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Abstract: Plant stress is one of the most significant factors affecting plant fitness and, consequently,
food production. However, plant stress may also be profitable since it behaves hormetically; at
low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and
additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore
called hormesis management, and it is a promising method to increase crop productivity and quality.
Nevertheless, hormesis management has severe limitations derived from the complexity of plant
physiological responses to stress. Many technological advances assist plant stress science in overcom-
ing such limitations, which results in extensive datasets originating from the multiple layers of the
plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning
(ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately
model plant stress responses such as genomic variation, gene and protein expression, and metabolite
biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science,
focusing on their potential for improving the development of hormesis management protocols.

Keywords: eustress; crop improvement; intelligent algorithms; agricultural engineering

1. Introduction

Stress is a defensive state of an organism resulting from deviations of its optimal
developmental conditions [1]. Environmental challenges destabilize fundamental biological
functions in plants, and this is often perceived as constrained crop growth and development.
In agricultural systems, the detrimental effects of plant stress are a significant cause of
productivity loss, threatening food security, especially in the current context of climate
change [2]. Nevertheless, aside from being deleterious, stress responses can also induce
desirable traits in crops and therefore be considered favorable [3]. In that case, stress is
often called eustress, a term derived from the Greek prefix eu that means good or well [4].

Whether a stressor will harm or benefit an organism depends entirely on the intensity
of its incidence [5]. This observation derives from the fact that plant defensive responses to
stress are biphasic, meaning that high doses of a stressor tend to be unfavorable, whereas
low doses are beneficial [6] (Figure 1). The phenomenon that explains such biphasic
behavior is called hormesis, and it demonstrates how some level of stress is necessary for a
plant to achieve optimal fitness [7].
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Figure 1. The hormetic behavior of plant stress responses. At low doses, an overcompensation of 
the damage caused by the stressor increases plant fitness, whereas, at high doses, the stressors dis-
rupt the homeostasis of the organism. 

The acquaintance of hormetic responses of plants to stressors is the basis for imple-
menting hormesis management, which refers to the deliberate exposure of crops to eu-
stress for eliciting desirable attributes [8]. This practice is also called controlled elicitation, 
and it can considerably increase crop yield, growth, quality, pest resistance, and overall 
stress tolerance [9,10]. Nevertheless, the design of hormesis management protocols still 
faces many limitations, mainly due to the complexity of plant stress responses and the 
lack of consideration of the hormesis model in plant stress research [7]. 

Several factors shape the defensive responses of plants, including the type of stressor, 
the genetic identity of the individual, its developmental stage, its nutritional stage, and 
the responding tissue or cell [11]. Consequently, any given dose of a specific stressor will 
fall within a different dose–response range according to the responding organism and the 
observed output variable [4]. Therefore, eustress doses must be experimentally deter-
mined before proposing their implementation [12,13]. Moreover, until very recently, stud-
ies on plant stress responses usually focused on determining a damaging-dose threshold 
rather than depicting the whole dose–response curve [6,7,13]. For these reasons, applying 
novel technologies for enhancing the scopes of hormesis management in agriculture is 
crucial [14]. 

Artificial intelligence (AI) is an evolving branch of computer science with great po-
tential to solve a variety of complex problems of the modern world. From using advanced 
fuzzy logic models for wastewater treatment [15], estimating the production of biosurfac-
tants by bacteria with artificial neural networks (ANN) and the fuzzy inference system 
ANFIS [16], to advanced Deep Learning tools in plant science. In that matter, AI tools are 
helpful to model plant distribution, identify species, recognize disease and stress, diag-
nose nutritional deficiencies, and apply agrochemicals in precision agriculture [17]. In par-
ticular, Machine Learning (ML) techniques can predict the outcome of various complex 

Figure 1. The hormetic behavior of plant stress responses. At low doses, an overcompensation of the
damage caused by the stressor increases plant fitness, whereas, at high doses, the stressors disrupt
the homeostasis of the organism.

The acquaintance of hormetic responses of plants to stressors is the basis for imple-
menting hormesis management, which refers to the deliberate exposure of crops to eustress
for eliciting desirable attributes [8]. This practice is also called controlled elicitation, and
it can considerably increase crop yield, growth, quality, pest resistance, and overall stress
tolerance [9,10]. Nevertheless, the design of hormesis management protocols still faces
many limitations, mainly due to the complexity of plant stress responses and the lack of
consideration of the hormesis model in plant stress research [7].

Several factors shape the defensive responses of plants, including the type of stressor,
the genetic identity of the individual, its developmental stage, its nutritional stage, and
the responding tissue or cell [11]. Consequently, any given dose of a specific stressor will
fall within a different dose-response range according to the responding organism and the
observed output variable [4]. Therefore, eustress doses must be experimentally determined
before proposing their implementation [12,13]. Moreover, until very recently, studies on
plant stress responses usually focused on determining a damaging-dose threshold rather
than depicting the whole dose-response curve [6,7,13]. For these reasons, applying novel
technologies for enhancing the scopes of hormesis management in agriculture is crucial [14].

Artificial intelligence (AI) is an evolving branch of computer science with great poten-
tial to solve a variety of complex problems of the modern world. From using advanced
fuzzy logic models for wastewater treatment [15], estimating the production of biosurfac-
tants by bacteria with artificial neural networks (ANN) and the fuzzy inference system
ANFIS [16], to advanced Deep Learning tools in plant science. In that matter, AI tools are
helpful to model plant distribution, identify species, recognize disease and stress, diagnose
nutritional deficiencies, and apply agrochemicals in precision agriculture [17]. In particular,
Machine Learning (ML) techniques can predict the outcome of various complex biological
processes, such as gene function, gene networks, protein interactions, and optimal growing
conditions, leading to significant achievements in plant stress research [18,19].

Literature reviews assessing the use of machine learning for plant stress research
focus mainly on analyzing the numerous findings on the identification, classification,
quantification, and early prediction of deleterious plant stress responses [20–23]. However,
the potential of the most recent modeling techniques for understanding eustress responses
for crop improvement remains unexplored. Therefore, this review aims to present the
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most recent findings in plant stress research and propose machine learning to model
dose-response for implementing hormesis management in agriculture.

2. Hormesis and Plant Stress Science

The hormesis model is rapidly gaining recognition and acceptance within academia for
depicting the responses to external stimuli of any given biological system [24]. Nevertheless,
the concept of hormesis is not recent. The first reports to describe the biphasic dose-response
date from the late 19th century, whereas the term hormesis appeared in the literature
for the first time in 1943 [14]. Despite its early description, the scientific community
rejected the hormesis phenomenon until the last decades of the 20th century because it was
mistakenly associated with homeopathy [25]. Consequently, most of the research around
dose-response falls under the assumption of linearity of such responses and overlooks low-
dose stimulation, which impacts how scientists, regulatory agencies, and society conceive
stress [6]. However, hormesis appears in stress studies at such a high frequency that it has
quickly regained consideration in the design of research projects [26].

At present, low-dose stimulation has multiple applications in clinical medicine, envi-
ronmental risk assessment, ecology, crop management, and sustainable agriculture [27,28].
Several findings suggest that hormetic responses are highly generalizable and occur in all
kinds of biological systems [29,30]. Moreover, the quantitative characteristics of hormesis
remain constant among models as they correspond to the limits of biological plasticity,
meaning that hormesis is related to adaptability and evolution [31]. This latter fact is
especially relevant for understanding plants, given that their survival relies entirely on
their adaptive responses to stressors due to their sessile nature.

Plants possess complex defensive mechanisms to deal with the many biotic and
abiotic challenges they may encounter in the wild. Protected agriculture diminishes these
challenges causing plants to underdevelop defensive mechanisms and making them more
susceptible to environmental stress and pests or decreasing their production of desirable
specialized metabolites [32]. In this scenario, deliberately exposing crops to low-dose stress
may enhance plant productivity and stress resistance [3]. However, controlled stimulation
of plant defensive mechanisms leads to many different observable outcomes as plants can
sense different stressors and respond to them in a specific manner [33].

The specificity of defensive responses depends directly on the plant species, the type of
stressor, and the responding tissue. As a result, plant stress responses are diverse, and so are
the methods for their analysis [34]. Each stress response is a multilayered molecular process
that can be understood as an information transfer between the stressor perception and the
expression of a phenotypic trait. Calabrese and Blain [30] assessed more than 3000 hormetic
plant responses with numerous response variables, each representing a specific point in
the physiological pathway triggered by the stress incidence. Such observations show that,
given their complexity, analyzing plant physiological mechanisms can generate a significant
amount of data.

3. Data in Plant Hormesis Research

The analysis of a substantial number of pathosystems has permitted the description of
many receptor-to-response routes [35]. However, to picture plant immunity as a collection
of independent downstream cascades is now thought to be quite simplistic [36]. In contrast,
plant immunity should rather be understood as an intricate systemic molecular network
capable of simultaneously perceiving biotic and abiotic stressors and ultimately leading to
transcription reprogramming and protective physiological responses [37–39].

The convenience of choosing one variable or another as the output of hormesis manage-
ment depends on the target crop, the cultivation conditions, and the productivity objective.
For example, increasing the drought tolerance of a food crop cultivated in a controlled
environment would be irrelevant, whereas augmenting its yield would be paramount.
Therefore, the description of plant defensive responses must consider several endpoints
(response variables) to possess technological significance. Fortunately, collecting a consid-
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erable amount of data from biological systems is becoming more frequent, thanks to the
latest advances in analytical instrumentation and techniques [40].

