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Abstract: We present a study on the taxonomy of eleven Thymus species, belonging to two sections
and occurring naturally in Bulgaria. Four DNA barcoding markers—matK, rbcL, trnH-psbA and
ITS—were applied to discriminate the species and to reveal their phylogenetic relationships. The
results showed that rbcL has the lowest discriminating power regarding the studied species, while the
other markers yielded results fitting better to the existing taxonomic schemes based on morphological
traits. However, even in the case of better performing markers, the results were not straightforward—
morphologically distinct species belonging to different sections were grouped together, and closely
related species appeared genetically distinct. The results are typical for taxonomically complex
groups, such as the genus Thymus, characterized in Bulgaria with great diversity, high percentage of
endemism and still requiring a full and comprehensive taxonomic study. The results are discussed in
the light of unresolved taxonomic problems and application of DNA barcoding methods.

Keywords: genetic markers; taxonomy; medicinal plants; phylogeny; taxonomically complex groups
(TCGs)

1. Introduction

Resolving the problems arising when studying taxonomically complex groups (TCGs)
requires a combined approach consisting of classical (morphological, anatomical, cytologi-
cal) and modern (molecular) methods. Representatives of the genus Thymus can be a good
example of a complex group encompassing many taxa, some of them with uncertain status,
related among each other by hybridization, overlapping phenotypic variation and other
attributes of the reticulate evolution, making the task of taxonomists more difficult [1].

The complex systematics of the genus Thymus has been outlined in many studies
attempting to resolve the puzzle or a part of it [2–6]. Most of the challenges still stand today,
and in many cases, the application of modern molecular methods did not provide a clear
solution to taxonomic problems [1,7].

Currently, the number of species of the genus Thymus in Bulgaria is 21 [8–11], and
the species list slightly differs from the one in the Euro+Med PlantBase (https://ww2
.bgbm.org/EuroPlusMed/; last accessed 23 December 2021). In terms of species diversity,
Bulgaria is among the richest countries in Europe (see also [12], for review). The genus
Thymus is subdivided in two subgenera: Coridothymus (Reichenb. f.) Borbás and Thymus [2].
All Bulgarian species belong to the nominate subgenus.

Due to the importance of Thymus species as medicinal and aromatic plants and because
of the conservation value of many species, they always provoked a substantial interest and
have been subjected to diverse studies.
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The last comprehensive study on the systematics of genus Thymus in Bulgaria was
published more than 30 years ago [8], and practically no other taxonomic studies have been
performed afterwards, with the exception of some floristic notes [12] and few studies on the
essential oil composition [13,14]. Recently, Sostarić et al. [15] studied the genetic diversity
and relationships among seven species of section Serpyllum (Miller) Bentham from Serbia.
Apart from the taxonomic studies, essential oils and some other bioactive compounds of
the species have provoked substantial interest [16–20].

Genetic diversity, evolution and phylogeny of Thymus species have received consid-
erable attention [21–23], with application of newly developed methods. DNA barcoding
is one of the modern methods applied successfully to the taxonomy of various groups of
living organisms [24–27]. It is often pointed out that in the plant application of barcoding
markers, distinguishing among the species is more difficult and not as straightforward as
in animals and other organismic groups. The application of barcoding to TCGs in plants
experiences some marked difficulties. The success of choosing an appropriate marker that
could differentiate between closely related and morphologically similar species depends
on many factors, among them polyploidy, the degree of relatedness of taxa of interest, gene
flow and hybridization, dispersal ability and other life-history traits (see [25]). Several
large-scale phylogenetic studies were performed at a higher than species level and revealed
the phylogeny of the genera and tribes within Lamiaceae [28–30]. Genus Thymus was found
to be paraphytletic to Argantoniella and Saccocalyx in both nuclear and plastid markers and
to Origanum in a plastid marker only [28] and was placed within a clade together with
Thymbra, Origanum, Satureja and Micromeria [30]. DNA barcoding has been successfully
applied for identifying different species in commercial samples of herbs [31] and for the
identification of different Lamiaceae species [32]. However, its application to infrageneric
Thymus taxonomy did not allow definite conclusions [1,28,33,34]. Evidently, there are many
unresolved problems related to the application of DNA barcoding to TCGs, but the ap-
proach is promising and will surely be improved further [26,27,35]. Therefore, it is worthy
of applying this class of markers to a TCG, whose representatives were studied to a lesser
extent.

