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Abstract: The skin is the largest organ that performs a variety of the body’s essential functions.
Impairment of skin structure and functions during the aging process might severely impact our
health and well-being. Extensive evidence suggests that reactive oxygen species play a fundamental
role in skin aging through the activation of the related degradative enzymes. Here, the 16 Thai
medicinal plant species were screened for their potential anti-skin aging properties. All extracts
were investigated for total phenolic and flavonoid contents, antioxidant, anti-elastase, and anti-
tyrosinase activities, as well as the binding ability of compounds with target enzymes by molecular
docking. Among all the plants screened, the leaves of A. occidentale and G. zeylanicum exhibited strong
antioxidants and inhibition against elastase and tyrosinase. Other potential plants include S. alata
leaf and A. catechu fruit, with relatively high anti-elastase and anti-tyrosinase activities, respectively.
These results are also consistent with docking studies of compounds derived from these plants. The
inhibitory actions were found to be more highly positively correlated with phenolics than flavonoids.
Taken together, our findings reveal some Thai plants, along with candidate compounds as natural
sources of antioxidants and potent inhibitors of elastase and tyrosinase, could be developed as
promising and effective agents for skin aging therapy.

Keywords: phytomedicine; anti-aging; antioxidant; anti-elastase; anti-tyrosinase; proanthocyanidin;
Areca catechu; Anacardium occidentale; Glochidion zeylanicum; Senna alata

1. Introduction

Skin is the largest and most complex organ in the human body. The skin serves
as a barrier between the body and the outside environment, and it serves a variety of
functions [1]. It has a significant cosmetic role in addition to protecting the body from water
loss and microbial infection [2]. In addition, it works to support other body parts, such as
the immune, nervous and endocrine systems [1]. The look of youth and beauty may have a
positive impact on people’s social behavior and human life [1,2]. Hence, the impairment of
skin structure and functions that occur as we age might have a severe impact on our health
and well-being [2,3]. Thinness, dryness, lack of elasticity, rough texture, wrinkles, and dark
pigments are all common characteristics of older skin [4]. Many researchers are currently
working on generating potential anti-aging drugs or chemicals, particularly those derived
from natural sources for skin aging treatment.
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In general, human skin ages in two ways: internally (as a result of chronological aging)
and extrinsically (as a result of environmental variables influenced by environmental
factors) [5]. Extensive evidence suggests that oxidative stress, through the formation of
reactive oxygen species (ROS), plays a fundamental role in both intrinsic and extrinsic skin
aging [6]. ROS causes oxidative damage to skin cells by damaging essential macromolecules
such as nucleic acids, enzymatic proteins, and membrane lipids, resulting in cellular
malfunction and cell death [7]. Oxidative stress also contributes to the degradation of
the extracellular matrix (ECM) by suppressing ECM component synthesis (e.g., elastin)
and activating ECM degrading enzymes (e.g., elastase), which results in loss of skin
elasticity [2,8,9]. Moreover, ROS can cause irregular or dark colors in the skin by inducing
the production of an α-melanocyte-stimulating hormone (α-MSH) in keratinocytes, thereby
triggering the activation of the tyrosinase enzyme and promoting melanin synthesis in
melanocytes [10,11]. Therefore, scavenging ROS and inhibiting elastase and tyrosinase
activities could be useful in the treatment or even prevention of skin aging.

Natural products are currently receiving much interest as potential alternative medicines
for treating a number of diseases as well as aging and age-associated declines [8,12,13].
Tropical plants could be of interest to explore their potential in skin aging treatments. As
reported previously, several Andean and Himalayan plants have been regarded as sources
of compounds with potential use as anti-aging ingredients [14,15]. Thailand is a known
place for cultivating a wide variety of tropical plants, many of which have not been studied
extensively. The goal of this research was to find potential natural sources for developing
novel treatments against skin aging. The extracts of 16 Thai medicinal plant species were
studied in vitro for their properties related to anti-skin aging, including total phenolic and
flavonoid contents, free radical scavenging, anti-elastase, and anti-tyrosinase activities. We
also further performed correlation analysis and an in silico molecular docking approach
to reveal the promising phytochemical compounds in the three most effective plants with
strong inhibition against elastase or tyrosinase enzyme.

2. Results
2.1. Extraction Yields

Table 1 shows the scientific name, parts used, source, extraction method/solvent, and
percent yield of Thai plants used in this study. The percent yields of the extracts ranged
from 2.0% to 36.3% (Table 1). C. carandas had the highest extraction yield (36.3%), followed
by M. caloneura (18.2%) and A. occidentale (16.0%), whereas H. undatus had the lowest yield
(2.0%).

Table 1. Scientific name, parts used, source, and percent yield of Thai plants.

Scientific Name Part Used Source Voucher Number Extraction
Method/Solvent %Yield (w/w)

Anacardium occidentale L. Leaf Songkhla,
Thailand 015863 (BCU) Soxhlet/Methanol 16.0

Areca catechu L. Fruit Surat Thani,
Thailand 016434 (BCU) Soxhlet/Ethanol 10.5

Carissa carandas L. Fruit Chachoengsao,
Thailand 016531 (BCU) Soxhlet/Ethanol 36.3

Centella asiatica (L.) Urb. Leaf Bangkok, Thailand 016426 (BCU) Maceration/Ethanol 4.1
Clitoria macrophylla Wall. Flower Bangkok, Thailand - a Soxhlet/Ethanol 11.9

Clitoria ternatea L. Flower Chonburi,
Thailand - a Soxhlet/Methanol 12.8

Eleutherine americana
(Aubl.) Merr. Rhizome Ubon Ratchathani,

Thailand 016530 (BCU) Maceration/Ethanol 3.3

Glochidion zeylanicum
(Gaertn.) A. Juss. Leaf Songkhla,

Thailand 016061 (BCU) Soxhlet/Methanol 11.8
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Table 1. Cont.