High-throughput analyses increase the chances to elucidate physiological processes
and ecological interactions of plants from the broadened perspective of systems biology [41].
The generation of big data sets from the simultaneous analysis of an extensive collection
of biomolecules corresponding to a definite category (genes, transcripts, proteins, and
metabolites) has led to the so-called omics approach, which is the primary tool of systems
biology [42]. Furthermore, a multi-omics approach makes it possible to obtain a more
detailed snapshot of a plant system by simultaneously analyzing its whole genome, pro-
teome, transcriptome, and metabolome [40]. Moreover, the multi-omics approach applied
to single-cell functional analyses can simplify data processing and modeling to accurately
depict many biological processes in plants [43].

In the following subsections, we will briefly describe the main types of data each omics
approach can deliver when applied to plant hormesis research.

3.1. Genomics and Transcriptomics

Genomics refers to the sequencing, assembly, and functional analysis of the genome of
a plant, and it has advanced more rapidly than any other omics in plant science [44]. Only
in the last two decades, the sequences of more than 100 plant genomes have been published,
and further technological advances in genomics have increased our understanding of plant
biology leading to substantial agricultural progress [45].

Genome sequencing has several applications in plant stress science. The structural
analysis of DNA is not only fundamental for classifying organisms but also for identifying
stress-driven mutations, which occur in plants under heat [46], drought [47], and other
abiotic stresses [48]. Moreover, DNA structural variations occurring under low-dose stress
can be linked to gene function using gene ontology analyses to reveal the genetic basis
of hormesis [49]. DNA sequence variations such as Single Nucleotide Polymorphisms
(SNPs) are also helpful for understanding the molecular mechanisms underlying hormetic
responses when analyzed along with phenotypic traits as in Genome Wide Association
Studies (GWAS) [50,51]. GWAS analyses consider big data sets to identify and predict gene
candidates and quantitative trait loci accountable for stress responses [52].

SNPs genotyping in combination with other data sets from high-throughput analyses
such as phenomics or enviromics has also led to the development of genomic selection for
optimizing crop breeding [53]. With this strategy, it is possible to improve physiological
traits with hormetic behavior in crops, such as yield, pest resistance, and environmental
stress tolerance, to shorten breeding cycles and decrease the need for continuous phe-
notyping [54]. Additionally, the advent of outstanding new genome-editing techniques,
such as the Zinc Finger Nucleases (ZFN), the Transcription Activator-Like Effector Nu-
cleases (TALENs), and the Clustered Regulatory Interspaced Short Palindromic Repeats
(CRISPR) systems, implies, along with transcriptomics, the most significant advance in the
development of stress-resistant crops [55].

The rapid advances in sequencing technologies and bioinformatics have also sub-
stantially impelled RNA analyses [56]. The synthesis of RNA is dynamic, depending on
the activation of a gene to occur. Therefore, transcriptomics is the key to investigating
gene function in targeted physiological mechanisms qualitatively and quantitatively [57].
Detecting hormetic stimulation at the transcript level can be achieved by analyzing the
differential expression of known genes on small (~20) [58–60] and very large scales using
microarray technology (~50,000) [61] or by completely sequencing the RNA from a sample
as in next-generation and third-generation sequencing [62–64].
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The computational analysis of transcriptomic datasets precedes the reconstruction of
gene regulatory networks and the crosstalk by which they interconnect during specific phys-
iological processes [65]. In particular, machine learning algorithms can infer interactions
between genes with great accuracy [66]. Nevertheless, gene regulation during hormetic
responses involves biological processes other than transcription, such as epigenome dynam-
ics, which depends on chromatin structural changes, namely DNA methylation and histone
modifications [67]. Therefore, integrating additional types of datasets and adding spatial
and temporal information is fundamental to increasing model resolution and depicting the
mechanisms of hormesis truthfully [68].

3.2. Proteomics

Proteins are the main regulatory molecules in every cell process. Therefore, the
ensemble of differentially translated proteins in response to a given stimulus is an addi-
tional dataset that contains essential information for ascertaining hormetic cellular mech-
anisms [69]. Moreover, many studies show that RNA quantity does not proportionally
relate to protein abundance [70]. The latter occurs mainly due to additional regulation
steps between transcription and protein synthesis and the stability of the end products [71].
For that reason, transcriptomics and proteomics, or other high-throughput analyses should
be simultaneously conducted to validate and reconstruct entire regulatory networks [72].

Detecting differential changes in plant proteome is especially useful for studying
plant stress responses since relatively small variations in the dose of a stressor result in
a significant difference in the proteome at both mild and severe stressor incidence [73].
Furthermore, under stress conditions, the plant cell upregulates the expression of proteins
associated with primary metabolic processes such as photosynthesis, redox homeostasis,
energy metabolism, nitrogen absorption, and the biosynthesis of signaling molecules [74,75].
Therefore, plant proteomics can help researchers detect stress at a molecular level earlier
than it would be possible by analyzing changes in observable phenotypic traits and for
both stress-susceptible and tolerant genotypes [76].

Proteome analyses make it possible to identify and characterize novel proteins, and
along with bioinformatics, proteomics enables tracking variations in protein abundance,
form, cellular location, and activity following a stressors incidence [77]. Additionally,
proteome research has proven helpful for clarifying cellular organelle function, post-
translational modifications, and protein–protein interactions, providing a more in-depth
insight into the stress-driven molecular mechanisms of plant cells [78]. Proteomics tech-
nologies range from the classic gel-based and the Liquid Chromatography coupled to Mass
Spectrometry (LC-MS) approaches to the modern Mass Spectrometry Imaging (MSI), and
combined with additional high-throughput analyses, these still underexploited tools are
among the most powerful methods for unraveling the molecular mechanism of hormetic
stress responses in plants [79].

3.3. Metabolomics

A number of the differentially expressed proteins resulting from stress incidence are
regulators that activate and shape specialized metabolic pathways inside the cell [80].
Metabolomics is the study of all the small molecules in a tissue, which, in the case of plants,
possess a unique structural and functional complexity [81]. Moreover, due to their sessility,
plants depend on chemical signaling to maintain homeostasis and ecological interactions
at intra- and interspecies levels. Plant specialized metabolism is evolutionarily shaped by
environmental pressures to synthesize chemical compounds with an enormous structural
and functional diversity and capable of interacting with living tissues [82].
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Many plant specialized metabolites are an active part of plant internal signaling path-
ways or exert bioactivity on other organisms [83]. Furthermore, every plant organism is
a genuine biological factory capable of synthesizing an estimated 30,000 metabolites [84].
Hence, plants are a significant source of chemical compounds with pharmacological proper-
ties and are particularly valuable among natural products for drug discovery purposes [85].
In addition, plant metabolites are fundamental for maintaining human health by conferring
nutritional, functional, and nutraceutical value to food products [86].

Being an adaptive response, the activation of plant metabolism also exhibits a hormetic
behavior [87–89], and deliberately exposing crops to low-dose stress is a convenient means
for stimulating metabolites accumulation [90]. Moreover, the metabolomics analysis of
plant stress response along with bioinformatics makes it possible to find candidate mark-
ers for directing crop breeding and predicting crop performance under environmental
stress [91].

Given the structural diversity of plant metabolites, the main limitation of metabolomics
resides in developing comprehensive extraction techniques and analytical methods to de-
tect a big heterogeneous ensemble of chemical compounds simultaneously. Nevertheless,
thanks to the recent advances in coupled analytical technologies and bioinformatics, particu-
larly Mass Spectrometry (MS), Nuclear Magnetic Resonance (NMR), and hybrid MS/NMR
methods [92], it is now possible to separate and detect the whole metabolome from a biolog-
ical sample quickly and affordably [93]. Moreover, many intrinsic experimental conditions
for metabolome analysis are compatible with other omics studies, making metabolomics
a convenient foundation for designing and fulfilling multi-omics experiments and an
effective tool for systems biology research [94].

3.4. Phenomics

Plant phenotyping is the measurement of phenotypic traits either at the cell, organ,
or whole plant level for understanding the underlying mechanisms of the interactions of
plants with their environment [95]. Molecular responses drive phenotypic change, and
for that reason, the developmental traits of plants, such as growth, seed germination,
photosynthesis, transpiration, stomatal conductance, and pigmentation, among others, also
display hormetic behavior [96]. As a result, various sensors can be used for differentially
analyzing physiological plant hormetic responses to stress-related events [97].

Image-based phenotyping is useful to detect leaf morphological variations in plants [98].
Red-green-blue (RGB) imaging uses Charge Coupled Device (CCD) or Complementary
Metal Oxide Semiconductor (CMOS) sensors to detect color changes related to plant stress
responses. Such sensors work within the visible range of the electromagnetic spectrum
and are convenient to diagnose nitrogen (N), phosphorous (P), potassium (K), magnesium
(Mg), calcium (Ca), and iron (Fe) deficiency symptoms [99]. Detecting nutrient deficit can
also help identify environmental stress incidence. For example, Martinez et al. (2020) [100]
reported that water deficit modifies nitrate uptake by altering the expression of genes
related to nitrate assimilation in the roots and the shoot. Moreover, changes in pigment
content can be related to visible stress symptoms in such a detailed manner, that it is
possible to discriminate between their biotic or abiotic origin [101].

