 2465 C25H52 - - 1.28 -
39 43.48 1-Pentatricosene 2484 2485 C35H70 - - 1.77 -
40 43.62 Cyclogallipharaol 2493 2499 C21H36O 0.35 - 0.81 0.72
41 43.70 n- Pentacosane 2498 2500 C25H52 0.24 0.23 2.46 -
42 43.87 Heneicosyl acetate 2509 2509 C23H46O2 - - 2.94 -
43 43.96 Palmitic acid β-monoglyceride 2514 2519 C19H38O4 0.07 - - -
44 44.230 Methyl docosanoate 2531 2531 C23H46O2 0.08 - - -
45 44.305 11-Methylpentacosane 2536 2529 C26H54 - - 4.22 -
46 44.675 cis-13,16-Docasadienoic acid 2560 2566 C22H40O2 - - 3.70 3.76
47 44.84 n-Docosanoic acid 2570 2569 C22H44O2 - - 10.49 -
48 45.18 Ethyl docosanoate 2592 2593 C24H48O2 1.44
49 45.275 n-Hexacosane 2598 2600 C26H54 0.11 0.20 2.47 -
50 45.43 Methyl tricosanoate 2608 2615 C24H48O2 - - 7.09 -
51 45.62 Erucylamide 2621 2625 C22H43NO - - 1.32 -
52 45.83 Tetracosanal 2635 2632 C24H48O - - 5.42 -
53 46.19 2-Methylhexacosane 2658 2662 C27H56 - - 4.31 -
54 46.793 1-Heptacosene 2698 2694 C27H54 0.58 - - -
55 46.805 n-Heptacosane 2699 2700 C27H56 - 1.37 4.17 6.67
56 47.310 Methyl tetracosanoate 2733 2731 C25H50O2 0.14 - 2.17 -
57 47.77 2-Methylheptacosane 2765 2761 C28H58 - - 0.59 -
58 48.02 16-Acetoxycarterochaetol 2782 2787 C22H36O3 - - 0.26 -
59 48.260 n-Octacosane 2798 2800 C28H58 0.09 0.44 4.63 -
60 48.800 Squalene 2836 2835 C30H50 0.24 1.29 1.82 4.17
61 48.865 n-Hexacosanal 2841 2833 C26H52O 0.04 0.09 - -
62 48.94 n-Hexacosanol 2846 2848 C26H54O - - 0.25 -
63 49.26 2-Methyloctacosane 2869 2860 C29H60 - - 1.32 -
64 49.44 1-Nonacosene 2882 2884 C29H58 - - 0.67 -
65 49.730 n-Nonacosane 2902 2900 C29H60 1.26 4.13 1.69 5.42
66 50.175 15-Methylnonacosane 2935 2931 C30H62 0.03 - - -
67 50.285 Methyl hexacosanoate 2943 2940 C27H54O2 - 0.17 - -
68 50.515 2-Methylnonacosane 2960 2960 C30H62 0.04 - - -
69 51.040 n-Triacontane 2998 3000 C30H62 0.04 0.37 - -
70 51.130 Benzyl icosanoate 3005 3003 C27H46O2 0.02 - - -
71 51.210 1-Heptacosanol 3011 3016 C27H56O - 0.06 - -
72 51.655 n-Octacosanal 3045 3039 C28H56O - 0.29 - 0.44
73 51.850 2-Methyltriacontane 3059 3060 C31H64 - 0.09 - -
74 52.370 n-Hentriacontane 3099 3100 C31H64 0.08 1.73 0.61 3.32
75 52.475 Octacosanol 3107 3110 C28H58O 1.02 - - 1.89
76 52.72 13-Methylhentriacontane 3126 3130 C32H66 - 0.15 0.85 -
77 52.835 Campesterol 3134 3131 C28H48O - 0.05 - -
78 53.015 Cholest-3,5-diene 3148 - C27H44 0.07 0.09 - -
79 53.085 α-Tocopherol 3154 3149 C29H50O2 0.03 1.01 - -
80 53.155 Ergosta-5,8,22-trien-3-ol, (3β,22E)- 3159 3158 C28H44O - 0.40 - -
81 53.340 Stigmasterol 3173 3170 C29H48O 0.11 0.25 - -
82 53.475 β-Sitosterol 3183 3197 C29H50O - 0.10 - -
83 53.710 n-Dotriacontane 3201 3200 C32H66 0.26 0.23 - -
84 53.925 Cholest-5-ene, 3β-methoxy 3216 3216 C28H48O - 0.08 - -
85 54.375 Triacontanal 3248 3251 C30H60O - 0.47 - 0.69
86 54.575 5α-Stigmast-22-en-3β-ol 3261 3253 C29H50O 1.09 0.84 0.72 1.39
87 55.070 Chondrillasterol 3296 3295 C29H48O 1.42 0.07 - -
88 55.130 n-Tritriacontane 3300 3300 C33H68 - 0.41 - -
89 55.230 Lanosterol 3306 3302 C30H50O 0.25 0.13 - -
90 55.310 1-Triacontanol 3311 3306 C33H68O 0.38 - - -
91 55.440 5α-Stigmastan-3β-ol 3320 3325 C29H52O 0.04 0.14 - -
92 55.655 β-Amyrin 3332 3337 C30H50O 0.11 - - -
93 56.015 γ-Sitosterol 3353 3351 C29H50O 4.17 8.83 3.79 11.28
94 56.200 2-Methyldotriacontane 3364 3259 C33H68 - 0.52 - 0.76
95 56.335 β-Amyrone 3372 3327 C30H50O 1.78 2.05 - -
96 56.445 α-Amyrin 3379 3376 C30H50O - 0.33 - -
97 56.740 n-Tetratriacontane 3397 3403 C34H70 8.16 1.21 - 3.38
98 57.020 β-Amyrin acetate 3446 3437 C32H52O2 - 0.08 - -
99 57.195 Lupenone 3488 3384 C30H48O 9.36 13.08 - -
100 57.550 Lupeol acetate 3518 3525 C32H52O2 23.02 1.68 - -
101 57.68 Lupeol 3527 3500 C30H50O 23.61 22.78 - 3.76