Scientific Name Part Used Source Voucher Number Extraction
Method/Solvent %Yield (w/w)

Hylocereus undatus (Haw.)
Britt. Rose. Peel Nonthaburi,

Thailand 016446 (BCU) Soxhlet/Ethanol 2.0

Mangifera caloneura Kurz. Leaf Songkhla,
Thailand 016445 (BCU) Soxhlet/Ethanol 18.2

Piper nigrum L. Seed Bangkok, Thailand 016428 (BCU) Maceration/Ethanol 5.0
Pithecellobium dulce (Roxb.)

Benth. Peel Chachoengsao,
Thailand 017139 (BCU) Soxhlet/Ethanol 6.4

Senna alata (L.) Roxb. Leaf Ubon Ratchathani,
Thailand 016298 (BCU) Maceration/Ethanol 10.5

Streblus asper Lour. Bark Rayong, Thailand 013419(BCU) Maceration/Ethanol 2.5
Streblus asper Lour. Leaf Rayong, Thailand 013419(BCU) Maceration/Ethanol 4.0

Zingiber cassumunar Roxb. Rhizome Rayong, Thailand 013701 (BCU) Maceration/Ethanol 6.4
Zingiber officinale Roscoe. Rhizome Bangkok, Thailand 016425 (BCU) Maceration/Ethanol 5.2

a = identified by the botanists.

2.2. Total Phenolic Content of Thai Plants

The plant extracts showed a variety of total phenolic content ranging from 14.06 ± 1.55
to 320.14 ± 7.95 mg of gallic acid equivalent (GAE) per g dry weight extract (Table 2).
G. zeylanicum (320.14 ± 7.95 mg GAE per g dry weight extract) had the highest phenolic
content in all extracts, followed by A. catechu (295.79 ± 11.97 mg GAE per g dry weight
extract) and M. caloneura (210.99 ± 10.40 mg of GAE per g dry weight extract), respectively.
The lowest level was found in C. carandas at 14.06 ± 1.55 mg GAE per g dry weight extract.

Table 2. Total phenolic and flavonoid contents of Thai plants.

Scientific Name Part Used Total Phenolic Content (mg
GAE/g Dry Weight Extract)

Total Flavonoid Content (mg
QE/g Dry Weight Extract)

Anacardium occidentale L. Leaf 173.86 ± 4.75 25.34 ± 2.88
Areca catechu L. Fruit 295.79 ± 11.97 2.62 ± 0.36

Carissa carandas L. Fruit 14.06 ± 1.55 2.83 ± 0.78
Centella asiatica (L.) Urb. Leaf 15.26 ± 0.76 11.25 ± 2.87
Clitoria macrophylla Wall. Flower 64.85 ± 2.81 14.74 ± 2.71

Clitoria ternatea L. Flower 25.60 ± 2.19 10.33 ± 2.31
Eleutherine americana (Aubl.) Merr. Rhizome 73.73 ± 1.87 2.61 ± 0.42

Glochidion zeylanicum (Gaertn.) A. Juss. Leaf 320.14 ± 7.95 52.54 ± 7.25
Hylocereus undatus (Haw.) Britt. Rose. Peel 70.39 ± 4.57 22.20 ± 3.20

Mangifera caloneura Kurz. Leaf 210.99 ± 10.40 84.48 ± 18.32
Piper nigrum L. Seed 47.86 ± 2.27 3.46 ± 0.70

Pithecellobium dulce (Roxb.) Benth. Peel 61.82 ± 0.61 28.01 ± 4.39
Senna alata (L.) Roxb. Leaf 45.36 ± 1.15 10.24 ± 2.52
Streblus asper Lour. Bark 18.02 ± 0.30 2.72 ± 0.89
Streblus asper Lour. Leaf 43.58 ± 2.40 3.30 ± 1.50

Zingiber cassumunar Roxb. Rhizome 44.63 ± 0.61 4.85 ± 0.98
Zingiber officinale Roscoe. Rhizome 139.94 ± 2.27 2.86 ± 0.74

Values show mean ± standard deviation (SD) of at least three independent experiments; GAE = gallic acid
equivalent; QE = quercetin equivalent.

2.3. Total Flavonoid Content of Thai Plants

The total flavonoid content of plant extracts varied among the plant species, ranging
from 2.61 ± 0.42 to 84.48 ± 18.32 mg of quercetin equivalent (QE) per g dry weight
extract (Table 2). Of all extracts, the highest flavonoid content was found in M. caloneura
(84.48 ± 18.32 mg of QE per g dry weight extract), followed by G. zeylanicum (52.54 ± 7.25 mg
of QE per g dry weight extract) and P. dulce (28.01 ± 4.39 mg of QE per g dry weight extract),
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respectively. On the other hand, the lowest level was found in E. americana at 2.61 ± 0.42 mg
of QE per g dry weight extract.

2.4. DPPH Radical Scavenging Activity of Thai Plants

The DPPH assay is based on the hydrogen-donating capacity of the compound to
scavenge the stable DPPH radicals [16]. The antioxidant capacities of plant extracts were
expressed as the percent DPPH radical scavenging activity, the mg of vitamin C equivalent
antioxidant capacity (VCEAC) per g dry weight extract, and the half-maximal inhibitory
concentration (IC50) (Table 3). At 0.1 mg/mL of extracts, the percentages of DPPH scav-
enging activity ranged from 6.40 to 93.18%. Four plant extracts: G. zeylanicum (93.18%),
M. caloneura (90.61%), A. occidentale (89.01%), and A. catechu (88.12%), exhibited DPPH
scavenging activity greater than 80%. In contrast, C. ternatea showed the lowest scavenging
activity at 6.40%. This rank order was the same when compared based on the relative
VCEAC values. However, according to the IC50 values, the antioxidant capacity of the top
four plant extracts was changed in the following order: G. zeylanicum > A. catechu > A. oc-
cidentale > M. caloneura. The obtained results of the DPPH assay show that G. zeylanicum
exhibited the strongest antioxidant potential with the highest percentage of scavenging
activity and the lowest IC50 value.

