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Abstract: The objective of this review is to present a compilation of the application of various
biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and,
there is currently no review on this topic in the literature. Plant biostimulation consists of using
or applying physical, chemical, or biological stimuli that trigger a response—called induction or
elicitation—with a positive effect on crop growth, development, and quality. Biostimulation provides
tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring
the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic
and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition
to being a product with high commercial value. This review aims to present an overview of the
information on using different biostimulation techniques in strawberries. The information obtained
from publications from 2000–2022 is organized according to the biostimulant’s physical, chemical, or
biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality,
and postharvest life is described for each class of biostimulant. Information gaps are also pointed out,
highlighting the topics in which more significant research effort is necessary.

Keywords: Fragaria; defense inducers; eustressors; elicitors; hormesis; plant stress; phytochemicals;
nutraceutics; nutraceutical quality

1. Introduction

Biostimulation has gained relevance due to its positive effects on the growth and
development of diverse crops. However, in the specific case of strawberries, there are
currently no reports encompassing the various forms and techniques of application of
biostimulants, as well as their mechanisms of action and positive effects on characteristics
such as yield and nutraceutical quality of the fruits. In addition to the above, the constant
increase in the population forces us to look for alternatives to achieve food security, since
some projections estimate that food needs will be up to 70% higher by 2050 [1]. On the other
hand, climate change has altered the conditions for agriculture, forcing growers to look
for alternatives with new production systems and genotypes better adapted to increasing
biotic and abiotic stresses [2]. The strawberry is a plant highly appreciated for its fruits of
high organoleptic quality and significant commercial value; the worldwide harvested area
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exceeds 380,000 ha, with a production close to 9 million tons [3]. Plant biostimulation is a
biological response that has been known empirically since ancient times, but its definition is
recent. Plant biostimulation has been defined as applying any substance or microorganism
to promote nutritional efficiency, tolerance to abiotic stress, and obtain higher quality
crops, regardless of nutrient content [4]. Another definition refers to any material that can
promote growth by being applied in small amounts to plants [5]. One of the most accepted
categorizations includes the following groups of biostimulants: humic substances (humic
and fulvic acids), protein hydrolysates, seaweed-botanical extracts, chitosan and other
biopolymers, beneficial elements (Si, Se, I, Ti), beneficial fungi (arbuscular mycorrhizal
fungi, Trichoderma) and beneficial bacteria (plant growth-promoting rhizobacteria and
endophytic bacteria) [4]. However, other materials or stimuli that are not categorized
in the above list can induce biostimulation in plants; these include compost, biochar,
nanomaterials, as well as the exogenous application of signalers (H2O2, H2S, NO), and
physical stimuli such as light (LED, UV), magnetism and high-low temperature (Figure 1).
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fungi; PGPR: Plant growth-promoting rhizobacteria; Cell signalers: H2O2, H2S, NO. Figure prepared
by the authors with information from various sources [4–7].

The main ways biostimulants act in plants are through the active substances they
contain, by having a large active surface or micro/nanoporosity, or through a complex
system of recognition and signaling that is dependent on energy transduction or reducing
potential. The aforementioned induces modifications in metabolism, membrane potential,
membrane fluidity, and gene expression [6]. In addition, some groups of biostimulants
(e.g., biopolymers, microorganisms, compost, and biochar) can act indirectly, mainly by
modifying the physicochemical characteristics of the soil or substrate and promoting the
assimilation of nutrients and the general growth of plants [7]. Some researchers have
published reviews on applications of specific biostimulant categories in crops such as
seaweed extracts [8]. However, to our knowledge, no review encompassing all forms of
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biostimulation in strawberry plants has been reported in the literature to date. Based on all
the above, the objective of this work was to conduct a broad review of the literature related
to the use of biostimulant products in strawberry cultivation, highlighting the impact
of the forms and doses of application on the agronomic, physiological, and biochemical
characteristics of strawberry plants. The literature search was carried out in the databases
of Dimensions, Scopus, and Web of Science, considering publications from 2000–2022.

2. General Mechanism of Plant Biostimulation
2.1. Plant Cell Receptors

The first step in the process of biostimulation is the reception of stimuli from the
environment. When any of the biostimulant agents (physical, chemical, biological) interacts
with plant cells, the signal is perceived through various types of receptors or physiochemical
changes in cell walls or membranes. The mechanisms of cellular reception to the stimulus
perceived by biostimulants are not yet well known. However, they are likely related to the
mechanism of perception of molecular damage by abiotic or biotic factors. The receptors are
known as plant pattern-recognition receptors (PPRs) and are responsible for recognizing
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns
(DAMPs) [9]. One of the main groups of receptors is receptor-like cytoplasmic kinases
(RLCKs), within which there are specific proteins that perceive different stimuli depending
on their nature; one example is the chitin elicitor receptor kinase 1 (CERK1), which is
responsible for the perception of chitin [10]. Another group of membrane receptors is
the wall-associated kinases (WAKs), of which 26 genes related to Arabidopsis have been
identified; these receptors perceive the stimuli to provide pathogen resistance, heavy-metal
tolerance, and plant development [11]. Another critical group of receptors is the G Protein-
Coupled Receptors (GPCRs), which perceive various types of extracellular stimuli and
trigger signaling cascades to respond [12].