The objective of the present study was to apply DNA barcoding markers to a represen-
tative set of the Bulgarian species of the genus Thymus in order to reveal the relationships
among the species in the taxonomic scheme of the genus and to test the effectiveness of the
markers for the study of Thymus taxonomy.

2. Results and Discussion
2.1. Efficiency of PCR Amplification and Sequencing

The success rates for PCR amplification and sequence efficiency were measured for
all DNA barcodes obtained using the respective primers (Table 1). In the genus Thymus,
primers used for different barcodes showed 100% amplification and sequencing efficiency
among the 15 tested samples. One sample did not amplify, and one sample failed to be
sequenced for ITS primers. Alignment length was 760 bp for matK, 530 bp for rbcL, 350 for
trnH-psbA and 619 for ITS.

Table 1. Efficiency of PCR amplification and sequencing for Thymus accessions for four DNA
barcode regions.

Barcode Region N (Samples Tested) Alignment
Length (bp)

Percentage of
Amplification Efficiency

Percentage of Sequencing Efficiency
(from Amplified Barcodes)

matK 14 760 100 100

rbcL 14 530 100 100

trnH-psbA 14 350 100 100

ITS 14 619 93.4 93.4
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2.2. Genetic Diversity of Thymus Species and Accessions

Table 2 represents the parameters of genetic diversity of the studied DNA barcode
regions. The total number of sites varied between 351 (trnH-psbA) to 761 (matK) and up
to 1290 when combinations of different barcodes were considered. However, in all cases,
more than 90% of the total number of sites were constant. The number of variable sites
varied from 2 to 16 per region and increased to 29 in the combinations of two regions. The
number of parsimony-informative sites was of similar magnitude and varied from 2 to 13.

Table 2. Statistical parameters of genetic diversity calculated in MEGA X.

DNA Barcode Region Ns C V Pi S Average Pairwise Distance/SE

rbcL 529 527 2 2 0 0.00127/0.00009

trnH-psbA 351 333 16 10 6 0.13205/0.00371

matK 761 748 13 3 10 0.00342/0.00171

ITS 618 604 14 2 12 0.00464/0.00144

rbcL+matK 1290 1275 15 5 10 0.00230/0.00066

rbcL+trnH-psbA 880 860 18 12 6 0.00577/0.00147

matK+trnH-psbA 1112 1081 29 13 16 0.00748/0.00176
Legend: Ns—total number of sites; C—number of constant sites; V—number of variable sites; Pi—number of
parsimony informative sites; S—singleton sites. Estimates of Average Evolutionary Divergence over all Sequence
Pairs from the number of base substitutions per site are shown. The standard error estimate(s) were obtained by a
bootstrap procedure (1000 replicates). Analyses were conducted using the Tamura–Nei model (see Material and
methods). The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). All
ambiguous positions were removed for each sequence pair (pairwise deletion option).

We used the software package Geneious to construct a phylogenetic tree to infer
genetic distances and the taxonomic relationship between Thymus accessions. A test of
different genetic distance models (see Material and Methods) available in the package was
performed under the clustering method UPGMA (unweighted pair group method with av-
erages). Among the three models, Jukes–Cantor and Tamura–Nei models displayed highly
comparable patterns of clustering of Thymus accessions for all analyzed DNA barcode
regions and thus were both considered relevant for use (Supplement—Figures S1 and S2).
For further analyses, we used the Jukes–Cantor model, and the constructed phylogenetic
trees for different analyzed DNA barcode regions are presented in Figure 1.