102 58.015 (17E)-Cholesta-17,24-diene-3,6-
diol 3550 - C27H44O2 0.29 8.23 - -

103 58.170
Hexadecanoic acid, 3,7,11,15-
tetramethyl-2-hexadecenyl
ester

3561 3567 C36H70O2 0.04 - - -

104 58.295 24-Methylenecycloartan-3-one 3570 - C31H50O 0.45 - - -
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Table 1. Cont.

No. Rt

(min)
Compound Name RIExp.a RILit

b Molecular
Formula

Peak Area (%)

TIB TIL TIS TIF

105 58.605 24-Methylenecycloartanol 3591 - C31H52O 5.87 0.18 - -
106 58.890 3β-Hydroxystigmast-5-en-7-one 3611 3609 C29H48O2 - 1.03 - -
107 59.095 Betulinaldehyde 3625 3628 C30H48O2 - 3.70 - -
108 59.440 Germanicol 3649 - C30H50O - 0.80 - -
109 61.000 Betulin 3757 3760 C30H50O2 1.78 - - -
110 62.04 Ursane-3,12-diol 3829 - C30H52O2 - 0.59 - -
111 62.11 1-Heptatriacontanol 3834 - C37H76O 4.25 - - -
112 62.39 Stigmastane-3,6-dione 3853 3601 C29H48O2 1.16 - - -

113 62.79 9,19-Cyclolanost-23-ene-3,25-diol,
(3β,23E)- 3881 - C32H52O3 - 0.70 - -

Monoterpene Hydrocarbon - - - 2.30
Oxygenated Monoterpene 0.03 - - 8.84
Sesquiterpene Hydrocarbon 0.04 - - 7.52
Oxygenated Sesquiterpene - 0.09 - -
Diterpenoids - 2.24 1.33 -
Triterpenoids 61.06 47.41 1.82 7.93
Steroids 13.47 11.86 4.51 12.67
Fatty acids and fatty acids
derivatives 0.97 8.40 35.22 11.55

Straight-chain Hydrocarbons and
derivatives 12.77 12.1 40.36 33.55

Others 4.73 1.07 0.81 0.72
Total identified compounds % 93.07 83.17 84.05 85.08

Compounds listed in order of their elution in RTX-5 GC column. Identification was based on comparison of the
compound mass spectral data (MS) and retention indices (RI) with those of NIST Mass Spectral Library (2011),
Wiley Registry of Mass Spectral Data 8th edition and literature. a Retention index calculated experimentally in
RTX-5 column relative to n-alkane series (C8–C28). b Published retention indices.
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Triterpenoids and steroids are the predominant classes in the T. indica bark n-hexane
extract, accounting for 61.06 % and 13.47%, respectively. Additionally, the n-hexane extract
of T. indica leaves showed a high percentage of triterpenoids and steroids, representing
47.41% and 11.86% of the identified compounds, respectively, along with fatty acids and
their derivatives accounting for 8.40 %. On the other hand, the most predominant classes of
metabolites in the n-hexane extract of T. indica seeds were fatty acids and their derivatives
and the straight-chain hydrocarbons, accounting for 35.22% and 40.36%, respectively. Mean-
while, the straight-chain hydrocarbons were the dominant class in the n-hexane extract of
T. indica fruits, representing 33.55% of the total identified compounds, followed by steroids
and fatty acids and their derivatives, accounting for 12.67% and 11.55%, respectively. The
illustration of the metabolite distribution in the various organs of T. indica is represented
in (Figure 2).
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6 19.00 α-Terpinyl acetate 1328 1327 C12H20O2 0.03 - - 7.36 