2.2. From Perception to Transduction and Signaling

Once specific receptors perceive the stimulus, transduction of the signals immediately
occurs, with various molecules or ions playing an important role [13]. Mitogen-activated
protein kinases (MAPKs) are an example of proteins responsible for initiating a cascade of
signaling that ranges from the perception of the stimulus to the arrival of information to
other sites of the cell [6]. Usually, the process begins with the mitogen-activated protein
kinase kinase kinases (MAPKKKs), following downstream toward the mitogen-activated
protein kinase kinases (MAPKKs) and finally to the MAPKs. Protein phosphorylation is a
type of posttranslational modification (PTM) [14] that alters proteostasis (protein home-
ostasis) in the cell medium. Proteostasis alteration is possibly recognized by cells and is
partially responsible for inducing a biostimulation response in plants [15]. On the other
hand, MAPKs can phosphorylate transcription factors that directly modify gene expres-
sion [6]. An essential element in signaling is Ca2+, which is a secondary messenger in
plant cells. When the cell walls perceive a stimulus, the subsequent transduction response
activates Ca2+ channels, and the cytoplasmic Ca2+ (Ca2+cyt) concentration increases. The
change in Ca2+ is detected by various intracellular receptors, among which calmodulin
(CaMs), calmodulin-like proteins, calcium-dependent protein kinases (CDPKs), and cal-
cineurin B-like proteins stand out [16]. On the other hand, the high concentration of Ca2+cyt
induces the production of Ca-binding proteins (CaBPs), modifying proteostasis in cells.
Likewise, the increase in Ca2+cyt is fundamental for the phosphorylation of transcription
factors by CDPKs [12]. Another compound that fulfills the role of a signaler is extracellular
ATP (eATP), which is extruded from the cytoplasm to the apoplast when plants perceive
some stimulus. This eATP is perceived by the membrane receptor called Does not Respond
to Nucleotides 1 (DORN1), producing a response similar to that caused by DAMPs [17].
Some phytohormones, such as abscisic acid (ABA) and salicylic acid (SA), also play an
important role in cell signaling. For example, when the membranes perceive some external
stimulus, the cytoplasmic concentration of ABA increases, regulating genes related to resis-
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tance to salinity, drought, and cold stress [18]. Likewise, an elevation in the concentration of
SA is detected by specific receptors, which favors the interaction with several transcription
factors that modify the expression of genes mainly related to the defense system against
biotic and abiotic stress [19]. On the other hand, when biostimulants first encounter cell
walls and membranes, groups of important signalers arise. These signalers include reactive
oxygen species (ROS), like H2O2, O2

−, OH−; reactive nitrogen species (RNS), specifically
NO and NO2; and reactive sulfur species (RNS), such as H2S, which can commonly be
grouped together as reactive oxygen, hydrogen, and sulfur species (RONSS). One of the
main biostimulation pathways is related to changes in the redox balance of cells when the
RONSS:antioxidant ratio is increased in cells [20]. RONSS function as cell signalers due to
their high reactivity and capacity to modify molecules by oxidation, nitrosation, nitration,
or persulfidation. For example, ROS induce the oxidation of cysteine and methionine
residues, which causes inactivation or changes in protein structures [21] (Figure 2).
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Additionally, there is evidence that some ROS are necessary to activate MAPK signal-
ing cascades [6]. Likewise, NO fulfills various roles of PTM through mechanisms such as
metal nitrosylation, tyrosine nitration, and S-nitrosylation [22]. On the other hand, H2S
causes the persulfidation of proteins and residues such as cysteine, causing changes in
the proteome and gene expression [23]. Gasotransmitters such as NO and H2S, thanks to
their physical characteristics, can move quickly between organelles and through other cells,
which increases their ability to induce transcriptional changes in plants [23]. In addition,
all signalers are detected by other types of intracellular receptors and transcription factors,
such as DREB, WRKY, AREB, NAC, and bZIP, thus modifying gene expression [24]. Signals
can also travel directly to the nucleus of cells, causing changes in DNA and resulting in
overexpression or repression of genes [25]. A final way in which plants respond to the
stimuli of the environment is through changes in the fluidity and structure of membranes,
which is like the observed effect when plants are subjected to stress due to salinity or
drought [26]. Such changes in the membranes are perceived by putative sensors that
subsequently modify gene expression [27]. Furthermore, some biostimulants have a large
active surface per unit volume; examples are nanomaterials, zeolites, and biochar. The
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above materials can induce changes in plant behavior; this could be due to a physical
interaction mechanism in the interphases of the material and cell walls, or related to the
considerable ion-exchange capacity of the materials (see Section 3.7). The specific direct or
indirect mechanisms by which the different categories of biostimulants positively affect the
growth and development of plants, depending on their chemical, biochemical, biological,
or physical nature, are described in the subsequent sections. As a result of all the previously
mentioned mechanisms, a new phenotype better adapted to the environment is obtained,
with greater tolerance to biotic and abiotic stress and better growth, development, and
quality of harvestable products.