Table 3. DPPH radical scavenging activity of Thai plants.

Scientific Name Part Used

DPPH Radical Scavenging

Scavenging
Activity (%)

mg VCEAC/g Dry
Weight Extract IC50 (µg/mL)

Anacardium occidentale L. Leaf 89.01 ± 1.51 387.43 ± 13.97 18.68 ± 0.59
Areca catechu L. Fruit 88.12 ± 5.04 627.64 ± 8.94 9.85 ± 0.91

Carissa carandas L. Fruit 12.76 ± 1.13 16.63 ± 2.32 >100
Centella asiatica (L.) Urb. Leaf 15.38 ± 0.93 19.52 ± 1.48 >100
Clitoria macrophylla Wall. Flower 9.01 ± 1.43 10.03 ± 1.50 >100

Clitoria ternatea L. Flower 6.40 ± 0.45 7.49 ± 0.29 >100
Eleutherine americana (Aubl.) Merr. Rhizome 45.58 ± 7.14 53.49 ± 6.97 188.05 ± 43.01

Glochidion zeylanicum (Gaertn.) A. Juss. Leaf 93.18 ± 0.64 1154.54 ± 36.19 6.56 ± 0.46
Hylocereus undatus (Haw.) Britt. Rose. Peel 26.57 ± 2.03 33.91 ± 2.07 >100

Mangifera caloneura Kurz. Leaf 90.61 ± 3.27 289.44 ± 10.68 20.89 ± 2.27
Piper nigrum L. Seed 14.71 ± 1.72 18.74 ± 2.78 >100

Pithecellobium dulce (Roxb.) Benth. Peel 46.84 ± 3.68 55.09 ± 2.72 120.84 ± 25.33
Senna alata (L.) Roxb. Leaf 27.16 ± 4.56 33.12 ± 4.28 >100
Streblus asper Lour. Bark 11.93 ± 2.26 13.14 ± 1.76 >100
Streblus asper Lour. Leaf 28.53 ± 2.63 30.94 ± 2.05 >100

Zingiber cassumunar Roxb. Rhizome 33.37 ± 4.70 40.61 ± 4.99 253.63 ± 24.05
Zingiber officinale Roscoe. Rhizome 71.73 ± 5.29 82.22 ± 6.68 67.21 ± 13.31

Values show mean ± standard deviation (SD) of at least three independent experiments; IC50 is the concentration
at which the 50% scavenging activity is observed; VCEAC = Vitamin C equivalent antioxidant capacity.

2.5. ABTS Radical Scavenging Activity of Thai Plants

The ABTS assay is based on the compound’s ability to transfer hydrogen atoms for
neutralizing a stable ABTS radical cation. The antioxidant capacities of plant extracts were
expressed as the percent ABTS radical scavenging activity, the mg of VCEAC per g dry
weight extract, and the IC50 (Table 4). At 0.1 mg/mL of extracts, the percentages of ABTS
scavenging activity ranged from 13.93% to 99.37%. Eight plant extracts: G. zeylanicum
(99.37%), A. catechu (99.31%), A. occidentale (99.23%), M. caloneura (98.88%), E. americana
(95.62%), Z. officinale (94.07%), P. dulce (83.99%), and H. undatus (82.16%) exhibited the ABTS
scavenging activity greater than 80%. In contrast, C. carandas showed the lowest scavenging
activity at 13.93%. The antioxidant capacity of the top four plant extracts, according to the
VCEAC, and IC50 values were found in a similar rank order as follows: G. zeylanicum >
A. catechu > A. occidentale > M. caloneura. Remarkably, the results of the ABTS assay also
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showed that the extract with the strongest antioxidant activity was G. zeylanicum leaf, as
represented by the highest percentage of scavenging activity and the lowest IC50 value.

Table 4. ABTS radical scavenging activity of Thai plants.

Scientific Name Part Used

ABTS Radical Scavenging

Scavenging
Activity (%)

mg VCEAC/g Dry
Weight Extract IC50 (µg/mL)

Anacardium occidentale L. Leaf 99.23 ± 0.29 675.44 ± 65.66 8.64 ± 0.66
Areca catechu L. Fruit 99.31 ± 0.32 837.47 ± 44.16 5.14 ± 1.42

Carissa carandas L. Fruit 13.93 ± 1.03 12.41 ± 1.97 >100
Centella asiatica (L.) Urb. Leaf 18.86 ± 4.81 16.98 ± 4.73 324.22 ± 46.00
Clitoria macrophylla Wall. Flower 38.27 ± 7.24 34.78 ± 5.01 >100

Clitoria ternatea L. Flower 26.48 ± 2.24 26.35 ± 3.28 >100
Eleutherine americana (Aubl.) Merr. Rhizome 95.62 ± 6.13 213.63 ± 9.12 20.23 ± 4.72

Glochidion zeylanicum (Gaertn.) A. Juss. Leaf 99.37 ± 0.21 1184.59 ± 51.41 3.76 ± 0.79
Hylocereus undatus (Haw.) Britt. Rose. Peel 82.16 ± 2.17 81.73 ± 4.78 44.23 ± 5.13

Mangifera caloneura Kurz. Leaf 98.88 ± 1.55 531.29 ± 26.11 9.31 ± 0.85
Piper nigrum L. Seed 33.28 ± 4.72 30.93 ± 4.13 150.35 ± 34.82

Pithecellobium dulce (Roxb.) Benth. Peel 83.99 ± 6.01 79.65 ± 4.36 49.52 ± 7.01
Senna alata (L.) Roxb. Leaf 64.95 ± 7.32 61.92 ± 5.38 52.20 ± 2.94
Streblus asper Lour. Bark 23.55 ± 2.92 23.29 ± 1.33 >100
Streblus asper Lour. Leaf 65.60 ± 6.47 59.33 ± 6.67 66.36 ± 7.89

Zingiber cassumunar Roxb. Rhizome 73.36 ± 5.89 69.88 ± 5.88 43.60 ± 5.49
Zingiber officinale Roscoe. Rhizome 94.07 ± 3.44 175.47 ± 16.28 22.76 ± 9.79

Values show mean ± standard deviation (SD) of at least three independent experiments; IC50 is the concentration
at which the 50% scavenging activity is observed; VCEAC = Vitamin C equivalent antioxidant capacity.