7 23.59 α-Muurolene 1494 1494 C15H24 0.04 - - 7.52 

8 27.69 2-Methylhexadecane 1668 1666 C17H36 0.03 - - 5.70 

9 31.07 Hexadecanal; Palmitaldehyde 1810 1811 C16H32O - - - 0.36 

10 31.25 Methyl pentadecanoate 1819 1820 C16H32O2 - - - 4.53 

11 31.52 Neophytadiene 1833 1837 C20H38 - 0.2 - - 

12 31.67 Hexahydrofarnesyl acetone 1841 1842 C18H36O - 0.09 - - 

13 32.43 Heptadecan-2-one 1880 1892 C17H34O 0.03 0.07 - - 

14 33.37 Methyl palmitate 1928 1928 C17H34O2 0.11 - - - 

15 34.42 α-Eicosene 1980 1986 C20H40 - - - 3.44 

16 35.62 Octadecanal 2040 2034 C18H36O - - 0.58 - 

17 36.73 n-Heneicosane 2098 2100 C21H44 0.05 - - - 

18 36.85 Methyl linolenate 2104 2108 C19H32O2 0.07 - - - 

19 37.06 Phytol 2116 2116 C20H40O - 1.97 - - 

20 37.32 Linolenic acid 2130 2134 C18H30O2 - - 1.23 3.26 

21 37.88 Ethyl linolate 2160 2164 C20H36O2 0.08 - - - 

22 38.48 Stearic acid=n-Octadecanoic acid 2192 2180 C18H36O2 - - 0.64  

23 38.59 n-Docosane 2198 2200 C22H46 0.07 - 0.82 - 

24 38.89 Phytol acetate 2215 2218 C22H42O2 - - 0.67 - 

25 39.17 Methyl nonadecanoate 2231 2230  C20H40O2 - - 0.59 - 

26 40.12 Heneicosan-3-one 2285 2283 C21H42O - - 0.54 - 

27 40.20 1-Eicosanol 2289 2292 C20H42O 0.09 - - - 

28 40.36 n- Tricosane 2298 2300 C23H48 0.17 0.04 - - 

29 40.65 Methyl cis-11-eicosenoate 2315 2302 C21H40O2 - - 1.83 - 

30 41.15 Methyl eicosanoate 2344 2339  C21H42O2 - - 0.77 - 

Figure 2. Pie charts demonstrate distribution of metabolite classes in percentages within various
organs: TIB (bark), TIL (leaves), TIS (seeds), and TIF (fruits) of Tamarindus indica.

The fatty acids previously identified in the seeds of Tamarind from Sudan by
Ibrahim et al. [40] were characterised as palmitic acid, oleic acid, and eicosanoic acid in
addition to the identification of β-amyrin, β-sitosterol, and campesterol. Cis-vaccenic acid,
2-methyltetracosane, β-sitosterol, 9,12-octadecadienoic acid (Z, Z)-, and n-hexadecanoic
acid were reported as the major metabolites identified in the oil of T. indica seeds collected
from Nigeria. Another study by Carasek and Pawliszyn [41] reported that the volatile
compounds in the tamarind fruit collected from Brazil included phenylacetaldehyde and
furfural. Aldehyde and ester compounds were mostly identified by using Solid-Phase
Microextraction (SPME) Fibres. It is important to note that the plant extract components
can be influenced by variables including geographic, climatic, seasonal, and experimental
settings. However, the aim of our study was to explore the difference in discriminating
among the various organs of T. indica, not to study the effects of the above-mentioned
variables from Gad et al. [42].

2.2. Chemometric Analysis Based on GC/MS Analysis

GC/MS-based metabolites showed both qualitative and quantitative variation among
different Tamarindus indica organs. Consequently, chemometric analysis, representing both
principal component analysis (PCA) and hierarchal cluster analysis (HCA), was applied
to the relative peak areas of all the identified compounds of different T. indica organs to
explore the similarities and differences among them. The PCA score plot and loading plot
are shown in Figure 3a,b. In the PCA score plot, the percentage of the first two principal
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components explained 83% of the variance in the data, where PC1 accounted for 63%,
while PC2 explained only 20% of the data discrepancies. From the score plot, various
T. indica organs were divided into four main groups, and each part was scattered in a
separate quadrant. TIL and TIB were positioned on the positive side of PC1, whereas, TIF
and TIS were located on the negative side of PC1. An in-depth inspection of the loading
plot (Figure 3b) revealed that lupeol acetate was the major discriminating marker for TIB.
Although lupeol was the major identified component in both TIB and TIL, it was ©dentified
as the main segregating marker for TIL in addition to lupenone.
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Regarding TIF and TIS, γ-Sitosterol and n-Docosanoic acid were the chef compounds
responsible for their separation in separate quadrants. By applying HCA, the dendrogram
(Figure 3c) categorised T. indica organs into four main clusters. Cluster I, II, III, and IV
displayed TIL, TIB, TIF, and TIS, respectively. The dendrogram showed that TIL and
TIB were closely related to each other’s when compared to TIF and TIS. Both PCA and
HCA successfully discriminated among various T. indica organs proving the effective
application of chemometric analysis in combination with GC/MS-based metabolites for
the discrimination among various plant organs.