The level of genetic discrimination of Thymus specimens based on genetic distances
differed between DNA barcode regions used. The rbcL region showed the lowest level of
genetic differentiation, with the species specimens T. stojanovii, T. thracicus and T. pulegioides
splitting into a distinct cluster (Figure 1a). The data from the rbcL region reflect the close
genetic relationships of these species (Figure 1b). While the three species of this cluster
belong to the same section Serpyllum (T. pulegioides to subsection Alternantes and the other
two species to subsection Pseudomarginati), the second cluster includes all remaining species,
which belong to the two sections (Serpyllum and Hyphodromi). The sections were specified
based entirely on morphological characters, and some differences between the classification
based on morphology and that based on genetic markers are expected. However, the
differences and grouping based on the rbcL barcode region do not show some particular
trend. Therefore, we consider this region to have little information value for the taxonomic
classification of Thymus. Federici et al. [1] found the same sequence length of rbcL in all
species studied, and the overall K2P distance was the lowest of all barcoding markers (0.1%).
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Figure 1. Phylogenetic trees of Thymus taxa constructed based on barcode regions rbcL (a), trnH-
psbA (b), matK (c) and ITS (d). The trees were constructed using the Geneious software with the 
genetic distance model Jukes–Cantor, the unweighted pair group method with averages UPGMA 
clustering method and the resampling method bootstrap with 200 replicates. Bootstrap values > 50% 
are shown along the branches. 
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Figure 1. Phylogenetic trees of Thymus taxa constructed based on barcode regions rbcL (a), trnH-psbA
(b), matK (c) and ITS (d). The trees were constructed using the Geneious software with the genetic
distance model Jukes–Cantor, the unweighted pair group method with averages UPGMA clustering
method and the resampling method bootstrap with 200 replicates. Bootstrap values > 50% are shown
along the branches.

The other region (trnH-psbA) showed the highest level of genetic divergence (Figure 1c).
Three main groups were formed—two small and a bigger one. The first small group
consisted of three species belonging to section Hyphodromi, and the second one combined
species of section Serpyllum—similarly to rbcL tree topology. The larger group consisted
of three species of section Serpyllum and two of section Hyphodromi. One species—T.
vandasii—had a somewhat distinct position.

No particular trend could be observed in the third DNA barcode region matK. Several
micro-clusters were formed combining species belonging to different sections, and different
accessions of the same species were grouped in different clusters.

The fourth DNA barcode region—ITS—yielded a construction consisting of three
clusters and one species distant from the others (Figure 1d). Again, like in the trnH-psbA
region, this species was T. vandasii. The clusters combined species belonging to different
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sections—for example, the first small cluster consisted of T. zygioides (sect. Hyphodromi) and
two accessions of T. stojanovii (sect. Serpyllum). However, it can be noted that here, different
accessions of the same species clustered together, contrary to the other barcode regions.

The success of DNA barcoding in distinguishing taxa at the species level in plants
depends on many factors [25]. It differs among the different groups and is usually lower in
the TCGs, such as genus Thymus.

It has been reported in many studies that DNA barcoding leads to 90% success in
species identification and differentiation [36–38]. However, there were also reports of lower
success, especially in the TCGs. For example, [7] obtained about 60% success in species
identification and delimitation in sedges (Carex spp.).

It is known that the combination of DNA barcode markers can improve the resolution
of taxonomic and evolutionary studies. Therefore, here, we made an attempt to find out
whether a combination of DNA barcode markers that have shown little information value
can improve the taxonomic classification of the studied taxa. Phylogenetic trees based on
the combination of plastid markers are shown in Figure 2.
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Figure 2. Consensus phylogenetic trees of Thymus taxa constructed based on a combination of plastid
DNA barcode markers. The trees were constructed using the Geneious software with the genetic
distance model Jukes–Cantor, the clustering method UPGMA and the resampling method bootstrap
with 200 replicates. Bootstrap values > 50% are shown along the branches.

Overall, based on data from the four DNA barcode regions, we can conclude about
the presence of pronounced genetic diversity within the genus Thymus. The analyzed rbcL
and matK regions alone cannot be used for relevant taxonomic differentiation of Thymus
species and accessions. The most effective in distinguishing species and grouping closely
related taxa of Thymus together was the ITS region. It was also the most informative region
for other TCGs, such as the family Meliaceae [39] and a large set of medicinal plants [38]. It
was reported by [39] species belonging to the same TCGs often have identical sequences of
cytoplasmic DNA barcoding regions which greatly reduces the discrimination power of
these markers. It is often recommended to use two-loci and/or multilocus combinations for
obtaining better results [35,40]. However, in many studies using multulocus combination
of DNA barcoding, markers did not substantially improve the resolution and identification
power [39,41].

Phylogenetic trees constructed with combining of DNA barcoding markers yielded
similar grouping, like in the case of individual DNA barcodes (Figure 2), and repeating
most of the peculiarities established by using individual DNA barcodes. It is difficult to
evaluate whether the grouping of different markers provides better results or not.