2.6. Anti-Elastase Activity of Thai Plants

The elastase inhibitory activity of plant extracts was evaluated using the elastase
inhibition assay with N-succinyl-trialanyl-paranitroanilide (SANA) as the substrate. Epigal-
locatechin gallate (EGCG) (0.1 mg/mL), which was used as a positive control, showed an
inhibition level of 45.27%. The elastase inhibitory activities of the extracts are presented in
Table 5 (see also Table S1). At 0.5 mg/mL of extracts, the percentages of elastase inhibition
ranged from 1.33% to 88.31%. A. catechu had the highest elastase inhibitory effect at 88.31%,
followed by G. zeylanicum (87.43%), A. occidentale (84.78%), and S. alata (73.95%), while
S. asper bark had the lowest elastase inhibitory effect at 1.33%. Due to high background
absorbance, some plant extracts with no detectable activity were reassayed at 0.1 mg/mL.
It was found that M. caloneura, P. nigrum, Z. cassumunar, and S. asper leaf, except Z. officinale,
showed low to moderate inhibitory activities ranging from 3.46% to 35.74%. Nevertheless,
the effects of C. carandas, C. asiatica, C. ternatea, E. americana, and H. undatus were not
observed even at higher concentrations.

Table 5. Elastase inhibitory activity of Thai plants.

Scientific Name Part Used
Elastase Inhibition (%)

0.5 mg/mL 0.1 mg/mL IC50 (µg/mL)

Anacardium occidentale L. Leaf 84.78 ± 2.16 - 18.21 ± 4.91
Areca catechu L. Fruit 88.31 ± 0.41 - 117.07 ± 21.71

Carissa carandas L. Fruit nd - -
Centella asiatica (L.) Urb. Leaf nd - -
Clitoria macrophylla Wall. Flower 9.85 ± 2.26 - >500

Clitoria ternatea L. Flower nd - -
Eleutherine americana (Aubl.) Merr. Rhizome nd - -

Glochidion zeylanicum (Gaertn.) A. Juss. Leaf 87.43 ± 3.80 - 47.94 ± 24.75
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Table 5. Cont.

Scientific Name Part Used
Elastase Inhibition (%)

0.5 mg/mL 0.1 mg/mL IC50 (µg/mL)

Hylocereus undatus (Haw.) Britt. Rose. Peel nd - -
Mangifera caloneura Kurz. Leaf na 13.75 ± 1.61 >100

Piper nigrum L. Seed na 9.05 ± 0.09 >100
Pithecellobium dulce (Roxb.) Benth. Peel 22.87 ± 2.92 - >500

Senna alata (L.) Roxb. Leaf 73.95 ± 1.46 - 82.25 ± 19.99
Streblus asper Lour. Bark 1.33 ± 0.89 - > 500
Streblus asper Lour. Leaf na 35.74 ± 0.94 153.28 ± 2.39

Zingiber cassumunar Roxb. Rhizome na 3.46 ± 1.29 >100
Zingiber officinale Roscoe. Rhizome na nd -

EGCG (0.1 mg/mL) - 45.27 ± 3.36 -

Values show mean ± standard deviation (SD) of at least three independent experiments; IC50 is the concentration
at which the 50% inhibition level is observed; EGCG = epigallocatechin gallate; nd = not detectable; na = not
applicable (high background); - = not tested.

2.7. Anti-Tyrosinase Activity of Thai Plants

Tyrosinase inhibitory activity of plant extracts was evaluated using the dopachrome
method with 3,4-dihydroxy-L-phenylalanine (L-DOPA) as the substrate. Kojic acid (KA)
(0.02 mg/mL), a positive control, showed an inhibition level of 68.35%. The tyrosinase
inhibitory activity of the extracts is presented in Table 6 (see also Table S2). At 1 mg/mL of
extracts, the percentages of tyrosinase inhibition ranged from 4.80% to 91.51%. G. zeylanicum
had the highest tyrosinase inhibitory effect at 91.51%, followed by A. occidentale (81.01%),
M. caloneura (76.12%), and A. catechu (75.38%), whereas P. nigrum had the lowest tyrosinase
inhibitory effect at 4.80%. Two plant extracts with no detectable activity due to high
background absorbance were reassayed at 0.1 mg/mL, and the activities were found at
3.98% (Z. cassumunar) and 21.28% (Z. officinale). However, P. dulce did not exhibit any effect,
even at increased concentration.

Table 6. Tyrosinase inhibitory activity of Thai plants.