2.3. Anti-Inflammatory Activity of Tamarindus indica L. Various Organs

The anti-inflammatory effects of the n-hexane extract of T. indica bark, leaves, seeds, and
fruits (TIB, TIL, TIS, and TIF) on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages
were represented in (Table 2). The various organs of T. indica showed promising inhibition
of LPS-induced nitric oxide (NO) release in RAW 264.7 macrophages. At a concentra-
tion of 10 µg/mL, TIB, TIL, TIS, and TIF n-hexane extracts showed %NO inhibition by
7.53 ± 1.69, 53.97 ± 5.89, 19.54 ± 1.19, and 26.66 ± 3.44%, respectively. Further, at a
concentration of 100 µg/mL, TIB, TIL, TIS, and TIF n-hexane extracts showed %NO in-
hibition by 51.44 ± 1.17, 98.00 ± 1.90, 85.47 ± 0.22, and 83.69 ± 2.39%, respectively as
compared to positive control L-NG-nitro arginine methyl ester (L-NAME) (1 mM) that
showed 84.64 ± 1.04% NO inhibition.

Table 2. The anti-inflammatory effects of the n-hexane extract from various organs of T. indica: TIB (bark),
TIL (leaves), TIS (seeds), and TIF (fruits) on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages.

Sample
%NO Inhibition

10 µg/mL 100 µg/mL

TIB 7.53 ±1.69 b 51.44 ± 1.17 b

TIL 53.97 ± 5.89 b 98.00 ± 1.90 b

TIS 19.54 ± 1.19 b 85.47 ± 0.22 a

TIF 26.66 ± 3.44 b 83.69 ± 2.39 a

L-NAME (1 mM) 84.64 ± 1.04 a

Means bearing same scripts (a or b) are not significantly different from control at p < 0.05, Mean ± Standard error.

Previous studies revealed that the fruit pulp was applied to inflammations and tra-
ditionally used as a gargle for sore throats. Further, the bark decoction was used in cases
of eye inflammation [12]. Rimbau et al. revealed the in vivo anti-inflammatory properties
of different extracts of tamarind fruit pulp in mice ear oedema induced by arachidonic
acid, and rats sub plantar oedema induced by carrageenan [43]. Moreover, the petroleum
ether and ethyl acetate extracts of seeds of T. indica showed a significant anti-inflammatory
and analgesic potential using carrageenan-induced paw oedema and cotton pellet-induced
granuloma models in rats [44]. Among the major compounds in the n-hexane extract
of T. indica’s various organs were lupenone and sitosterol, which were reported for their
anti-inflammatory activity [45]. Additionally, among the major identified compounds,
lupeol and lupeol acetate were reported for their anti-inflammatory properties through reg-
ulating TNF-α, IL-2, and IL-β specific mRNA, reducing PGE-2 synthesis from macrophage,
neutrophil migration, and the number of iNOS cells [46].

2.4. Wound Healing Activity of Tamarindus indica L. Various Organs
2.4.1. Cytotoxicity Assay

Evaluation of the cytotoxicity of the n-hexane extract of T. indica bark, leaves, seeds,
and fruits (TIB, TIL, TIS, and TIL) on the HSF cells was necessary to assess the safety of
the treatment dose. The cytotoxicity on HSF cells of the n-hexane extract of T. indica’s
various organs was evaluated using the SRB assay [47]. In our investigation, TIF and
TIS (up to 100 µg/mL) had no cytotoxic effect on the HSF cells. While TIB and TIL at a
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concentration of 10 µg/mL showed HSF cell viability up to 91.04 ± 2.09 and 95.38 ± 0.86%,
respectively (Figure 4). Therefore, a concentration of 10 µg/mL was safe and used further
as the treatment dose in the scratch wound assay.
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Figure 4. The effect of n-hexane extract from various organs of T. indica: TIB (bark), TIL (leaves), TIS
(seeds), and TIF (fruits) on Human Skin Fibroblast cells (HSF) viability.

2.4.2. Scratch Wound Assay

In the present study, an in vitro scratch assay using HSF cells was used to assess TIB,
TIL, TIS and TIF wound-healing activity. It was evaluated by changes in wound width
by measuring the average distance between the borders of the scratches (Figures 5 and 6).
The tested plant extracts at a concentration of 10 µg/mL decreased the wound width
significantly compared with the control cells (Table 3).

Table 3. Wound width of the scratched Human Skin Fibroblast cells (HSF) incubated in the absence
of the plant extract (negative control) and the presence of n-hexane extract from T. indica: TIB (bark),
TIL (leaves), TIS (seeds), and TIF (fruits) (10 µg/mL).

Time (h)
Wound Width (mm)

TIB
(10 µg/mL)

TIL
(10 µg/mL)

TIS
(10 µg/mL)

TIF
(10 µg/mL) Control

0 2.68 ± 0.02 a 2.75 ± 0.02 a 2.72 ± 0 a 2.74 ± 0.04 a 2.73 ± 0.03 a

24 1.09 ± 0.04 a 1.12 ± 0.18 a 1.09 ± 0.28 a 1.41 ± 0.35 a 1.37 ± 0.15 a

48 0 a 0.09 ± 0.16 a 0.13 ± 0.12 a 0.27 ± 0.12 a 0 a

72 0 0 0 0 0
Means bearing same script (a) are not significantly different from control at p < 0.05, Mean ± Standard error.
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Figure 5. The wound width changes in the absence or presence of 10 µg/mL of n-hexane extract from
various organs of T. indica: TIB (bark), TIL (leaves), TIS (seeds), and TIF (fruits).