Yellowing is the most notable symptom of leaf senescence, and it appears due to
seasonal developmental processes, pathogen attack, and abiotic stressors incidence, indicat-
ing a decrease in the photosynthetic rate [102]. Chlorophyll metabolism is regulated in a
hormetic manner, and therefore it can perform as a biomarker to identify other metabolic
changes resulting from low-dose stress incidence [103,104]. Many imaging techniques focus
on detecting chlorophyll fluctuations with convenient results for biotic and abiotic stress
phenotyping, such as chlorophyll fluorescence. This technique is relevant to determining
overall crop fitness, and due to its high sensitivity, it has been extensively applied for the
early detection of stress incidence [105].
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Imaging techniques can also be used to analyze plant physiological processes and iden-
tify stress even in the absence of symptoms unobservable for the unaided eye. Magnetic
resonance imaging can be applied to plant systems to elucidate plant-water relationships
and as a post-harvest control to determine maturity and mechanical damage of agricultural
products [106]. Thermography uses optical sensors that detect radiation outside the visual
range of the electromagnetic spectrum, and it has been used to detect plant interactions
with biotic and abiotic stressors and monitor environmental stress susceptibility and re-
sistance [107,108]. Mild-stress responses can also be detected using multispectral and
hyperspectral imaging. Multispectral imaging considers only specific bands of electromag-
netic spectra, whereas hyperspectral imaging increases the resolution of the wavelengths.
These technologies can identify plant diseases such as yellow rust and powdery mildew in
wheat and leaf rust in sugar beet from early stages [109]. Moreover, multispectral imaging
works on large scales by employing uncrewed aerial vehicles and satellites. Therefore,
multispectral and hyperspectral imaging, along with other omics techniques, could be used
to develop hormesis management protocols at a crop scale.

Given the intricacy of physiological responses, the elucidation of the adaptive mecha-
nisms of plants to low-dose stress must be carried out from a multidimensional approach,
utilizing comprehensive analyses for detecting the differential changes stimulated in differ-
ent layers of the stress response. Understanding such mechanisms and, in particular, char-
acterizing the hormetic dose-response curve allows eustress treatments to be implemented
to enhance stress tolerance and increase food production and quality [7]. Nevertheless, in-
tegrating multiple-layer datasets gives rise to additional challenges beyond data collection
and storage, including data management and processing [110]. Therefore, handling and
modeling hormetic responses from multi-omics data requires computational methods for
transforming data into knowledge.

4. Artificial Intelligence Applications in Plant Stress Science

High-throughput analyses of functional molecules such as genes, transcripts, proteins,
and metabolites, produce a tremendous amount of data from biological systems. However,
without proper processing, such data lack biological significance. Therefore, the advances in
analytical methods and instrumentation have also generated the need for processing tools
capable of describing mechanistic associations and interactions. The persisting escalation
of computing power has triggered a diversification of artificial intelligence (AI) tools to
address various problems in plant science. AI algorithms are remarkably advantageous
to identify and classify individual characteristics within an extensive set of experimental
data, and thus they are a promising means for analyzing plant stress mechanisms [104].
Furthermore, if we consider the accumulating evidence on the hormetic behavior of plant
stress responses, intelligent algorithm applications in plant stress physiology could be
helpful for predicting eustress responses that fall under the low-dose stimulation model.

A considerable number of AI applications on plant stress research implement Machine
Learning (ML) and its subtype Deep Learning (DL). Such techniques have been applied
in the paradigm of the four categories for analyzing the process of plant stress: identifi-
cation, classification, quantification, and prediction (ICQP) [23]. Most of the published
image-processing phenotyping studies use ML and DL tools to identify and classify stress
symptoms, whereas the prediction of phenotypic traits before their expression is the most
frequent application when analyzing genomic and transcriptomic datasets [111]. Figure 2
shows the four categories of the ICQP paradigm and the different applications for plant
stress research integrating each category.
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Figure 2. The ICQP paradigm of the four categories for analyzing the stress process of plants. The
uses of ML and DL in plant science are summarized in these four general applications. A wide range
of datasets can be used for the design of the intelligent algorithms.

ML and DL techniques have extended the reach of traditional statistics for modeling
non-linear systems such as biological processes [112]. Hence, both tools effectively process
data to analyze plant responses to biotic and abiotic stressor incidence. Table 1 comprises
recent studies examining plant stress using ML and DL techniques. Table 1 comprises some
recent studies examining plant stress using ML and DL techniques. This summary was
created by searching the academic databases ScienceDirect, Springer link, IEEE Xplore, and
Google scholar. This review is up to date until January 2022, covering the work carried
out from 2016 to 2022. The keywords used for this search were “artificial intelligence”,
“machine learning”, “deep learning”, “plant stress”, “plant disease”, “plant resistance”, and
“plant science”. It includes a classification of current research on plant stress elucidation
using ML tools, emphasizing the algorithms used, the ICQP paradigm category on which
each report lies, the stressors studied, and the datasets analyzed.
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Table 1. Machine learning-based studies in plant stress under the Identification, Classification, Quantification, and Prediction (ICQP) paradigm.

Artificial
Intelligence Technique Algorithms (ICQP)

Application Datasets Model Plant
Reported Stressor Reference

Deep Learning (image)
Convolutional neural networks
(CNN), AlexNet, GoogLeNet,

and Inception V3
Identification

1200 images acquired by
camera under stress and

non-stress conditions

Maize (Zea mays), okra
(Abelmoschus esculentus),

and soybean (Glycine max)
Water stress Chandel et al.

(2020) [113]

Unsupervised Machine
learning

Least squares discriminant
analysis (PLS-DA) and

least-squares support vector
machine (LS-SVM)

Identification Hyperspectral images of the
canopy of tobacco plants Tobacco Heavy metal stress Hg Yu et al. (2021) [114]

Deep Learning (image) CNN Identification 1426 images of rice diseases
and pests from paddy fields Rice Biotic stress Rahman et al.

(2020) [115]

Unsupervised Machine
learning (video imaging)

Hidden Markov models
(HMMs)

Identification and
classification

Chlorophyll fluorescence
(ChlF) digital profiles from

GrowTech Inc.

Phaseolus vulgaris L.
(Snap bean)

Stressor “level” groups (low,
medium, and high stressed) and
three stressor “type” categories

(drought, nutrient, and
chemical stress)

Blumenthal et al.
(2020) [116]

Deep Learning (image) CNN Identification and
Quantification

1747 smartphones images of
arabica coffee leaves. Arabica coffee

Biotic stress; leaf miner, rust,
brown leaf spot, and Cercospora

leaf spot

Esgario et al.
(2020) [117]

Supervised Machine
Learning, Partial Least

Square Regression,
Principal Component

Analysis, and combined
models

K-nearest neighbors (KNN) Identification and
classification

Spectral signature of leaf
samples obtained with a

visible, near-infrared
spectrometer

Rice Salt stress Das et al. (2020) [118]

Supervised Machine
Learning

ReliefF, support vector machine
(SVM), recursive feature

elimination (RFE), and random
forest (RF)

Identification and
classification

Hyperspectral images from
four wheat lines Wheat Salt stress Moghimi et al.

(2018) [119]

Deep Learning (image) CNN Identification and
classification

1575 images (smartphones,
compact cameras, DSLR Different plant specimens Biotic stress Arnal Barbedo

(2019) [120]

Deep Learning RF, SVM, multilayer perceptron
(MLP)

Identification and
classification Hyperspectral images Bromus inermis Drought stress Dao et al. (2021) [121]

Supervised Machine
Learning SVM Identification and

classification
RGB leave images from the

Kaggle database Brinjal leaves Biotic stress Karthickmanoj et al.
(2021) [122]
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Table 1. Cont.

Artificial
Intelligence Technique Algorithms (ICQP)

Application Datasets Model Plant
Reported Stressor Reference

Deep Learning (image) Deep convolutional neural
network (DCNN)

Identification,
classification, and

quantification

Collection of images of
stressed and healthy

soybean leaflets in the field

Soybean [Glycine max (L.)
Merr.]

Bacterial blight (Pseudomonas
savastanoi pv. glycinea), bacterial
pustule (Xanthomonas axonopodis

pv. glycines), sudden death
syndrome (Fusarium

virguliforme), septoria brown
spot (Septoria glycines), frogeye

leaf spot (Cercospora sojina), iron
deficiency chlorosis, potassium
deficiency, and herbicide injury

Ghosal et al.
(2018) [123]

Supervised Machine
Learning RF, SVM, KNN Classification and

prediction

Real time terahertz
time-domain spectroscopic

data (THz-TDS)

Basil, coriander, parsley,
baby-leaf, coffee, pea- Water Stress Zahid et al. (2022) [124]

Supervised Machine
Learning

RF, artificial neural networks
(ANN), and Classification Multispectral images Maize Water stress Niu et al. (2021) [125]

Supervised Machine
Learning

Confident multiple-choice
learning

Identification and
prediction

Gene expression time-series
datasets Arabidopsis thaliana Heat, cold, salt, and drought Kang et al. (2018) [126]

Deep Learning (image) CNN Classification

Images of Sorghum plant
shoot from the Donald
Danforth Plant Science

Center.

Sorghum plants Nitrogen deficiency Azimi et al. (2021) [127]

Supervised Machine
Learning

Decision tree (DT), SVM, and
Naïve Bayes (NB) Classification Metabolite and protein

content Arabidopsis thaliana Metabolic stress Fürtauer et al.
(2018) [128]

Supervised Machine
Learning SVM Classification

Biweekly RGB, stereo and
hyperspectral

spatio-temporal images
Sugar beet plants

Abiotic stress conditions
(drought and nitrogen

deficiency) and one biotic
stressor (weed)

Khanna et al.
(2019) [129]

Supervised Machine
Learning Hierarchical models Classification

5916 RGB images (493 plots
including Plant

Introduction (PI) accessions
in different time points)

Soybean (Glycine max (L.)
Merr.) Iron deficiency chlorosis Naik et al. (2017) [130]

Supervised Machine
Learning

ANN, CNN, optimum-path
forest, KNN, and SVM Classification

Electrical signal under cold,
low light and osmotic

stimuli.
Soybean plants Cold, low light, and osmotic

stimuli.
Pereira et al.
(2018) [131]

Supervised Machine
Learning RF Classification

Hyperspectral dataset
acquired from the Indian

Agricultural Research
Institute (IARI)

Wheat Water stress Mondal et al.
(2019) [132]
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Table 1. Cont.