Scientific Name Part Used
Tyrosinase Inhibition (%)

1 mg/mL 0.1 mg/mL IC50 (µg/mL)

Anacardium occidentale L. Leaf 81.01 ± 2.96 - 307.66 ± 65.12
Areca catechu L. Fruit 75.38 ± 1.57 - 85.73 ± 8.26

Carissa carandas L. Fruit 15.00 ± 1.21 - >1000
Centella asiatica (L.) Urb. Leaf 13.57 ± 1.23 - >1000
Clitoria macrophylla Wall. Flower 27.36 ± 7.95 - >1000

Clitoria ternatea L. Flower 10.02 ± 1.61 - >1000
Eleutherine americana (Aubl.) Merr. Rhizome 45.10 ± 1.59 - >1000

Glochidion zeylanicum (Gaertn.) A. Juss. Leaf 91.51 ± 5.39 - 76.00 ± 4.31
Hylocereus undatus (Haw.) Britt. Rose. Peel 15.79 ± 0.84 - >1000

Mangifera caloneura Kurz. Leaf 76.12 ± 3.98 - 457.63 ± 71.73
Piper nigrum L. Seed 4.80 ± 1.31 - >1000

Pithecellobium dulce (Roxb.) Benth. Peel nd - -
Senna alata (L.) Roxb. Leaf 12.94 ± 2.73 - >1000
Streblus asper Lour. Bark 9.85 ± 1.14 - >1000
Streblus asper Lour. Leaf 5.11 ± 3.88 - >1000

Zingiber cassumunar Roxb. Rhizome na 3.98 ± 0.54 >100
Zingiber officinale Roscoe. Rhizome na 21.28 ± 2.53 >100

KA (0.02 mg/mL) - 68.35 ± 1.22 -

Values show mean ± standard deviation (SD) of at least three independent experiments; IC50 is the concentration
at which the 50% inhibition level is observed; KA = kojic acid; nd = not detectable; na = not applicable (high
background); - = not tested.
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2.8. Correlation Analysis

Considering several previous reports of potential elastase and tyrosinase inhibitory
action of plant extracts [8,16,17], it was likely that the extracts possess a high antioxidant
potential and tend to have strong elastase and tyrosinase inhibitory action. Thus to verify
those relationships in this study, we further performed Pearson’s correlation analysis to in-
vestigate the relationship between the inhibitory activities of both enzymes and the level of
antioxidant contents as well as antioxidant capacities among the extracts used. The strength
of the correlation is distributed by correlation coefficient (r-value) as follows: r = 0.910
to 1.000 indicate a very strong correlation, r = 0.710 to 0.900 indicate a high correlation,
r = 0.410 to 0.700 indicate a moderate correlation, r = 0.210 to 0.400 indicate a small correla-
tion, and r = 0.000 to 0.200 indicate a slight correlation [18]. The elastase inhibition had a
high positive correlation to total phenolic content, DPPH, and ABTS radical scavenging ac-
tivities, as shown in Figure 1a,c,d, respectively. Similarly, the tyrosinase inhibition showed
a very strong positive correlation to total phenolic content and ABTS radical scavenging
activity (Figure 2a,d), while it showed a high positive correlation to DPPH radical scaveng-
ing activity (Figure 2c). However, the total flavonoid content was moderately positively
correlated to both elastase and tyrosinase inhibition (Figures 1b and 2b). These results
demonstrated that phenolic compounds and antioxidant activity might have a significant
contribution to the inhibition of elastase and tyrosinase enzymes.
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2.9. Molecular Docking

We next evaluated the abilities of phytochemical compounds in the three most effective
plants with strong inhibition against elastase or tyrosinase enzymes. Molecular docking is
generally used to predict the binding affinity of compounds to protein receptors or enzymes
compared to known inhibitors. According to our results of in vitro screening assays, we
found that A. occidentale was the most potent elastase inhibitor, followed by G. zeylanicum
and S. alata, in rank order of IC50 values. Thus, we selected phytochemical compounds
derived from these three plants to evaluate their ability to inhibit elastase. The results of
interactions between elastase (3HGP) and compounds are presented in Table S4 as binding
energy, inhibition constant, the number of hydrogen bonds, amino acid interaction, and
bond length. The binding energy between 3HGP and compounds shows scores ranging
from −2.26 to −11.95 kcal/mol (Table S4). EGCG, a positive control, showed the binding
energy at −9.69 kcal/mol. According to the docking results, five compounds showed
lower binding energy than the positive control. Tetramer of proanthocyanidin exhibited
the lowest binding energy (−11.95 kcal/mol), which indicated that it has the best affinity
compared to other compounds in elastase inhibition, followed by amentoflavone, rutin,
agathisflavone, and kaempferol 3-O-gentiobioside, with the binding energies at −11.81,
−10.12, −9.92, and −9.73, respectively.

In addition, the rank order of IC50 values for plant extracts with tyrosinase inhibition
was closely similar to elastase inhibition. We found that G. zeylanicum possessed the
highest inhibitory effect, followed by A. catechu, and A. occidentale. Hence, the compounds
derived from these three plants were selected to investigate their ability to inhibit tyrosinase.
The results of interactions between tyrosinase (2Y9X) and compounds are presented in
Table S5 as binding energy, inhibition constant, the number of hydrogen bonds, amino acid
interaction, and bond length. The binding energy between 2Y9X and compounds showed
scores ranging from −4.56 to −10.42 kcal/mol (Table S5). KA, a well-known inhibitor of
tyrosinase, showed the binding energy at −4.59 kcal/mol. Based on the docking results,
o-coumaric acid (−10.42 kcal/mol) and tetramer of proanthocyanidin (−10.42 kcal/mol)
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exhibited the lowest binding energy against elastase when compared to other compounds,
followed by caffeic acid, ferulic acid, and arecatannin A1 with the binding energies at
−10.10, −10.00, and −9.94, respectively. Figures 3 and 4 represent the 2D diagrams of
ligand–protein interactions for elastase and tyrosinase, for the positive control, and for five
compounds with the lowest binding energy.
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3. Discussion

Skin aging is a naturally occurring process in all human beings. However, many
lifestyles and environmental factors can also accelerate this process leading to prematurely
aged skin [19]. ROS is well known as an important pathogenic factor in the aging process
of the skin. The accumulation of ROS can upregulate the expression of both elastase and
tyrosinase enzymes, which subsequently leads to wrinkle formation, lack of elasticity, and
hyperpigmentation [20–22]. All of these are common characteristics of skin aging [4]. Here,
our study investigated the antioxidant, anti-elastase, and anti-tyrosinase properties of plant
extracts from 16 Thai plant species and revealed promising natural compounds for the
potential development of novel treatments against skin aging.