After 24 h, the highest wound healing potential was recorded by TIB and TIS n-
hexane extracts with wound widths equal to 1.09 ± 0.04 and 1.09 ± 0.28 mm, respectively.
This result was followed by TIL and TIF with wound widths equal to 1.12 ± 0.18 and
1.41 ± 0.35 mm, respectively, as compared to the wound width in the control cells that
equalled 1.37± 0.15 mm. As the wound width reduced as cell migration was enhanced, our
findings revealed that both TIB and TIL n-hexane extracts exhibited almost complete cell
migration after 48 h of observation. Meanwhile, TIS and TIF n-hexane extracts had wound-
healing effects on HSF cells, but the time required to conduct wound closure was longer
than for the negative control. This revealed that the n-hexane extract of T. indica’s various
organs exhibited wound-healing potential through fibroblast migration enhancement.

Previous reports revealed the traditional utilisation of tamarind in eye surgery for
conjunctival cell adhesion and corneal wound healing [12]. In a study by Adeniyi et al., the
wound-healing activity of T. indica leaves and pulp was investigated in the African catfish,
and the results revealed the enhancement of the wound healing significantly in the fish-fed
tamarind-fortified diets as a consequence of the elevation of antioxidant enzymes [48].
Attah et al. investigated the wound-healing potential of T. indica fruit paste in adult rabbits,
and the results revealed wound closure acceleration and increasing epithelial migration
and re-epithelialisation [49].
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Figure 6. Microscopic images of (HSF) incubated in absence of the plant extract (negative control)
and depicting the influence of 10 µg/mL of n-hexane extract from various organs of T. indica: TIB
(bark), TIL (leaves), TIS (seeds), and TIF (fruits). Images were captured at 0, 24, 48 and 72 h. The
boundaries of the scratched wounds are marked by dark lines.

The wound-healing potential of n-hexane extracts of various organs of T. indica can
be linked to their chemical components. For example, γ-sitosterol is one of the most
famous phytosterols with reported biological activity. Phytosterols were shown to inhibit
MMP-1, reduce collagen breakdown, and promote the synthesis of collagen in human
keratinocytes [50]. Moreover, they promote keratinocyte migration through the reduction
of oxidative stress that effectively accelerates the healing process [51]. In previous studies,
lupeol and lupeol acetate, which are the major identified components in the present study,
were reported for their wound-healing properties [52–58]. Lupeol prevents collagen I
depletion and restores levels of hydroxyproline, hexosamine, hexuronic acid, and matrix
glycosaminoglycans, together with modulating collagen I expression in human fibroblasts
during the proliferation phase. Further, it enhances fibroblast proliferation, angiogenesis,
and growth factors in wound healing [52–54]. Another study reported the potential of
lupeol for wound healing in streptozotocin-induced hyperglycaemic rats [56]. Another
study by Malinowska et al. revealed that lupeol acetate was one of the most effective lupeol
derivatives in the stimulation of the human skin cell proliferation process [58]. Bopage et al.
reported that the presence of a 3-OH group in the lupeol structure is one of the essential
features in the lupane skeleton for wound healing activity as compared to lupenone and
lupeol acetate [59].

Linolenic acid and squalene are among the major identified constituents in the n-
hexane extract of T. indica fruits; linolenic acid plays an important role in the wound
healing process across its antioxidative and anti-inflammatory properties as well as by
encouraging cell proliferation, raising collagen synthesis, promoting dermal reconstruction,
and restoring the function of the skin’s lipid barrier [60–63]. Further, squalene is reported
to have anti-inflammatory and protective actions against skin damage. It can accelerate
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the healing of wounds by stimulating the macrophage response to inflammation. Squalene
could be helpful during the resolution phase of wound healing [64].

The amounts of lupeol, lupeol acetate, lupenone, and γ-sitosterol show a correlation
with the in vitro wound healing potential of the n-hexane extract of various organs of T.
indica, and TIB was found to contain the highest amounts of these compounds according to
the GC/MS analysis. The present study and the data in the literature show that terpenoids,
sterols, and fatty acids play important roles in the wound-healing potential of T. indica. So,
T. indica is suggested as a potent natural wound-healing product.

2.5. In Silico Molecular Docking Studies

This part was conducted to investigate the possible mechanism of action in which the
identified major compounds exert their biological effect. Accordingly, the 3D structures of
glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8), and nitric
oxide synthase (iNOS) were downloaded from the protein data bank using the following
IDs: 3F88, 5H8X, and 3N2R, respectively. After that, the twenty major compounds were
docked into the active site vicinity of the three enzymes. Interestingly, all the compounds
achieved acceptable binding scores upon docking with the three targets (Table 4).