Artificial
Intelligence Technique Algorithms (ICQP)

Application Datasets Model Plant
Reported Stressor Reference

Deep Learning (image) CNN, SVM Classification 65,184 labeled images from
Github resources Soybean

Biotic (fungal and bacterial
diseases) and abiotic (nutrient
deficiency and chemical injury)

stresses

Venal et al. (2019) [133]

Supervised Machine
Learning

MLP and probabilistic neural
network (PNN) Classification

16 maize and 17 wheat
genomic and phenotypic

datasets with different
trait-environment

combinations

Maize and Wheat Drought González-Camacho
et al. (2016) [134]

Supervised Machine
Learning

Decision tree (DT), SVM, and
NB Prediction miRNA concentration. Arabidopsis thaliana plants Drought, salinity, cold, and heat Vakilian (2020) [135]

Supervised Machine
Learning

Ridge regression, LASSO, elastic
net, RF, reproducing kernel
Hilbert space, Bayes A and

Bayes B

Prediction

A set of 29,619 cured Single
Nucleotide Polymorphisms,
genotyped across a panel of

240 maize inbred lines

Maize Drought stress Shikha et al.
(2017) [136]

Deep Learning CNN Prediction Three maize and six wheat
data sets. Maize and wheat Environmental stress Montesinos-López et al.

(2018) [137]

Supervised Machine
Learning Genomic random regression Prediction

Complete genotypes,
molecular markers, and

phenotypic traits of stressed
and control groups.

Wheat Environmental stress Ly et al. (2018) [138]
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The majority of the studies listed in this literature revision are based on supervised
algorithms whose quality depends on the data sources, the feature extraction from the
available data, and the selection of the output variables and the learning algorithms [139].
The most frequently reported algorithms for successfully modeling plant stress responses
are the Support Vector Machine (SVM), Random Forest (RF), and Convolutional Neural
Networks (CNN). These techniques were predominantly used for identifying and classi-
fying stress symptoms from extensive images datasets. Nevertheless, machine learning
algorithms have also been used to predict many other various stress dose-dependent
traits, such as disease-resistance gene expression [140], transcription factor expression [141],
yield [142], growth [143], and specialized metabolites biosynthesis [144].

Deep Learning Platforms and Potential Applications for Plant Hormesis Management

Given that data available for understanding biological systems continues growing,
the complexity of AI systems keeps increasing, and thus new high-performance artificial
neural networks (ANN) were needed for the cases in which conventional ML techniques
have fallen short. Such networks are currently known as deep learning, a technology that
consists of the assembly of machine learning algorithms, increasing the number of levels
and non-linear transformations in the neural networks and the efficiency of the training
process [145].

Before the current heyday of DL, a disinterest towards it existed for several years,
mainly due to hardware limitations and lack of funding. However, these techniques
were reassessed as soon as more powerful hardware became available, especially Graph-
ics Processing Units (GPUs) [146]. These devices were initially designed to compute
three-dimensional graphics in video games and proved to be good performers of parallel
computing; therefore, such systems were promptly used for processing DL algorithms.
Nowadays, thanks to the multicores of modern GPUs allowing more and faster operations,
DL is one of the most powerful AI tools to model complex non-linear systems and process
an enormous number of experimental data.

The use of high-performance software allows DL to be used to evaluate many prob-
lems in systems biology. Computational models have been applied to simulate protein
interactions, a universal process in biological systems, and a key process for understanding
the mechanism of physiological responses [147]. Using in silico prediction of protein–
protein and protein–ligand interactions, it is possible to estimate the activity of potential
effector molecules and effectively test complete libraries with millions of molecules without
performing costly and time-consuming experiments [148]. For plant systems, in silico
prediction could offer a relevant platform for analyzing receptor binding during stressor
perception and identifying new phytohormones or designing elicitors to achieve optimal
responses for hormesis management [149].

When it comes to DL, there is an impression that an expensive computational infras-
tructure is necessary, which is not entirely false considering the cost of high-performance
GPUs. However, there are many platforms for training DL models through cloud comput-
ing. For example, platforms such as Amazon Web Service (AWS), Google Colab, Microsoft
Azure provide CPUs, Hard Disks, GPUs, or TPUs through the command terminal, which
allows one to utilize high-performance hardware from an average computer with internet
access and sufficient bandwidth. Additionally, some of these platforms offer a free version,
meaning that cloud computing can be performed for a few hours without cost. This ap-
proach avoids the cost of a local computing cluster, the specialized space to house them,
and the required electricity, all considerable limitations to perform this kind of computing
due to the long time needed to train a DL model at a high performance. Table 2 shows the
platforms or hardware used to train DL models applied to current plant science research.
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Table 2. Deep Learning architecture, hardware, and applications.

DL Architecture Application Hardware Reference

Deep Neural Networks Toxicity Prediction Nvidia Tesla K40 Mayr et al. (2016) [150]

Convolutional Neural
Network

Photosynthetic pigments
Prediction

CPU core i5 1.6 GHz, 8 GB DDR3
RAM, GPU not specified Prilianti et al. (2020) [151]

Convolutional Neural
Network Pigments Prediction Nvidia GTX 1020Ti, Intel Xeon

W-2133, 32 GB Mu et al. (2020) [152]

AlexNet and SqueezeNet Plant Disease Detection Nvidia Jetson TX1 Durmus et al. (2017) [153]

Convolutional Neural
Network Plant Disease Detection Nvidia GTX1080 Ferentinos (2018) [154]

Convolutional Neural
Network Plant Disease Detection Nvidia Tesla K40c Too et al. (2019) [155]

Deconvolutional Neural
Network Plant Disease Detection Nvidia GeForce Titan X, Intel

Core I7 3.5 GHz Wang et al. (2017) [156]

Point Completion Network Plant Phenotyping Nvidia Titan V. Xeon Gold 6146
3.20 GHz, 128 GB RAM Wu et al. (2019) [157]

Deep Convolutional Neural
Network

Predicting Phenotypes from
Genotypes Nvidia GeForce TITAN-XGPU Ma et al. (2018) [158]

U-net Phenotyping and Plant
Growth Nvidia Tela V100 Tausen et al. (2020) [159]

In addition to exploiting hardware features, it is also essential to take account of the
existing software to ensure an adequate running performance when training ML networks.
Several platforms enable the implementation of ML and DL algorithms, and many of the
available frameworks are open-source software, which has led to the rapid adoption of
computer modeling for many agricultural technology [160]. Among the most employed
is Caffe, a deep learning framework that has been developed by Berkeley AI Research
(BAIR) and community contributors. There is also high-level software developed from C++
and C code, such as Open CV, and an increasing number of programs based on Python,
such as Keras, Pytorch, scikit-learn, and Theano [161]. Moreover, the Microsoft Cognitive
Toolkit (CNTK), used as a library or standalone ML tool, and TensorFlow, available from
Google Brain, are two of the most widespread open-source platforms for executing DL
tasks. Finally, it is also indispensable to consider the tools offered by Matlab and the Nvidia
CUDA software to implement AI applications in agriculture [162].

Hormesis management increases crop yield and quality, stimulates specialized
metabolism, and enhances stress tolerance [8]. Nevertheless, characterizing hormetic
curves for several species and evaluating multiple stressor doses to produce an expected
physiological response is a slow and expensive process. In addition, controlled elicita-
tion studies show that a considerable crop extension or high technology greenhouses are
necessary to evaluate the effect of low-dose stress for developing eustress management
protocols [163,164]. Furthermore, it is necessary to consider thousands of individual plant
markers such as genotype information, yield performance, and environmental data to
propose effective treatments.

DL would be an efficient tool to address hormesis management limitations because
it can expose complex non-linear relations between environmental conditions and gene
expression to decipher gene networks and signaling pathways [165]. Convolutional Neu-
ral Networks (CNN) applied to image analysis is one of the most used biometric tech-
niques in agriculture for evaluating plant identity, morphology [157,158], growth [159],
disease [153,154,156], and pollution [150]. The CNN architecture is designed as a matrix
for data analysis. It is structured so that, at several stages, filters segment the data and
acquire specific information to train the deep neural network [166]. Modern plant anal-
ysis techniques can easily detect significant variables related to stress mechanisms with
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enough sensitivity for characterizing hormetic fluctuations. CNN could be trained with
such datasets to model crop performance and predict phenotypic variables in response to
low-dose stress (Figure 3).

Plants 2022, 11, x FOR PEER REVIEW 13 of 23 
 

 

thon, such as Keras, Pytorch, scikit-learn, and Theano [161]. Moreover, the Microsoft Cog-
nitive Toolkit (CNTK), used as a library or standalone ML tool, and TensorFlow, available 
from Google Brain, are two of the most widespread open-source platforms for executing 
DL tasks. Finally, it is also indispensable to consider the tools offered by Matlab and the 
Nvidia CUDA software to implement AI applications in agriculture [162]. 

Hormesis management increases crop yield and quality, stimulates specialized me-
tabolism, and enhances stress tolerance [8]. Nevertheless, characterizing hormetic curves 
for several species and evaluating multiple stressor doses to produce an expected physi-
ological response is a slow and expensive process. In addition, controlled elicitation stud-
ies show that a considerable crop extension or high technology greenhouses are necessary 
to evaluate the effect of low-dose stress for developing eustress management protocols 
[163,164]. Furthermore, it is necessary to consider thousands of individual plant markers 
such as genotype information, yield performance, and environmental data to propose ef-
fective treatments. 