3. Use of Chemical and Biochemical Biostimulants in Strawberry Cropping

This group includes humic substances, protein hydrolysates, seaweed extracts, botani-
cal extracts, chitosan and other biopolymers, beneficial elements, nanomaterials, compost,
biochar, and cell signalers (H2O2, H2S, NO).

3.1. Humic Substances (HS)

Humic substances (HS) are organic compounds formed from plant or animal residues
present in soils, which are degraded in a process known as humification resulting from
the activity of microorganisms such as fungi and bacteria [28]. These substances represent
approximately 25% of the total organic carbon present on the planet [29]. Depending on
their characteristics, HS can be classified as humic acids (HA) and fulvic acids (FA), which
differ mainly by their solubility, depending on the pH of the medium in which they are
found [30]. The beneficial effects of HS on plants have been widely documented [31]. Part
of the mechanisms of action is the ability to induce changes in the structure of the root
system, promoting its growth and improving the assimilation of nutrients [32]. On the
other hand, HS can act as antioxidant compounds, favoring some oxidation–reduction
reactions in soils, substrates, or plant cells [33]. It is also likely that plants recognize
the disordered molecular structure of HS, being detected as DAMPs and triggering a
cascade of signals, as explained in previous paragraphs (See Section 2). Likewise, HS
can improve soil structure, increase cation-exchange capacity, promote P solubility, and
improve nitrate assimilation [34]. Therefore, in recent years, HS have been considered as
plant biostimulants [35], with positive effects on plant growth and development. Different
impacts of HS have been reported in the case of strawberry cultivation, which varies
depending on the nature of the HS, dose, and forms of application of the products. The
main positive effects reported include variables related to vegetative growth and yield,
such as fruit quality, mineral concentration, and antioxidant compounds. However, there is
very little, or no information related to metabolic aspects such as photosynthesis, and few
studies related to the postharvest life of the fruit and tolerance to pathogens (Table 1).

Table 1. Positive effects of HS on some growth or quality variables of strawberry crops.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

HA NS * Greenhouse, pots with
substrate

Foliar
0, 25, 50, and 100 mg L−1

Fruit yield, TSS, TA, Vit. C, K,
P, Ca, Mg. [36]

HA from cow manure,
food waste, paper waste

Greenhouse, pots with
substrate

Substrate mix
0, 250, and 500 mg kg−1

of substrate
Root dry weight. [37]

HA from cow manure,
food waste, paper waste

Greenhouse, pots with
substrate

Substrate mix
0, 250, and 500 mg kg−1

of substrate
Number of fruits. [38]

HA
Commercial formulation Open field, pots with soil Root immersion by 2 h, 0.05%

Number and length of runners,
length of roots, and

total biomass.
[39]

HA + FA
Commercial formulation

Greenhouse, pots with
substrate

Substrate mix,
0.06 g kg−1 P in roots, Mn and P in leaves. [40]
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Table 1. Cont.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

HA NS Greenhouse, pots with soil Foliar
15 and 25 mL L−1

Biomass, length of roots, leaf
area, number of runners and

flowers, fruit weight, TSS, TA,
and Vit. C.

[41]

HA NS Open field, soil Foliar
0, 2, and, 4 mL L−1

N concentration in leaves,
number of flowers, and

fruit yield.
[42]

HA NS Greenhouse, pots with soil Foliar
100 mg L−1

Proline concentration,
phenolics, and

antioxidant capacity.
[43]

HA
Commercial formulation

Greenhouse, pots with
substrate

Substrate mix
4 g HA pot−1

Plant height, number of leaves,
crowns, and roots, fresh and

dry weight of leaves and roots,
stomatal conductance.

[44]

HA + FA
Extracted from
vermicompost

Open field, soil conditions Foliar
180 mg L−1

Chlorophyll concentration and
net photosynthesis. [45]

HA NS Greenhouse, soil conditions Foliar
20 and 40 mg L−1

Number and weight of fruits,
yield per plant, leaf area,

length and dry weight of shoot
and root.