Table 4. The docking scores achieved by the major identified compounds against the three enzymes.

Compound Name

Docking Scores (Kcal/mol)

Glycogen Synthase
Kinase 3-β

(GSK3-β) 3F88

Nitric Oxide
Reductase (iNOS)

3N2R

Matrix Metalloproteinases 8
(MMP-8)

5H8X

Lupeol −12.5 −13.7 −9.8
n-docosanoic acid −11.7 −12.6 −11.9
methyl tricosanoate −11.2 −11.8 −13.1
α-terpinyl acetate −11.8 −10.1 −12.5
α-muurolene −10.4 −11.8 −10.1
Gamma- sitosterol −10.2 −11.9 −8.2
Lupenone −10.1 −10.3 −7.6
Lupeol acetate −11.3 −9.5 −7.7
n-tetratriacontane −9.8 −7.6 −7.5
Betulinaldehyde −8.7 −8.1 −7.4
β-Amyrone −9.2 −6.5 −7.1
24-methylenecycloartanol −8.3 −7.2 −6.8
methyl tricosanoate −7.8 −7.4 −7.5
n-hexacosane −8.2 −7.8 −7.3
cis-13,16-docasadienoic acid −7.5 −8.3 −6.5
n-tetratriacontane −7.9 −9.1 −5.9
methyl pentadecanoate −7.3 −7.8 −7.6
Squalene −6.8 −7.8 −7.2
Linolenic acid −8.1 −8.5 −7.9
n- pentacosane −7.3 −7.7 −7.4

To this end, it was expected that the identified major compounds would exert syn-
ergetic effects. In the docking of GSK3-β-lupeol, n-docosanoic acid, methyl tricosanoate,
α-terpinyl acetate, and lupeol acetate achieved best docking scores of −12.5, −11.7, −11.2,
−11.8, and −11.3 Kcal/Mol, respectively. As Figure 7 reveals, lupeol interacted with
Val135, Tyr140, Arg141, Gln185, and Cys199; n-docosanoic acid interacted with Gly63,
Lys183, and Cys199; methyl tricosanoate interacted with GSK3-β through binding with
Phe67, Arg141, and Cys199; α-terpinyl acetate interacted with Lys85, Asp133, and Cys199;
and lupeol acetate interacted with Lys85, Gln185, and Cys199. In the docking of matrix
metalloproteinases-8 (MMP-8), lupeol, n-docosanoic acid, methyl tricosanoate, α-terpinyl
acetate, and α-muurolene achieved the best docking scores of −9.8, −11.9, −13.1, −12.5,
and−10.1 Kcal/Mol, respectively. As depicted in Figure 8, lupeol bound to MMP-8 through
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interactions with Ala161, Gly158, and Asn218; n-docosanoic acid interacted with Ala161,
Glu198, His207, Pro217, and Asn218; methyl tricosanoate interacted with Asn85, Ala161,
Ala163, Gln165, His 197, Glu198, His201, and Pro217; α-terpinyl acetate interacted with
Ala161, Val194, His 197, Glu198, His207, Pro217, and Asn218; and α-muurolene interacted
with MMP-8 through binding with His197, Leu214, and Tyr216. In the docking of Nitric
oxide reductase (iNOS), lupeol, n-docosanoic acid, methyl tricosanoate, α-muurolene, and
gamma-sitosterol achieved the best docking scores of −13.7, −12.6, −11.8, −11.8, and
−11.9 Kcal/Mol, respectively. Looking at Figure 9, we see that lupeol was able to interact
with the residues of iNOS through binding with Gln478, Tyr588, Glu592, Asp597, Trp678,
and Val680; n-docosanoic acid interacted with Thr324, Arg414, Cys415, Gln478, Glu592,
Trp678, and Asn697; methyl tricosanoate interacted with Trp409, Arg414, Cys415, Gly417,
Met570, Phe584, and Glu592; α-muurolene interacted with Met336, Trp678, and Val680; and
gamma-sitosterol interacted with Cys415, Val677, and Trp678. In conclusion, the docking
results supported and justified the biological results giving rise to a synergetic effect for all
the major components of the extract.
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Figure 7. 2D binding modes of lupeol (A), n- docosanoic acid (B), methyl tricosanoate (C), α-terpinyl
acetate (D), and lupeol acetate (E) to the active binding sites of glycogen synthase kinase 3-β (GSK3-β).



Plants 2023, 12, 87 14 of 22Plants 2023, 12, x FOR PEER REVIEW 17 of 25 
 

 

 

Figure 8. 2D binding modes of lupeol (A), n- docosanoic acid (B), methyl tricosanoate (C), α-terpinyl 

acetate (D), and α-muurolene (E) to the active binding sites of matrix metalloproteinases-8 (MMP-

8). 