DL would be an efficient tool to address hormesis management limitations because 
it can expose complex non-linear relations between environmental conditions and gene 
expression to decipher gene networks and signaling pathways [165]. Convolutional Neu-
ral Networks (CNN) applied to image analysis is one of the most used biometric tech-
niques in agriculture for evaluating plant identity, morphology [157,158], growth [159], 
disease [153,154,156], and pollution [150]. The CNN architecture is designed as a matrix 
for data analysis. It is structured so that, at several stages, filters segment the data and 
acquire specific information to train the deep neural network [166]. Modern plant analysis 
techniques can easily detect significant variables related to stress mechanisms with 
enough sensitivity for characterizing hormetic fluctuations. CNN could be trained with 
such datasets to model crop performance and predict phenotypic variables in response to 
low-dose stress (Figure 3). 

 
Figure 3. Hormesis characterization through Deep Learning. Plant science uses highly sensitive 
techniques for detecting variations in gene expression, phenotype, and metabolism caused by envi-
ronmental interactions. Deep learning, particularly through the implementation of Convolutional 
Neural Networks (CNN), decision trees, and Support Vector Machine (SVM) algorithms, allows big 
data processing and interpretation for modeling non-linear biological processes, such as hormesis. 

Figure 3. Hormesis characterization through Deep Learning. Plant science uses highly sensitive
techniques for detecting variations in gene expression, phenotype, and metabolism caused by envi-
ronmental interactions. Deep learning, particularly through the implementation of Convolutional
Neural Networks (CNN), decision trees, and Support Vector Machine (SVM) algorithms, allows big
data processing and interpretation for modeling non-linear biological processes, such as hormesis.

5. Limitations, Challenges, and Future Outlook

In this review, we have discussed the advantages of ML for assessing research prob-
lems in plant-stressor systems from a subcellular to an ecosystem scale. Nevertheless, there
are also relevant limitations to consider for proposing the implementation of ML tools,
particularly for hormesis modeling.

Firstly, given the vast diversity of ML and DL platforms, selecting an appropriate
architecture to carry out the proposed strategy constitutes a significant challenge. Fur-
thermore, every architecture performs differently depending on the number and type of
deep networks and the running hardware, complicating, even more, the tool selection. In
response to this challenge, the number of scientific publications discussing ML tool-pairs,
their performance, and new models designed specifically to perform a given task constantly
increases [167].

The second challenge to assess refers to AI’s fundamental limitations. The power
of ML methods offers advantages over conventional statistics, but they do not explicitly
infer or provide confidence boundaries such as p values. This is a problem since scientists
commonly rely on confidence intervals and model interpretation to support decision-
making. Moreover, increasing the complexity of the network architecture turns ML systems
into “black-boxes.” Consequently, most ML and DL methods do not allow a straightforward
interpretation or the basis for the resulting predictions [168]. Therefore, an evaluation
method after a training process is crucial. A high network intricacy and cumulative
input datasets, central to analyzing plant systems, also require more computing power,
significantly increasing the time and cost to complete tasks. The latter mainly affects
multifaceted algorithms such as SVM and MLP [169,170].

The third challenge arises from the input data. The success of ML depends on the
availability of appropriate databases, that is, extensive collections of data sharing specific
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features [111]. Nonetheless, although hormesis is increasingly being considered in plant
research protocols, it still lacks the attention needed to form public databases to enrich
model training. Moreover, data from biological systems are highly heterogeneous, and, as
a result, detailed data curation and preprocess must be performed to ensure the accuracy
of the training process [171]. Furthermore, even if multilayer data sets from plant hormesis
research were available, there are simply too many different plant species interacting with
changing environments. As a result, any group of experimentally acquired data results
partial and unrelated to others. The use of model species is fundamental to depict basic
biological processes, but these findings are not always transposable to evolutionarily dis-
tant plants or other species of interest. For these reasons, plant scientists must agree and
standardize research methods for describing hormetic responses at all levels in represen-
tative plant species far and wide the phylogenetic tree. Considering the state-of-the-art
discussion and the challenges that arise from conceiving the present proposal, the flow
process depicted in Figure 4 conceptualizes the application of ML to model hormetic re-
sponses of plants to controlled stress exposure. However, there are still some constraints
regarding the lack of experimentally adequate data to develop a robust model that could
facilitate eustress doses determination and ultimately optimize hormesis management
implementation for improving crop performance. For these reasons, future work on plant
stress should emphasize the hormesis model and the construction of public knowledge
databases, including plant phenotyping results and validated tools, models, and platforms.
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hormetic behavior of plant responses, ML could be used to model dose-response and predict eustress
doses, simplifying controlled elicitation in agriculture.
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6. Conclusions

The aim of elucidating plant stress responses is to develop cost-effective methods for
producers to manipulate plant systems and obtain desirable phenotypes. Nevertheless,
given the diversity of the technologies and methods currently available to measure variables
associated with plant stress responses, the standardization of the experimental conditions
and the integration of different dataset collections is a significant challenge. Moreover, most
of the research around stress focuses on the adverse effects it causes on the plant system
and completely ignores eustress and the hormetic behavior of plant defense.

Interestingly, it could be possible to develop robust models of plant responses if
we consider that the behavior of stress responses is generalizable and varies within the
limits of biological plasticity rather than depending only on the genetic identity or the
developmental stage of individual systems [172]. However, even if we assess physiological
responses from a hormetic approach, the big data challenge remains. In this respect,
hormesis research should capitalize on the strengths of ML and DL for developing models
capable of utilizing experimental data to predict which actions are required to improve
crops traits. The latter would be especially beneficial when the eustress dose ranges of a
stressor are unknown, and datasets from related crops are available.

Author Contributions: Conceptualization, A.K.R.-C. and R.G.G.-G.; writing—original draft prepara-
tion, A.K.R.-C., J.A.F., A.A.F.-J. and L.M.C.-M.; writing—review and editing, A.K.R.-C., L.M.C.-M.,
R.G.G.-G. and Q.H.-E.; visualization, A.K.R.-C., J.A.F. and A.A.F.-J.; supervision, R.G.G.-G. and
Q.H.-E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Autonomous University of Querétaro through the FOPER
funding [FOPER-2021-FIN02480].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge Claudia Gutiérrez-Antonio for proofreading this manuscript
and Marieke Vanthoor-Koopmans for revising this text for language use, grammar, and syntax. This
work was supported by the Mexican federal government through the Consejo Nacional de Ciencia y
Tecnología (CONACyT) [grant number 636395].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jansen, M.A.; Potters, G. Stress: The Way of Life. In Plant Stress Physiology, 2nd ed.; CABI: London, UK, 2017; pp. ix–xiv.
2. O’Brien, P.; Kral-O’Brien, K.; Hatfield, J.L. Agronomic Approach to Understanding Climate Change and Food Security. Agron. J.

2021, 113, 4616–4626. [CrossRef]
3. Vázquez-Hernández, M.; Parola-Contreras, I.; Montoya-Gómez, L.; Torres-Pacheco, I.; Schwarz, D.; Guevara-González, R.

Eustressors: Chemical and Physical Stress Factors Used to Enhance Vegetables Production. Sci. Hortic. 2019, 250, 223–229.
[CrossRef]

4. Bienertova-Vasku, J.; Lenart, P.; Scheringer, M. Eustress and Distress: Neither Good nor Bad, but Rather the Same? BioEssays 2020,
42, 1900238. [CrossRef] [PubMed]

5. Schirrmacher, V. Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications.
Biomedicines 2021, 9, 293. [CrossRef] [PubMed]

6. Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: Highly Generalizable and beyond Laboratory. Trends Plant Sci. 2020, 25,
1076–1086. [CrossRef]

7. Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A Compelling Platform for Sophisticated Plant Science. Trends Plant Sci.
2019, 24, 318–327. [CrossRef]

8. Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Romero-Gomez, S.d.J.; Rico-Garcia, E.; Ocampo-Velazquez,
R.V.; Alvarez-Arquieta, L.d.L.; Torres-Pacheco, I. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.
Front. Plant Sci. 2017, 8, 1762. [CrossRef]

9. Aguirre-Becerra, H.; Vazquez-Hernandez, M.C.; Saenz de la, O.D.; Alvarado-Mariana, A.; Guevara-Gonzalez, R.G.; Garcia-Trejo,
J.F.; Feregrino-Perez, A.A. Role of Stress and Defense in Plant Secondary Metabolites Production. In Bioactive Natural Products for
Pharmaceutical Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 151–195. [CrossRef]

http://doi.org/10.1002/agj2.20693
http://doi.org/10.1016/j.scienta.2019.02.053
http://doi.org/10.1002/bies.201900238
http://www.ncbi.nlm.nih.gov/pubmed/32302008
http://doi.org/10.3390/biomedicines9030293
http://www.ncbi.nlm.nih.gov/pubmed/33805626
http://doi.org/10.1016/j.tplants.2020.05.006
http://doi.org/10.1016/j.tplants.2019.01.004
http://doi.org/10.3389/fpls.2017.01762
http://doi.org/10.1007/978-3-030-54027-2_5


Plants 2022, 11, 970 17 of 22

10. Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables through Salinity Eustress and Biofortification Applications
Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [CrossRef]

11. Erofeeva, E.A. Plant Hormesis and Shelford’s Tolerance Law Curve. J. Res. 2021, 32, 1789–1802. [CrossRef]
12. Jalal, A.; de Oliveira Junior, J.C.; Ribeiro, J.S.; Fernandes, G.C.; Mariano, G.G.; Trindade, V.D.R.; Dos Reis, A.R. Hormesis in Plants:

Physiological and Biochemical Responses. Ecotoxicol. Environ. Saf. 2021, 207, 111225. [CrossRef]
13. Agathokleous, E.; Barceló, D.; Calabrese, E.J. US EPA: Is There Room to Open a New Window for Evaluating Potential Sub-

Threshold Effects and Ecological Risks? Environ. Pollut. 2021, 284, 117372. [CrossRef] [PubMed]
14. Agathokleous, E.; Calabrese, E.J. Hormesis: The Dose Response for the 21st Century: The Future Has Arrived. Toxicology 2019,

425, 152249. [CrossRef] [PubMed]
15. Mazhar, S.; Ditta, A.; Bulgariu, L.; Ahmad, I.; Ahmed, M.; Nadiri, A.A. Sequential treatment of paper and pulp industrial

wastewater: Prediction of water quality parameters by Mamdani Fuzzy Logic model and phytotoxicity assessment. Chemosphere
2019, 227, 256–268. [CrossRef] [PubMed]

16. Ahmad, Z.; Arshad, M.; Crowley, D.; Khoshnevisan, B.; Yousefi, M.; Imran, M.; Hussain, S. Comparative efficacy of ANN and
ANFIS models in estimating biosurfactant production produced by Klebseilla sp. FKOD36. Stoch. Environ. Res. Risk Assess. 2016,
30, 353–363. [CrossRef]

17. Soltis, P.S.; Nelson, G.; Zare, A.; Meineke, E.K. Plants Meet Machines: Prospects in Machine Learning for Plant Biology. Appl.
Plant Sci. 2020, 8, e11371. [CrossRef]

18. van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine Learning in Plant Science and Plant Breeding. Iscience 2021, 24,
101890. [CrossRef]

19. Mahood, E.H.; Kruse, L.H.; Moghe, G.D. Machine Learning: A Powerful Tool for Gene Function Prediction in Plants. Appl. Plant
Sci. 2020, 8, e11376. [CrossRef]

20. Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive
Updated Review. Sensors 2021, 21, 3758. [CrossRef]

21. Gao, Z.; Luo, Z.; Zhang, W.; Lv, Z.; Xu, Y. Deep Learning Application in Plant Stress Imaging: A Review. AgriEngineering 2020, 2,
430–446. [CrossRef]

22. Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep Learning for Plant Stress Phenotyping: Trends and Future
Perspectives. Trends Plant Sci. 2018, 23, 883–898. [CrossRef]

23. Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in
Plants. Trends Plant Sci. E 2016, 21, 110–124. [CrossRef] [PubMed]

24. Calabrese, E.J.; Agathokleous, E. Hormesis: Transforming Disciplines That Rely on the Dose Response. IUBMB Life 2022, 74, 8–23.
[CrossRef] [PubMed]

25. Calabrese, E.J. Historical Foundations of Hormesis. Homeopathy 2015, 104, 83–89. [CrossRef] [PubMed]
26. Calabrese, E.J. Hormesis: Path and Progression to Significance. Int. J. Mol. Sci. 2018, 19, 2871. [CrossRef]
27. Sun, H.; Calabrese, E.J.; Lin, Z.; Lian, B.; Zhang, X. Similarities between the Yin/Yang Doctrine and Hormesis in Toxicology and

Pharmacology. Trends Pharm. Sci. 2020, 41, 544–556. [CrossRef]
28. Agathokleous, E.; Calabrese, E.J. Hormesis Can Enhance Agricultural Sustainability in a Changing World. Glob. Food Secur. 2019,

20, 150–155. [CrossRef]
29. Calabrese, E.J.; Mattson, M.P. Hormesis Provides a Generalized Quantitative Estimate of Biological Plasticity. J. Cell Commun.

Signal. 2011, 5, 25–38. [CrossRef]
30. Calabrese, E.J.; Blain, R.B. Hormesis and Plant Biology. Environ. Pollut. 2009, 157, 42–48. [CrossRef]
31. Calabrese, E.J. Hormetic Mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [CrossRef]
32. Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance

Traits for Sustainable Crop Protection. Front. Plant Sci. 2016, 7, 1132. [CrossRef]
33. Lamers, J.; Van Der Meer, T.; Testerink, C. How Plants Sense and Respond to Stressful Environments. Plant Physiol. 2020, 182,

1624–1635. [CrossRef] [PubMed]
34. Jez, J.M.; Topp, C.N.; Silva, G.; Tomlinson, J.; Onkokesung, N.; Sommer, S.; Mrisho, L.; Legg, J.; Adams, I.P.; Gutierrez-Vazquez, Y.

Plant Pest Surveillance: From Satellites to Molecules. Emerg. Top. Life Sci. 2021, 5, 275–287. [CrossRef] [PubMed]
35. Ngou, B.P.M.; Jones, J.D.; Ding, P. Plant Immune Networks. Trends Plant Sci. 2021, 27, 255–273. [CrossRef] [PubMed]
36. Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.-F. PTI-ETI Crosstalk: An Integrative View of Plant Immunity. Curr. Opin. Plant Biol. 2021,

62, 102030. [CrossRef] [PubMed]
37. Zarattini, M.; Farjad, M.; Launay, A.; Cannella, D.; Soulié, M.-C.; Bernacchia, G.; Fagard, M. Every Cloud Has a Silver Lining:

How Abiotic Stresses Affect Gene Expression in Plant-Pathogen Interactions. J. Exp. Bot. 2021, 72, 1020–1033. [CrossRef]
38. Aerts, N.; Pereira Mendes, M.; Van Wees, S.C. Multiple Levels of Crosstalk in Hormone Networks Regulating Plant Defense.

Plant J. 2021, 105, 489–504. [CrossRef] [PubMed]
39. Saijo, Y.; Loo, E.P. Plant Immunity in Signal Integration between Biotic and Abiotic Stress Responses. New Phytol. 2020, 225,

87–104. [CrossRef]
40. Jamil, I.N.; Remali, J.; Azizan, K.A.; Nor Muhammad, N.A.; Arita, M.; Goh, H.-H.; Aizat, W.M. Systematic Multi-Omics Integration

(MOI) Approach in Plant Systems Biology. Front. Plant Sci. 2020, 11, 944. [CrossRef]

http://doi.org/10.3389/fpls.2018.01254
http://doi.org/10.1007/s11676-021-01312-0
http://doi.org/10.1016/j.ecoenv.2020.111225
http://doi.org/10.1016/j.envpol.2021.117372
http://www.ncbi.nlm.nih.gov/pubmed/34087668
http://doi.org/10.1016/j.tox.2019.152249
http://www.ncbi.nlm.nih.gov/pubmed/31330228
http://doi.org/10.1016/j.chemosphere.2019.04.022
http://www.ncbi.nlm.nih.gov/pubmed/30991200
http://doi.org/10.1007/s00477-015-1125-2
http://doi.org/10.1002/aps3.11371
http://doi.org/10.1016/j.isci.2020.101890
http://doi.org/10.1002/aps3.11376
http://doi.org/10.3390/s21113758
http://doi.org/10.3390/agriengineering2030029
http://doi.org/10.1016/j.tplants.2018.07.004
http://doi.org/10.1016/j.tplants.2015.10.015
http://www.ncbi.nlm.nih.gov/pubmed/26651918
http://doi.org/10.1002/iub.2529
http://www.ncbi.nlm.nih.gov/pubmed/34297887
http://doi.org/10.1016/j.homp.2015.01.001
http://www.ncbi.nlm.nih.gov/pubmed/25869972
http://doi.org/10.3390/ijms19102871
http://doi.org/10.1016/j.tips.2020.05.004
http://doi.org/10.1016/j.gfs.2019.02.005
http://doi.org/10.1007/s12079-011-0119-1
http://doi.org/10.1016/j.envpol.2008.07.028
http://doi.org/10.3109/10408444.2013.808172
http://doi.org/10.3389/fpls.2016.01132
http://doi.org/10.1104/pp.19.01464
http://www.ncbi.nlm.nih.gov/pubmed/32132112
http://doi.org/10.1042/ETLS20200300
http://www.ncbi.nlm.nih.gov/pubmed/33720345
http://doi.org/10.1016/j.tplants.2021.08.012
http://www.ncbi.nlm.nih.gov/pubmed/34548213
http://doi.org/10.1016/j.pbi.2021.102030
http://www.ncbi.nlm.nih.gov/pubmed/33684883
http://doi.org/10.1093/jxb/eraa531
http://doi.org/10.1111/tpj.15124
http://www.ncbi.nlm.nih.gov/pubmed/33617121
http://doi.org/10.1111/nph.15989
http://doi.org/10.3389/fpls.2020.00944


Plants 2022, 11, 970 18 of 22

41. Naithani, S.; Tripathi, J.N.; Kumar, D. Systems Biology Approach for Improving and Sustaining Agriculture. Curr. Plant Biol.
2021, 28, 100230. [CrossRef]

42. Argueso, C.T.; Assmann, S.M.; Birnbaum, K.D.; Chen, S.; Dinneny, J.R.; Doherty, C.J.; Eveland, A.L.; Friesner, J.; Greenlee, V.R.;
Law, J.A. Directions for Research and Training in Plant Omics: Big Questions and Big Data. Plant Direct 2019, 3, e00133. [CrossRef]

43. Libault, M.; Pingault, L.; Zogli, P.; Schiefelbein, J. Plant Systems Biology at the Single-Cell Level. Trends Plant Sci. 2017, 22, 949–960.
[CrossRef] [PubMed]

44. Mir, R.R.; Reynolds, M.; Pinto, F.; Khan, M.A.; Bhat, M.A. High-throughput phenotyping for crop improvement in the genomics
era. Plant Sci. 2019, 282, 60–72. [CrossRef] [PubMed]