Taxonomic assignment of Thymus specimens through Basic Local Alignment Search
Tool (BLAST) analyses [42] against publicly available accessions in NCBI did not return
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reliable results, probably because the publicly available sequences in the databases represent
mostly well-known and studied species with a large distribution, and, to a lesser extent,
species from insufficiently studied regions (at least by using molecular markers), such as
the Balkans and Bulgaria in particular. Therefore, the most similar to Bulgarian species
were ones with a remote distribution, such as T. japonicus (H. Hara) Kitag., T. mongolicus
(Ronniger) Ronniger (rbcL barcoding region) and for the ITS region, T. quinquecostatus
Celak. and T. serpillum L. (results not shown). Evidently, much more information and richer
databases are necessary for reliable application of the BLAST analysis to the Bulgarian
Thymus species.

As discussed by [1], often in TCGs, the fragmented populations of the species with
reduced or lacking gene flow and long-term evolution in isolation result in spatial structures
with morphological and genetic divergence without a strong correspondence among each
other. This makes distinguishing taxa very difficult without clearly determined taxonomic
boundaries. Plant taxonomy is a complex issue, and speciation processes could be extremely
variable, especially in TCGs [43–45].

We consider the present study as a first step toward an updated and taxonomically
sound classification of the Bulgarian species of the genus Thymus. Including the remaining
indigenous species and such that are not occurring naturally in the country but are impor-
tant as key species with well-known and established taxonomic positions could facilitate
the process of obtaining a proper and reliable classification.

3. Material and Methods
3.1. Plant Material

Fourteen samples were included in the study, representing eleven species. Five species
belong to the section Hyphodromi (A. Kerner) Halácsy and six species to the section Serpillum
(Miller) Bentham. The sample set represents all sections of the genus found in Bulgaria.
Thymus longedentatus, T. perinicus and T. stojanovii were represented by two samples, while
the other species were represented by only one sample (Table 3). The taxonomic system of
the genus used in the present study is generally the same accepted in [3] and in Euro+Med
PlantBase (https://ww2.bgbm.org/EuroPlusMed/; last accessed 23 December 2021), with
slight modifications by [8]. The differences due to the modifications concern only a few
taxa: for example, in [8], T. degenii H. Braun is treated as part of T. sibthorpii Benth.; T.
kosteleckyanus Opiz as part of T. pannonicus All.; T. odoratissimus Mill. as a synonym of T.
glabrescens Willd. However, none of the taxa differing in their taxonomic status between [3]
and [8] were included in the present study.

3.2. DNA Extraction, PCR Amplification and Sequencing

Leaves dried in silica gel (~30 mg) were ground to powder by a Mixer Mill MM 40
(Retsch GmbH, Haan, Germany). Genomic DNA was extracted by using an Invisorb®

Spin Plant Mini Kit (Invitek Molecular GmbH, Berlin, Germany). DNA concentration and
purity was measured by a NandropTM Lite Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The genetic diversity of samples was evaluated based on sequences
of universal barcodes for plants psbA-trnH, matK, rbcL and ITS. The sequence of used
primers (synthesized by Microsynth) and PCR conditions that varied among primers are
shown in Table 4. PCR amplification was performed in 20 µL reaction mixtures containing
approximately 30 ng of genomic DNA, 1 x PCR buffer, MgCl2 (2.0 mM for ITS and matK,
2.5 mM for rbcL and trnH-psbA), 0.2 mM of each dNTP, 0.2 µM of each primer and 1.0 U
Taq DNA Polymerase (Solis BioDyne, Tartu, Estonia). The quality of PCR products was
checked on 1% agarose gel containing GoodViewTM staining dye. Successful amplicon
products were sequenced in both directions by Microsynth (Göttingen, Germany) using the
same primers used for PCR amplification.

https://ww2.bgbm.org/EuroPlusMed/
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Table 3. List of the studied specimens with details of their geographic locations.