Elastase is a protease enzyme that is primarily responsible for the degradation of
elastin, an important protein found in the ECM. Elastin is vital for giving elasticity to the
skin due to its elastic recoil properties [13]. Therefore, the inhibition of elastase activity
can be helpful in preventing skin loss of elasticity and wrinkles [23]. Our result found that
A. occidentale was the most potent elastase inhibitor, followed by G. zeylanicum and S. alata,
in rank order of IC50 values. Furthermore, the docking results revealed that five compounds
derived from these three plants have lower binding energies than EGCG (positive control)
and FRW (original inhibitor), wherein the compounds displaying the lower binding energy
were considered to have better inhibition (Table S4) [24]. Those compounds are flavonoids,
which include a tetramer of proanthocyanidin [25], amentoflavone [25], rutin [26,27], agath-
isflavone [26] from A. occidentale, and kaempferol 3-O-gentiobioside from S. alata [28]
(Table S3). The results suggested all five compounds to be responsible for anti-elastase
activity as well as can be regarded as promising candidates for the development of anti-skin
aging. However, we found that none of the compounds from G. zeylanicum showed strong
binding affinity as compared to the control ligands, although its extract showed the second
most activity by in vitro assay. This may be due to the synergistic effect of compounds in
the mixture rather than the individual effect of each phytochemical component.

In addition to elastase, melanin is considered another important target for skin-aging
treatment. Melanin is a major component of the skin, hair, and eye color synthesized by
melanogenesis within the melanocyte. However, overproduction of melanin may cause
skin disorders, including freckles, melasma, age spots, and hyperpigmentation, leading
to a premature aging appearance [12]. In melanogenesis, tyrosinase is the critical enzyme
in the rate-limiting step. Therefore, the downregulation of tyrosinase activity can lead to
reduced melanin production [29]. Our results showed that G. zeylanicum was the most po-
tent tyrosinase inhibitor, followed by A. catechu and A. occidentale, according to IC50 values.
Surprisingly, most of the compounds (47 of 48 compounds) in these three plants showed
lower binding energy against tyrosinase than KA (positive control) and tropolone (original
inhibitor) (Table S5). Among the 47 compounds, 16 were derived from G. zeylanicum,
12 were derived from A. catechu, and 29 were derived from A. occidentale, of which 10 of
them can be found in more than one plant (Table S3). However, in contrast to the binding
of the compound with elastase, the identified potential compounds against tyrosinase are
from a variety of phytochemical classes. Regarding the rank of binding energies towards
tyrosinase, the compounds that are considered the best five inhibitors are o-Coumaric
acid [30] (phenolic), tetramer of proanthocyanidin [25] (flavonoid), caffeic acid [30] (pheno-
lic), ferulic acid [30] (phenolic), and arecatannin A1 [31] (tannin), in the increasing order
of scores (Table S5). The results obtained from in vitro screening and docking analysis in
this study have confirmed the anti-skin-aging properties of four Thai medicinal plants and
suggested their potential derived compounds that could be responsible for the observed
activities. Further studies on fractionation, as well as the identification and isolation of
bioactive compounds in these promising plant extracts, are critically required to prove
the presence of our proposed molecules that could subsequently be developed for the
treatment of aging skin [14].

A. catechu, A. occidentale, G. zeylanicum, and S. alata are plants used in traditional
medicine and found in the tropical zone of Southeast Asia, including Thailand [32–36].
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Notably, these plants were demonstrated for several antioxidant-related activities. A. cate-
chu fruit is a popular chewable item with betel leaves, which is intoxicating and slightly
addictive [36]. It is used for the treatment of burn wounds and skin ulcers and acts as an
astringent [35,37]. It has been reported for potent antioxidant and anti-inflammatory effects
against oxidative stress-induced liver injury in rats [38]. A. occidentale and G. zeylanicum,
belonging to Southern Thailand, are used as food and local medicinal plant [32,33]. A. occi-
dentale leaves are used to treat skin rashes, itching, ulcers, and fever, whereas G. zeylanicum
leaves are used to treat rheumatoid arthritis, influenza, dysentery, and dyspepsia [32,33,39].
The leaf extracts of A. occidentale and G. zeylanicum exhibited neuroprotective effects against
glutamate and H2O2-induced oxidative damage [32,40]. Moreover, crude extract from the
leaves of both plants exerted antioxidative stress and anti-aging properties in the nematode
Caenorhabditis elegans [33,41,42]. Leaves of S. alata are used for the treatment of skin rashes,
mycosis, and dermatitis [34]. Leaf extract of this plant was able to increase both enzymatic
and nonenzymatic antioxidant systems and prevent the liver and renal tissues from damage
caused by oxidative stress during diabetes in a rat model [43].

In agreement with previous reports, our findings reveal that A. catechu, A. occidentale,
G. zeylanicum, and S. alata exhibit antioxidant potential, apart from the activities toward
skin aging-related enzymes. We found that these plants are rich in total phenolics and
flavonoids with high antioxidant capacities towards DPPH and ABTS radicals, except for
S. alata, which showed only a moderate level in both amounts and activities. Phenolics
and flavonoids are two well-known classes of plant secondary metabolites that are majorly
responsible for antioxidant activity [44,45]. This was consistent with our results that total
phenolic and flavonoid contents demonstrated a significant positive correlation with free
radical scavenging activities (Figure S1). Interestingly, the correlation analysis also revealed
that the contents of total phenolic and flavonoid compounds in this studied plant extracts
were positively correlated with both elastase and tyrosinase inhibition. However, the
correlation strength was found to be higher with phenolics than with flavonoids. Free
radical scavenging activities were shown to have a high correlation to the enzyme-inhibitory
activities of the extracts. These results suggested that high phenolic content and antioxidant
activity may lead to strong inhibition of elastase and tyrosinase enzymes. However, the
possibility of protein-polyphenol interactions should also be a concern. Some polyphenols
could directly cause enzyme precipitation via their ability to bind with proline-rich proteins,
resulting in hydrogen-bond formation with the enzyme and thereby leading to non-selective
inhibition [46].