45. Purugganan, M.D.; Jackson, S.A. Advancing Crop Genomics from Lab to Field. Nat. Genet. 2021, 53, 595–601. [CrossRef]
[PubMed]

46. Lu, Z.; Cui, J.; Wang, L.; Teng, N.; Zhang, S.; Lam, H.-M.; Zhu, Y.; Xiao, S.; Ke, W.; Lin, J. Genome-Wide DNA Mutations in
Arabidopsis Plants after Multigenerational Exposure to High Temperatures. Genome Biol. 2021, 22, 1–27. [CrossRef] [PubMed]

47. Hou, S.; Zhu, G.; Li, Y.; Li, W.; Fu, J.; Niu, E.; Li, L.; Zhang, D.; Guo, W. Genome-Wide Association Studies Reveal Genetic
Variation and Candidate Genes of Drought Stress Related Traits in Cotton (Gossypium Hirsutum L.). Front. Plant Sci. 2018, 9, 1276.
[CrossRef]

48. Hu, H.; Scheben, A.; Verpaalen, B.; Tirnaz, S.; Bayer, P.E.; Hodel, R.G.; Batley, J.; Soltis, D.E.; Soltis, P.S.; Edwards, D. Amborella
Gene Presence/Absence Variation Is Associated with Abiotic Stress Responses That May Contribute to Environmental Adaptation.
New Phytol. 2022, 233, 1548–1555. [CrossRef]

49. Mo, F.; Wang, M.; Li, H.; Li, Y.; Li, Z.; Deng, N.; Chai, R.; Wang, H. Biological Effects of Silver Ions to Trifolium Pratense L.
Revealed by Analysis of Biochemical Indexes, Morphological Alteration and Genetic Damage Possibility with Special Reference
to Hormesis. Environ. Exp. Bot. 2021, 186, 104458. [CrossRef]

50. Sertse, D.; You, F.M.; Ravichandran, S.; Soto-Cerda, B.J.; Duguid, S.; Cloutier, S. Loci Harboring Genes with Important Role in
Drought and Related Abiotic Stress Responses in Flax Revealed by Multiple GWAS Models. Theor. Appl. Genet. 2021, 134, 191–212.
[CrossRef]

51. Luo, Z.; Szczepanek, A.; Abdel-Haleem, H. Genome-Wide Association Study (GWAS) Analysis of Camelina Seedling Germination
under Salt Stress Condition. Agronomy 2020, 10, 1444. [CrossRef]

52. Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced High-Throughput Plant Phenotyping Techniques for Genome-Wide Association
Studies: A Review. J. Adv. Res. 2022, 35, 215–230. [CrossRef]

53. Crossa, J.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Costa-Neto, G.; Dreisigacker, S.; Montesinos-Lopez, A.; Bentley, A.R. The
Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Enviromics Data. Front. Plant Sci. 2021, 12,
651480. [CrossRef] [PubMed]

54. Fugeray-Scarbel, A.; Bastien, C.; Dupont-Nivet, M.; Lemarié, S. R2D2 Consortium Why and How to Switch to Genomic Selection:
Lessons from Plant and Animal Breeding Experience. Front. Genet. 2021, 12, 1185.

55. Zhan, X.; Lu, Y.; Zhu, J.; Botella, J.R. Genome Editing for Plant Research and Crop Improvement. J. Integr. Plant Biol. 2021, 63,
3–33. [CrossRef] [PubMed]

56. Zappia, L.; Theis, F.J. Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol 2021, 22, 1–8.
[CrossRef]

57. Imadi, S.R.; Kazi, A.G.; Ahanger, M.A.; Gucel, S.; Ahmad, P. Plant Transcriptomics and Responses to Environmental Stress: An
Overview. J. Genet. 2015, 94, 525–537. [CrossRef]

58. Gorbatova, I.V.; Kazakova, E.A.; Podlutskii, M.S.; Pishenin, I.A.; Bondarenko, V.S.; Dontsova, A.A.; Dontsov, D.P.; Snegirev,
A.S.; Makarenko, E.S.; Bitarishvili, S.V. Studying Gene Expression in Irradiated Barley Cultivars: PM19L-like and CML31-like
Expression as Possible Determinants of Radiation Hormesis Effect. Agronomy 2020, 10, 1837. [CrossRef]

59. Duarte-Sierra, A.; Nadeau, F.; Angers, P.; Michaud, D.; Arul, J. UV-C Hormesis in Broccoli Florets: Preservation, Phyto-Compounds
and Gene Expression. Postharvest Biol. Technol. 2019, 157, 110965. [CrossRef]

60. Scott, G.; Dickinson, M.; Shama, G.; Rupar, M. A Comparison of the Molecular Mechanisms Underpinning High-Intensity, Pulsed
Polychromatic Light and Low-Intensity UV-C Hormesis in Tomato Fruit. Postharvest Biol. Technol. 2018, 137, 46–55. [CrossRef]

61. Volkova, P.Y.; Duarte, G.T.; Soubigou-Taconnat, L.; Kazakova, E.A.; Pateyron, S.; Bondarenko, V.S.; Bitarishvili, S.V.; Makarenko,
E.S.; Churyukin, R.S.; Lychenkova, M.A. Early Response of Barley Embryos to Low-and High-dose Gamma Irradiation of Seeds
Triggers Changes in the Transcriptional Profile and an Increase in Hydrogen Peroxide Content in Seedlings. J. Agron. Crop Sci.
2020, 206, 277–295. [CrossRef]

62. Guo, J.; Ma, Z.; Peng, J.; Mo, J.; Li, Q.; Guo, J.; Yang, F. Transcriptomic Analysis of Raphidocelis Subcapitata Exposed to
Erythromycin: The Role of DNA Replication in Hormesis and Growth Inhibition. J. Hazard. Mater. 2021, 402, 123512. [CrossRef]

63. He, Y.; Wang, Y.; Hu, Y.; Chen, W.; Yan, Z. Superconducting Electrode Capacitor Based on Double-Sided YBCO Thin Film for
Wireless Power Transfer Applications. Supercond. Sci. Technol. 2018, 32, 015010. [CrossRef]

64. Arisha, M.H.; Ahmad, M.Q.; Tang, W.; Liu, Y.; Yan, H.; Kou, M.; Wang, X.; Zhang, Y.; Li, Q. RNA-Sequencing Analysis Revealed
Genes Associated Drought Stress Responses of Different Durations in Hexaploid Sweet Potato. Sci. Rep. 2020, 10, 12573.
[CrossRef]

http://doi.org/10.1016/j.cpb.2021.100230
http://doi.org/10.1002/pld3.133
http://doi.org/10.1016/j.tplants.2017.08.006
http://www.ncbi.nlm.nih.gov/pubmed/28970001
http://doi.org/10.1016/j.plantsci.2019.01.007
http://www.ncbi.nlm.nih.gov/pubmed/31003612
http://doi.org/10.1038/s41588-021-00866-3
http://www.ncbi.nlm.nih.gov/pubmed/33958781
http://doi.org/10.1186/s13059-021-02381-4
http://www.ncbi.nlm.nih.gov/pubmed/34034794
http://doi.org/10.3389/fpls.2018.01276
http://doi.org/10.1111/nph.17658
http://doi.org/10.1016/j.envexpbot.2021.104458
http://doi.org/10.1007/s00122-020-03691-0
http://doi.org/10.3390/agronomy10091444
http://doi.org/10.1016/j.jare.2021.05.002
http://doi.org/10.3389/fpls.2021.651480
http://www.ncbi.nlm.nih.gov/pubmed/33936136
http://doi.org/10.1111/jipb.13063
http://www.ncbi.nlm.nih.gov/pubmed/33369120
http://doi.org/10.1186/s13059-021-02519-4
http://doi.org/10.1007/s12041-015-0545-6
http://doi.org/10.3390/agronomy10111837
http://doi.org/10.1016/j.postharvbio.2019.110965
http://doi.org/10.1016/j.postharvbio.2017.10.017
http://doi.org/10.1111/jac.12381
http://doi.org/10.1016/j.jhazmat.2020.123512
http://doi.org/10.1088/1361-6668/aaebd8
http://doi.org/10.1038/s41598-020-69232-3


Plants 2022, 11, 970 19 of 22

65. García-Gómez, M.L.; Castillo-Jiménez, A.; Martínez-García, J.C.; Álvarez-Buylla, E.R. Multi-Level Gene Regulatory Network
Models to Understand Complex Mechanisms Underlying Plant Development. Curr. Opin. Plant Biol. 2020, 57, 171–179. [CrossRef]
[PubMed]

66. Haque, S.; Ahmad, J.S.; Clark, N.M.; Williams, C.M.; Sozzani, R. Computational Prediction of Gene Regulatory Networks in Plant
Growth and Development. Curr. Opin. Plant Biol. 2019, 47, 96–105. [CrossRef]

67. Wang, J.; Chen, B.; Ali, S.; Zhang, T.; Wang, Y.; Zhang, H.; Wang, L.; Zhang, Y.; Xie, L.; Jiang, T. Epigenetic Modification Associated
with Climate Regulates Betulin Biosynthesis in Birch. J. Res. 2021, 1–15. [CrossRef]

68. Qian, Y.; Huang, S.C. Improving Plant Gene Regulatory Network Inference by Integrative Analysis of Multi-Omics and High
Resolution Data Sets. Curr. Opin. Syst. Biol. 2020, 22, 8–15. [CrossRef]

69. Smith-Sonneborn, J. The Role of the ”Stress Protein Response” in Hormesis. In Biological Effects of Low Level Exposures to Chemicals
and Radiation; CRC Press: Boca Raton, FL, USA, 2017; pp. 41–52, ISBN 1-315-15028-X.