  
  

 
 

 
 

B 
A 

C D 

E 

Figure 8. 2D binding modes of lupeol (A), n- docosanoic acid (B), methyl tricosanoate (C), α-terpinyl
acetate (D), and α-muurolene (E) to the active binding sites of matrix metalloproteinases-8 (MMP-8).
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Figure 9. 2D binding modes of (A), n- docosanoic acid (B), methyl tricosanoate (C), α-muurolene (D),
and gamma-sitosterol (E) to the active binding sites of nitric oxide synthase (iNOS).
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3. Materials and Methods
3.1. Plant Material

Tamarindus indica L.’s (Fabaceae) various organs (Bark, leaves, seeds, and fruits) were
collected from the Zoo Botanical Garden, Giza, Egypt, in October 2021. The various plant
organs were kindly identified and authenticated by agricultural engineer Eng. Terase Labib,
Consultant of Plant Taxonomy at the Ministry of Agriculture and El-Orman Botanical
Garden, Giza, Egypt. Voucher specimens of the various plant organs with codes BUC-
PHG-TIL-6, BUC- PHG-TIS-7, BUC- PHG-TIF-8, and BUC-PHG-TIB-9 were kept at the
Department of Pharmacognosy, Badr University in Cairo, Cairo, Egypt.

3.2. Preparation of the N-Hexane Extracts of Various Organs

The dried samples of the barks, leaves, seeds, and fruits of T. indica (100 g each) were
powdered and extracted by cold maceration method with n-hexane (500 mL × 3) sepa-
rately, followed by filtration for 3 days. The filtrate of each plant material was completely
evaporated in vacuo at 45 ◦C until dry to obtain the dried residue of the n-hexane extract
(420 mg, 610 mg, 207 mg, and 312 mg) for barks, leaves, seeds, and fruits, respectively.
The dried residue of each plant part was named as follows; T. indica bark (TIB), T. indica
leaves (TIL), T. indica seeds (TIS), and T. indica fruits (TIF). All extracts were stored in a tight
container at 4 ◦C in the refrigerator for further analysis [65].

3.3. GC/MS Analysis

Gas chromatography coupled with mass spectrometry (GC/MS) analyses were per-
formed on a Shimadzu GCMS-QP 2010 (Shimadzu Corporation, Koyoto, Japan), provided
using an Rtx-5MS (30 m × 0.25 mm i.d. × 0.25 µm film thickness) capillary column (Restek,
Bellefonte, PA, USA) and attached to a Shimadzu mass spectrometer. The column tempera-
ture was initially set at 50 ◦C for 3 min. Then, the temperature was gradually increased
from 50 to 300 ◦C at a rate of 5 ◦C/min and then isothermally maintained at 300 ◦C for
10 min. The temperature of the injector was kept at 280 ◦C. Helium was used as a carrier gas
at a flow rate of 1.37 mL/min. The ion source and the interface were at temperatures of 280
and 220 ◦C, respectively. An injection of 1 µL of 1% v/v of diluted sample was achieved via
a split mode adopting a split ratio of 15:1. Recording of the mass spectrum was performed
in EI mode of 70 eV from m/z 35 to 500. Compound quantitation was performed based on
the normalisation method, employing the reading of three chromatographic runs.

3.4. Identification of the N-Hexane Extract Components

The components of the n-hexane extracts were characterised by comparing their
GC/MS spectra, fragmentation patterns, and retention indices with those reported in the
literature data [66–72]. The retention indices were calculated relative to a homologous
series of n-alkanes (C8–C28) injected under the same conditions.

3.5. Chemometric Analysis

The data obtained from GC-MS were subjected to multivariate analysis. Principal
component analysis (PCA) was performed as the first step in data analysis to provide an
overview of all observations and samples and to identify and evaluate groupings, trends,
and strong outliers [73]. Hierarchal cluster analysis (HCA) was used to allow the clustering
of samples. The clustering patterns were constructed by applying the complete linkage
method. This presentation was more efficient when the distance between samples (points)
was computed using the Euclidean method. Both PCA and HCA were achieved by utilising
Unscrambler®X 10.4 from CAMO (Computer Aided Modeling, Viken, Norway) [74].

3.6. Anti-Inflammatory Activity

Murine macrophage RAW264.7 cells (ATCC®) were maintained in a complete Dul-
becco’s Modified Eagle’s Medium (DMEM, Corning, NY, USA) supplemented with 10%
foetal bovine serum, penicillin (100 U/mL), streptomycin sulphate (100 µg/mL), and 2 mM
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L-glutamine in a humidified 5% CO2 incubator. For passaging and treatment, cells were
washed with phosphate-buffered saline and scrapped off the flasks using sterile scrappers
(SPL, Spain). RAW 264.7 cell stock (0.5 × 106 cells/mL) was seeded into 96-well microwell
plates and incubated overnight. The next day, the non-induced triplicate wells received a
medium with the sample vehicle (DMSO, 0.1% v/v). The inflammation group of triplicate
wells received the inducer of inflammation [lipopolysaccharide (LPS) as 100 ng/mL] in
complete culture media containing 0.1% DMSO, v/v. Sample groups of triplicate wells
received two screening amounts (10 and 50 µg/mL) of the sample dissolved in DMSO
and diluted into culture media containing LPS (Final concentration of DMSO = 0.1%, by
volume). L-NAME (L-NG-nitro arginine methyl ester) (1 mM) was used as a standard
NOS inhibitor. After 24 h of incubation, a Griess assay [75] was used to determine NO
in all wells. Equal volumes of culture supernatants and Griess reagent were mixed and
incubated at room temperature for 10 min to form the coloured diazonium salt and read at
an absorbance of 520 nm. The NO Inhibition % of the test extract was calculated relative
to the LPS-induced inflammation group, normalised to cell viability determined with the
Alamar Blue™ reduction assay [76].