4. Materials and Methods
4.1. Chemicals and Reagents

Folin–Ciocalteu’s phenol reagent, aluminum chloride (AlCl3), dimethyl sulfoxide
(DMSO), sodium acetate (NaOAc), quercetin, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-
azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), L-ascorbic acid, potassium per-
sulfate (K2S2O8), elastase from porcine pancreas, epigallocatechin gallate (EGCG), N-
succinyl-Ala-Ala-Ala-p-nitroanilide (SANA), tyrosinase from mushroom, kojic acid (KA),
and 3,4-dihydroxy-L-phenylalanine (L-DOPA) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Sodium carbonate (Na2CO3) was purchased from Merck (Darmstadt,
Germany). Gallic acid was purchased from TCI America (Portland, OR, USA). Dipotassium
phosphate (K2HPO4) and monobasic potassium phosphate (KH2PO4) were purchased
from HiMedia (Mumbai, India). Tris base was purchased from Vivantis Technologies (Shah
Alam, Malaysia). Ethanol and methanol were purchased from RCI Labscan (Bangkok,
Thailand). All chemicals and reagents were analytical grades.

4.2. Plant Materials and Extraction

The plants in this study were collected locally from gardens or purchased from local
markets as appropriate. Table 1 provides the scientific name, part used, and source of each
plant. These plants were botanically authenticated, and their voucher specimens were
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deposited in the herbarium of Kasin Suvatabhandhu, Department of Botany, Faculty of
Science, Chulalongkorn University, Bangkok, Thailand, or identified by a botanist. The
plant materials were washed, dried at 65 ◦C, and ground finely in a mechanical grinder.
The extraction of the dried plant (40 g) was carried out by Soxhlet extraction or maceration
method using 400 mL of ethanol or methanol. The extracts were filtered and evaporated
to dryness under a vacuum. Then, the dried residues were dissolved in DMSO as a
100 mg/mL stock solution and stored at −20 ◦C for further study.

4.3. Determination of Total Phenolic Content

The total phenolic content was performed using the Folin–Ciocalteu method [47].
Briefly, 50 µL of extracts at 1 mg/mL in deionized water was mixed with 50 µL of 10%
(w/v) Folin–Ciocalteu’s phenol reagent in a 96-well plate and incubated in the dark at room
temperature (RT) for 20 min. After the incubation, 50 µL of 7.5% (w/v) Na2CO3 was added
to the mixture and incubated for a further 20 min. The absorbance was measured with a
microplate reader at 760 nm. The total phenolic content was calculated from a standard
calibration curve using gallic acid from 1.56 to 100 µg/mL, and the results are shown as
mg of gallic acid equivalent (GAE) per g dry weight extract.

4.4. Determination of Total Flavonoid Content

The total flavonoid content was performed using aluminum chloride (AlCl3) [47].
Briefly, 50 µL of extracts at 1 mg/mL in deionized water was made up to 200 µL with 95%
ethanol, and then 10 µL of 10% AlCl3 and 10 µL of 1 M NaOAc were added to a 96-well
plate. The plate was incubated in the dark at RT for 40 min, and absorbance was measured
with a microplate reader at 415 nm. The total flavonoid content was calculated from a
standard calibration curve using quercetin from 1.56 to 100 µg/mL, and the results showed
as mg of quercetin equivalent (QE) per g dry weight extract.

4.5. Determination of DPPH Radical Scavenging Activity

DPPH radical scavenging activity assay was performed as described previously [47].
The DPPH• working reagent was prepared by DPPH dissolved in absolute ethanol. Briefly,
180 µL of DPPH• working solution was mixed with 20 µL of extracts in a 96-well plate
and was incubated in the dark at RT for 15 min, and absorbance was measured with a
microplate reader at 517 nm. Ascorbic acid from 1.56 to 100 µg/mL served as a standard.
The radical scavenging activity was calculated as the percent inhibition of free radicals
using the following equation:

% Inhibition =
(Abs o f control − Abs o f sample)

Abs o f control
× 100 (1)

Percentages of DPPH scavenging activity of each plant extract were compared with
those of ascorbic acid. The results were expressed as mg of vitamin C equivalent antioxidant
capacity (VCEAC) per g dry weight extract. The IC50 (half-maximal inhibitory concentra-
tion) was determined from the graph of percent inhibition against the concentration of
each extract.

4.6. Determination of ABTS Radical Scavenging Activity

ABTS radical scavenging activity assay was performed as described previously [47].
The ABTS•+ working reagent was prepared by mixing 7 mM ABTS• and 2.45 mM K2S2O8
at a ratio of 1:1, and the mixture had to remain for 16–18 h in the dark at RT. The ABTS•+

working solution was diluted with absolute ethanol for the absorbance to reach between 0.7
and 0.8 at 734 nm. Briefly, 180 µL of ABTS•+ working solution was mixed with 20 µL of ex-
tracts in a 96-well plate and was incubated in the dark at RT for 30 min, and absorbance was
measured with a microplate reader at 734 nm. Ascorbic acid from 1.56 to 100 µg/mL served
as a standard. The radical scavenging activity was calculated as the percent inhibition of
free radicals using the Equation (1).
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Percentages of ABTS scavenging activity of each plant extract were compared with
those of ascorbic acid. The results expressed as mg of vitamin C equivalent antioxidant
capacity (VCEAC) per g dry weight extract. The IC50 was determined from the graph of
percent inhibition against the concentration of each extract.