Species Sample Code Geographic Coordinates Altitude

Section Hyphodromi (A. Kerner) Halácsy

Subsection Subbracteati (Klokov) Jalas

Thymus atticus Čelak. T08 41◦25′46′′ N 23◦42′42′′ E
760 m

Thymus perinicus (Velen.) Jalas
T57 41◦46′13′′ N 23◦24′28′′ E

T58 2450 m

Thymus striatus Vahl. T28 41◦57′52′′ N 22◦56′10′′ E
900 m

Subsection Serpyllastrum Huguet del Villar

Thymus aznavourii Velen. T69 41◦50′04′′ N 26◦28′55′′ E
120 m

Thymus zygioides Griseb. T26 41◦39′07′′ N 25◦50′39′′ E
300 m

Section Serpyllum (Miller) Bentham

Subsection Isolepides (Borbás) Halácsy

Thymus longedentatus (Deg. et Urum.) Ronniger
T17 42◦ 03′24′′ N 24◦26′17′′ E

300 m

T27 41◦40′30′′ N 25◦49′57′′ E
480 m

Thymus pannonicus All. T25 41◦39′06′′ N 25◦50′39′′ E
300 m

Subsection Alternantes Klokov

Thymus pulegioides L. T38 41◦47′ 07′′ N 23◦27′40′′ E
1500 m

Subsection Pseudomarginati (Braun ex Borbás) Jalas

Thymus stojanovii Deg.
T52 41◦24′37′′ N 23◦38′57′′ E

1600 m

T56 41◦33′04′′ N 24◦25′46′′ E
1300 m

Thymus thracicus Velen. T14 41◦46′14′′ N 23◦24′48′′ E
2200 m

Thymus vandasii Velen. T62 42◦12′18′′ N 23◦19′20′′ E
2200 m

3.3. Sequence Alignment and Data Analysis

Candidate DNA barcodes sequences for each barcode region were edited and aligned
in the software packages Geneious (Geneious Prime 2022.0.1) or MEGA-X [46], and consen-
sus sequences were subjected to further analyses. The phylogenetic trees were constructed
using the Geneious software testing genetic distance models provided by the software
package—the Jukes–Cantor model [47], Hasegawa–Kishino–Yano (HKY) model [48] and
Tamura–Nei model [49]. The statistical parameters of genetic diversity (total number of
sites, number of variable sites, number of parsimony informative sites singleton sites) were
calculated for each DNA barcode marker and some of their combinations in the MEGA-X
software package.
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Table 4. Oligonucleotide primers used and PCR conditions.

Barcode Region Primers Primer Sequences
5′-3′ PCR Conditions

matK

MatK-RKIM-f ACCCAGTCCATCTGGAAATCTTGGTTC 95 ◦C 5 min
95 ◦C 30 s,
51 ◦C 50 s

72 ◦C 1.4 min, 35 cycles
72 ◦C 7 min

MatK-3FKIM-r CGTACAGTACTTTTGTGTTTACGAG

rbcL

rbcLa-F ATGTCACCACAAACAGAGACTAAAGC 94 ◦C 4 min
94 ◦C 30 s
55 ◦C 30 s

72 ◦C 1 min, 35 cycles
72 ◦C 10 min

rbcLajf634R GAAACGGTCTCTCCAACGCAT

trnH-psbA

psbA-trnH CGCGCATGGTGGATTCACAATCC 94 ◦C 4 min
94 ◦C 30 s,
55 ◦C 30 s,

72 ◦C 1 min, 35 cycles
72 ◦C 7 min

psbA-3F GTTATGCATGAACGTAATGCTC

ITS

ITS_F1 CCTTATCATTTAGAGGAAGGAG 94 ◦C 5 min
94 ◦C 30 s,
50 ◦C 30 s,

72 ◦C 1min, 35 cycles
72 ◦C 5 min

ITS 4 TCCTCCGCTTATTGATATGC

4. Conclusions

Low bootstrap support testifies to the unreliability of the majority of groups identified
on phylogenetic trees and casts doubt on the possibility of using the studied markers to
study phylogenetic relationships in a taxonomically complex group, such as the genus
Thymus. A weak trend in pooling samples of the same species indicates the low value
of the studied markers for barcoding and suggests the need to look for other markers.
Future approaches to the study of Thymus taxonomy and phylogeny should be more
complex, including a set of molecular, morphological and other phenotypic markers.
Additionally, population genetic studies could provide a reliable picture of the distribution
of genetic diversity and the degree of differentiation and could help delineate the real
distinct populations and, possibly, the natural entities at the species level, as suggested
by [1].
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