70. Koussounadis, A.; Langdon, S.P.; Um, I.H.; Harrison, D.J.; Smith, V.A. Relationship between Differentially Expressed MRNA and
MRNA-Protein Correlations in a Xenograft Model System. Sci. Rep. 2015, 5, 10775. [CrossRef] [PubMed]

71. Sahoo, J.P.; Behera, L.; Sharma, S.S.; Praveena, J.; Nayak, S.K.; Samal, K.C. Omics Studies and Systems Biology Perspective
towards Abiotic Stress Response in Plants. Am. J. Plant Sci. 2020, 11, 2172. [CrossRef]

72. Buccitelli, C.; Selbach, M. MRNAs, Proteins and the Emerging Principles of Gene Expression Control. Nat. Rev. Genet. 2020, 21,
630–644. [CrossRef]

73. Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T.; Renaut, J. Plant Abiotic Stress Proteomics: The Major Factors Determining
Alterations in Cellular Proteome. Front. Plant Sci. 2018, 9, 122. [CrossRef]

74. Mehmood, S.S.; Lu, G.; Luo, D.; Hussain, M.A.; Raza, A.; Zafar, Z.; Zhang, X.; Cheng, Y.; Zou, X.; Lv, Y. Integrated Analysis of
Transcriptomics and Proteomics Provides Insights into the Molecular Regulation of Cold Response in Brassica Napus. Environ.
Exp. Bot. 2021, 187, 104480. [CrossRef]

75. Frukh, A.; Siddiqi, T.O.; Khan, M.I.R.; Ahmad, A. Modulation in Growth, Biochemical Attributes and Proteome Profile of Rice
Cultivars under Salt Stress. Plant Physiol. Biochem. 2020, 146, 55–70. [CrossRef] [PubMed]

76. Chawade, A.; Alexandersson, E.; Bengtsson, T.; Andreasson, E.; Levander, F. Targeted Proteomics Approach for Precision Plant
Breeding. J. Proteome Res. 2016, 15, 638–646. [CrossRef] [PubMed]

77. Al-Obaidi, J.R. Proteoinformatics and Agricultural Biotechnology Research: Applications and Challenges. In Essentials of
Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2019; Volume III, pp. 1–27.

78. Komatsu, S. Plant Proteomic Research 2.0: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2495. [CrossRef]
79. Jorrin-Novo, J.V. What Is New in (Plant) Proteomics Methods and Protocols: The 2015–2019 Quinquennium. In Plant Proteomics;

Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–10. [CrossRef]
80. Jan, R.; Asaf, S.; Numan, M.; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to

Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [CrossRef]
81. Kosmacz, M.; Sokołowska, E.M.; Bouzaa, S.; Skirycz, A. Towards a Functional Understanding of the Plant Metabolome. Curr.

Opin. Plant Biol. 2020, 55, 47–51. [CrossRef]
82. Weng, J.-K.; Lynch, J.H.; Matos, J.O.; Dudareva, N. Adaptive Mechanisms of Plant Specialized Metabolism Connecting Chemistry

to Function. Nat. Chem. Biol. 2021, 17, 1037–1045. [CrossRef]
83. Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of Bioactive Metabolites Using Activity Metabolomics. Nat.

Rev. Mol. Cell Biol. 2019, 20, 353–367. [CrossRef]
84. Verpoorte, R.; Choi, Y.H.; Kim, H.K. Metabolomics: Will It Stay? Phytochem. Anal. PCA 2010, 21, 2–3. [CrossRef]
85. Lautie, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front.

Pharm. 2020, 11, 397. [CrossRef]
86. Sharma, D.; Kumar, S.; Kumar, V.; Thakur, A. Comprehensive Review on Nutraceutical Significance of Phytochemicals as

Functional Food Ingredients for Human Health Management. J. Pharm. Phytochem. 2019, 8, 385–395. [CrossRef]
87. Pishenin, I.; Gorbatova, I.; Kazakova, E.; Podobed, M.; Mitsenyk, A.; Shesterikova, E.; Dontsova, A.; Dontsov, D.; Volkova, P.

Free Amino Acids and Methylglyoxal as Players in the Radiation Hormesis Effect after Low-Dose γ-Irradiation of Barley Seeds.
Agriculture 2021, 11, 918. [CrossRef]

88. Mengdi, X.; Wenqing, C.; Haibo, D.; Xiaoqing, W.; Li, Y.; Yuchen, K.; Hui, S.; Lei, W. Cadmium-Induced Hormesis Effect in
Medicinal Herbs Improves the Efficiency of Safe Utilization for Low Cadmium-Contaminated Farmland Soil. Ecotoxicol. Environ.
Saf. 2021, 225, 112724. [CrossRef] [PubMed]

89. Corrado, G.; Vitaglione, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Di Mola, I.; Mori, M.; Rouphael, Y.
Phytochemical Responses to Salt Stress in Red and Green Baby Leaf Lettuce (Lactuca Sativa L.) Varieties Grown in a Floating
Hydroponic Module. Separations 2021, 8, 175. [CrossRef]

90. Alvarado, A.M.; Aguirre-Becerra, H.; Vázquez-Hernández, M.; Magaña-Lopez, E.; Parola-Contreras, I.; Caicedo-Lopez, L.H.;
Contreras-Medina, L.M.; Garcia-Trejo, J.F.; Guevara-Gonzalez, R.G.; Feregrino-Perez, A.A. Influence of Elicitors and Eustressors
on the Production of Plant Secondary Metabolites. In Natural Bio-Active Compounds; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 333–388. [CrossRef]

91. Villate, A.; San Nicolas, M.; Gallastegi, M.; Aulas, P.-A.; Olivares, M.; Usobiaga, A.; Etxebarria, N.; Aizpurua-Olaizola, O.
Metabolomics as a Prediction Tool for Plants Performance under Environmental Stress. Plant Sci. 2021, 303, 110789. [CrossRef]

http://doi.org/10.1016/j.pbi.2020.09.004
http://www.ncbi.nlm.nih.gov/pubmed/33171396
http://doi.org/10.1016/j.pbi.2018.10.005
http://doi.org/10.1080/13416979.2021.2009094
http://doi.org/10.1016/j.coisb.2020.07.010
http://doi.org/10.1038/srep10775
http://www.ncbi.nlm.nih.gov/pubmed/26053859
http://doi.org/10.4236/ajps.2020.1112152
http://doi.org/10.1038/s41576-020-0258-4
http://doi.org/10.3389/fpls.2018.00122
http://doi.org/10.1016/j.envexpbot.2021.104480
http://doi.org/10.1016/j.plaphy.2019.11.011
http://www.ncbi.nlm.nih.gov/pubmed/31733605
http://doi.org/10.1021/acs.jproteome.5b01061
http://www.ncbi.nlm.nih.gov/pubmed/26704985
http://doi.org/10.3390/ijms20102495
http://doi.org/10.1007/978-1-0716-0528-8_1
http://doi.org/10.3390/agronomy11050968
http://doi.org/10.1016/j.pbi.2020.02.005
http://doi.org/10.1038/s41589-021-00822-6
http://doi.org/10.1038/s41580-019-0108-4
http://doi.org/10.1002/pca.1191
http://doi.org/10.3389/fphar.2020.00397
http://doi.org/10.22271/phyto.2019.v8.i5h.9589
http://doi.org/10.3390/agriculture11100918
http://doi.org/10.1016/j.ecoenv.2021.112724
http://www.ncbi.nlm.nih.gov/pubmed/34509162
http://doi.org/10.3390/separations8100175
http://doi.org/10.1007/978-981-13-7154-7_11
http://doi.org/10.1016/j.plantsci.2020.110789


Plants 2022, 11, 970 20 of 22

92. Miggiels, P.; Wouters, B.; van Westen, G.J.; Dubbelman, A.-C.; Hankemeier, T. Novel Technologies for Metabolomics: More for
Less. TrAC Trends Anal. Chem. 2019, 120, 115323. [CrossRef]

93. Hong, J.; Yang, L.; Zhang, D.; Shi, J. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science. Int. J. Mol. Sci.
2016, 17, 767. [CrossRef]

94. Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems Biology and Multi-Omics
Integration: Viewpoints from the Metabolomics Research Community. Metabolites 2019, 9, 76. [CrossRef]

95. Pieruschka, R.; Schurr, U. Plant Phenotyping: Past, Present, and Future. Plant Phenomics 2019, 2019, 7507131. [CrossRef]
96. Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity Induced Physiological and Biochemical Changes in Plants: An Omic

Approach towards Salt Stress Tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [CrossRef]
97. Singh, V.; Sharma, N.; Singh, S. A Review of Imaging Techniques for Plant Disease Detection. Artif. Intell. Agric. 2020, 4, 229–242.

[CrossRef]
98. Zheng, C.; Abd-Elrahman, A.; Whitaker, V. Remote Sensing and Machine Learning in Crop Phenotyping and Management, with

an Emphasis on Applications in Strawberry Farming. Remote Sens. 2021, 13, 531. [CrossRef]
99. Li, D.; Li, C.; Yao, Y.; Li, M.; Liu, L. Modern Imaging Techniques in Plant Nutrition Analysis: A Review. Comput. Electron. Agric.

2020, 174, 105459. [CrossRef]
100. Martinez, H.E.; de Souza, B.P.; Caixeta, E.T.; de Carvalho, F.P.; Clemente, J.M. Water Deficit Changes Nitrate Uptake and

Expression of Some Nitrogen Related Genes in Coffee-Plants (Coffea Arabica L.). Sci. Hortic. 2020, 267, 109254. [CrossRef]
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