3.7. Wound Healing Activity
3.7.1. Cytotoxicity Assay

The cytotoxicity of the tested plant extract against the HSF (Human Skin Fibroblast)
cell line was assessed prior to the wound-healing assay using the sulforhodamine B assay
(SRB) [47]. The HSF cell line was obtained from Nawah Scientific Inc. (Mokatam, Cairo,
Egypt). Cells were maintained in a DMEM medium supplemented with 100 mg/mL of
streptomycin, 100 units/mL of penicillin, and 10% of heat-inactivated foetal bovine serum
in a humidified 5% (v/v) CO2 atmosphere at 37 ◦C. Aliquots of 100 µL of cell suspension
(5 × 103 cells) were placed in 96-well plates and incubated in a complete medium for 24 h.
Cells were treated with another aliquot of 100 µL medium containing DRSE at various
concentrations (0.01, 0.1, 1, 10, and 100 µg/mL). After 72 h of drug exposure, cells were fixed
by replacing the medium with 150 µL of 10% TCA and incubated at 4 ◦C for 1 h. The TCA
solution was removed, and the cells were washed five times with distilled water. Aliquots
of 70 µL SRB solution (0.4% w/v) were added and incubated in a dark place at room
temperature for 10 min. Plates were washed three times with 1% acetic acid and allowed to
air-dry overnight. Then, 150 µL of TRIS (10 mM) was added to dissolve the protein-bound
SRB stain; the absorbance was measured at 540 nm using a BMGLABTECH®-FLUO star
Omega microplate reader (Ortenberg, Germany).

3.7.2. Scratch Wound Assay

The wound-healing activity of TIB, TIL, TIS, and TIF n-hexane extract was evalu-
ated using in vitro cell migration studies on HSF cells. Cells were plated at a density
of 2 × 105/well onto a coated 12-well plate for the scratch wound assay and cultured
overnight in 5% FBS-DMEM at 37 ◦C and 5% CO2. On the next day, horizontal scratches
were introduced into the confluent monolayer; the plate was washed thoroughly with
PBS, control wells were replenished with the fresh medium, and drug wells were treated
with fresh media containing the drug. Images were taken using an inverted microscope
at the indicated time intervals. The plate was incubated at 37 ◦C and 5% CO2 between
time points. The experiment was done in triplicate. The acquired images are displayed
in Figure 6 and were analysed using MII ImageView software version 3.7. Wound width
was calculated as the average distance between the edges of the scratches; the wound
width decreases as cell migration is induced. The results are displayed as mean ± standard
deviation (Table 3) [77–79].
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3.8. Statistical Analysis

Statistical analyses were done using a one-way analysis of variance (ANOVA) fol-
lowed by the Tukey–Kramer multiple comparison test (p < 0.05). Statistical analyses were
performed using GraphPad Prism 6.01 (GraphPad Inc., La Jolla, CA, USA).

3.9. In Silico Molecular Docking Studies

The X-ray 3D structures of glycogen synthase kinase 3-β (GSK3-β), matrix metallo-
proteinases-8 (MMP-8), and nitric oxide synthase (iNOS) were downloaded from the
protein data bank www.pdb.org (accessed on 15 August 2022) using the following IDs:
3F88, 5H8X, and 3N2R, respectively [80–82]. All the docking studies were conducted using
MOE 2019 [83], which was also used to generate the 2D interaction diagrams between the
docked ligands and their potential targets. The identified major compounds were prepared
using the default parameters and saved in a single MDB file. The active site for each target
was determined from the binding of the corresponding co-crystalised ligand. Finally, the
docking was finalised by docking the MDB file containing all the major compounds into
the active site of the three enzymes.

4. Conclusions

The present study investigated the secondary metabolites in the n-hexane extract of T.
indica’s various organs and their in vitro anti-inflammatory and wound healing properties
using the scratch assay with HSF cells. The GC/MS analysis revealed that triterpenoids
and steroids were the predominant classes in the T. indica bark and leaf n-hexane ex-
tracts. Additionally, the seed and fruit n-hexane extracts showed a high percentage of
fatty acids and higher hydrocarbons. PCA and HCA successfully discriminated various T.
indica organs based on their GC/MS metabolites. The tested extracts showed promising
anti-inflammatory and wound-healing properties. Additionally, the major characterised
phytoconstituents achieved promising docking scores in the active sites of glycogen syn-
thase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8), and nitric oxide synthase
(iNOS), which give the n-hexane extract of the various T. indica organs a chance to be
incorporated in the pharmaceutical products for wound healing after further in vivo and
clinical trials.
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