4.7. Determination of Anti-Elastase Activity

The anti-elastase activity was evaluated by the elastase inhibition assay using the
modified protocol [13,48,49]. Briefly, 20 µL of extracts, 10 µL of 0.4 U/mL pancreatic
porcine elastase (PPE), and 140 µL of 0.1 M Tris-HCL buffer at pH 8.0 were added in 96-well
plate and pre-incubated at RT for 20 min. After incubation, 30 µL of 2 mM SANA was
added to the reaction mixture and further incubated for 30 min at RT. The absorbance
was measured with a microplate reader at 734 nm. EGCG was used to serve as a positive
control for inhibition. The negative control contained 100% DMSO instead of the extracts.
The percent inhibition of elastase activity was calculated using the equation (1). The IC50
was determined from the graph of percent elastase inhibition against a concentration of
each extract.

4.8. Determination of Anti-Tyrosinase Activity

The anti-tyrosinase activity was performed using the dopachrome method with some
modifications [8]. Briefly, 20 µL of extracts, 20 µL of 200 U/mL mushroom tyrosinase, and
140 µL of 0.1 M phosphate buffer at pH 6.8 were added in 96-well plates and pre-incubated
in RT for 20 min. After incubation, 40 µL of 2.5 mM L-DOPA was added to the reaction
mixture and further incubated for 20 min at RT. The absorbance was read with a microplate
reader at 492 nm. KA was used to serve as a positive control for inhibition. The negative
control contained 100% DMSO instead of the extracts. The percent inhibition of tyrosinase
activity was calculated using the equation (1). The IC50 was determined from the graph of
percent tyrosinase inhibition against a concentration of each extract.

4.9. Molecular Docking
4.9.1. Ligand Preparation

A list of phytochemical compounds from the three most effective plants with strong in-
hibition against elastase or tyrosinase was selected from the published
literature [25–28,30–32,42,50–61] (Table S3). All chemical structures of the compounds
were generated from the IUPAC name using BIOVIA Draw 2019 (BIOVIA, San Diego, CA,
USA). Then, the compounds were cleaned geometry and saved the file to format pdb using
Discovery Studio Visualizer (BIOVIA, San Diego, CA, USA). These files were converted
to format pdbqt using AutoDockTools-1.5.6 software (The Scripps Research Institute, San
Diego, CA, USA).

4.9.2. Protein Preparation

The X-ray crystallographic structures of elastase (PDB ID: 3HGP) [62] and tyrosinase
(PDB ID: 2Y9X) [63] were obtained from RCSB Protein Data Bank. Before the docking
study, using Discovery Studio Visualizer, water molecules and the original inhibitor were
removed from the protein structure, excluding Cu2+ in structures of tyrosinase. These
protein structures were prepared using the prepared protein setup in AutoDockTools-1.5.6
software. All missing hydrogens and Kollman charges were added to the protein structure
and saved in the file to format pdbqt for docking study.

4.9.3. Molecular Docking

Molecular docking studies were performed using the default protocol in AutoDockTools-
1.5.6 software. Grid sites were set with a spacing of 0.375 Å. The x–y–z dimensions were
set to 40 × 40 × 40 points for elastase and 60 × 60 × 60 points for tyrosinase. Grid box
of the x, y, and z centers were 12.58, 9.36, and 2.251 for elastase and −10.044, −28.706,
and −43.443 for tyrosinase. The docking study was performed using the Lamarckian
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Genetic Algorithm (GA) with default parameters, and docking results were analyzed using
AutoDockTools-1.5.6 software and Discovery Studio Visualizer.

4.10. Statistical Analysis

All experiments were performed in at least triplicate, and the results were represented
as the mean ± standard deviation (SD). The IC50 values were analyzed using SigmaPlot
version 12.0 software. Correlation between different variables was expressed as Pearson’s
correlation coefficients (r). The correlation was determined by using GraphPad Prism
(GraphPad Software Inc., San Diego, CA, USA), and the results were considered statistically
significant when p was less than 0.05 (p < 0.05).

5. Conclusions

In summary, our findings revealed four Thai medicinal plants that contain promising
candidate compounds for development as anti-skin aging agents. The leaf extracts of
A. occidentale and G. zeylanicum demonstrated strong inhibitory action against both elastase
and tyrosinase enzymes, whereas the extracts of S. alata leaf and A. catechu fruit exhibited
their activity more strongly only towards elastase or tyrosinase, respectively. Several
compounds derived from these plants were also confirmed for their abilities to bind to
both enzymes through molecular docking study. Moreover, G. zeylanicum leaf, A. occidentale
leaf, and A. catechu fruit possess significant antioxidant potential towards free radicals with
high amounts of phenolics and flavonoids. Taken together, A. catechu fruit, A. occidentale
leaf, G. zeylanicum leaf, and S. alata leaf are identified as natural sources of antioxidants,
anti-elastase, and anti-tyrosinase, which are considered potentially useful for the treatment
against aging of the skin.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12010065/s1, Figure S1: correlation analysis between
phytochemical contents and antioxidant capacities among the studied plants; Table S1: the percent
inhibition of elastase activity by Thai plants at various concentrations; Table S2: the percent inhibition
of tyrosinase activity by Thai plants at various concentrations; Table S3: list of compounds derived
from three most effective plants on inhibition against elastase and/or tyrosinase; Table S4: molecular
docking results between phytochemical compounds and the binding site of elastase (3HGP); Table
S5: molecular docking results between phytochemical compounds and the binding site of tyrosinase
(2Y9X). References [25–28,30–32,42,50–61] are cited in the Supplementary Materials.
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