[46]

HA + FA
NS Open field, soil conditions Drench

5 mL L−1
TSS, TA, anthocyanins, Vit. C,

phenolics. [47]

HA + FA
Commercial formulation Open field, soil conditions Drench and Foliar

2, 4, and, 6 ton ha−1

Leaf area, biomass,
chlorophyll, carotenoids, TSS,

and Vit. C.
[48]

HA
Extracted from soil In vitro

Growing medium
1 and 5 mg dm−3

Number and length of roots,
plant weight, number and size

of leaves.
[49]

HA
Commercial formulation

Greenhouse, pots with
substrate

Drench
150 and 300 mg L−1

K concentration, chlorophyll,
carbohydrates, shoot and root

dry weight, leaf area, SOD,
fruit number and yield.

[50]

HA
Commercial formulation

Greenhouse, pots with
substrate

Foliar
1 g L−1

Root dry weight, Si,
fruit chromaticity. [51]

HA NS Greenhouse, soil conditions Drench and foliar
10, 20, 30, and 40 mg L−1 Chlorophyll, N, P, K. [52]

HA NS Greenhouse, pots with soil 2 g kg−1 soil
Plant height, leaf area, fresh

weight, N, P, K. [53]

HA + FA
Commercial formulation Open field, soil conditions Drench

10 mL L−1

Number and length of runners;
number, length, and weight

of roots.
[54]

* NS: Not Specified.

3.2. Protein Hydrolysates (PHs)

Protein hydrolysates (PHs) are products that can be derived from animal origin (blood
meal, leather byproducts, fish byproducts, and bird feathers) or vegetable origin (alfalfa
hay, legume seeds, and other vegetables) [55]. Methods for producing PHs range from
chemistry to thermal and enzymatic hydrolysis, depending on the source material [56].
The final content of free amino acids and other compounds will depend on the hydrolysis
method, as some compounds are degraded during the process [57]. One of the main
mechanisms of action of PHs depends on the high concentration of free amino acids and
peptides, which function as signaling molecules, N sources, and metal-complexation or
antioxidant metabolites [58]. The different peptides containing PHs can be recognized by
plants through specific receptors, such as putative leucine-rich repeats (LRRs), triggering a
cascade of signaling and transcriptional responses [56]. In addition to the above, some PHs
also contain fatty acids, carbohydrates, phytohormones, and macro- and micronutrients,
which fulfill their respective roles in plants [59]. On the other hand, PHs increase the
activity of enzymes such as nitrate reductase (NR), nitrite reductase (NiR), and glutamine
synthetase (GS); all of these are related to the assimilation of N in addition to promoting
carbon metabolism, increasing the production of auxins and gibberellins, antioxidant
enzymes, and photosynthetic pigments and secondary metabolites [55]. Furthermore, PH
applications have been shown to stimulate flavonoid biosynthesis and the phenylpropanoid
pathway [57]. Using PHs from various sources with various forms of application has
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shown positive effects on strawberry cultivation. In most cases, PHs are reported to
increase variables related to vegetative growth and, to a lesser extent, to antioxidant
compounds, chlorophylls, and minerals in tissues. However, information on aspects of
primary metabolism and postharvest life of fruits is very scarce (Table 2).

Table 2. Positive effects of protein hydrolysates on some growth or quality variables of strawberry
crop.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Porcine blood Open field, soil conditions Drench
0.5, 1, and 1.5 g plant−1

Resistance to cold stress,
fruit weight. [60]

Fish protein
concentrates Greenhouse, pots with soil Drench

NS
Fresh and dry biomass,

chlorophyll fluorescence. [61]

Amino acids
(Proline, Alanine, Glutamine In vitro

Growing medium
50, 100, 150, and 200 mg L−1 Somatic embryogenesis. [62]

Porcine blood High-tunnel, soil conditions Drench
2.5 g L−1

Dry weight of roots, % of
flowering, fruit weight. [63]

Arginine NS Greenhouse, soil conditions Foliar
0, 250 and 500 µM

Number of fruits, TSS,
anthocyanins, phenolics, Vit.

C.
[64]

Alfalfa protein
hydrolizated

Greenhouse, pots with
substrate

Foliar
3 g L−1

Root dry weight, leaf area, Si
concentration, SPAD, fruit

weight, phenolics. [51]
Microalga protein

hydrolizated
Greenhouse, pots with

substrate
Foliar

4 g L−1
Root dry weight, Fe and Si
concentration in roots, TA

in fruits.

Mix of amino acids Greenhouse, pots with
substrate

Foliar
3 g L−1 TSS in fruits.

Amino acids
(hydroxyproline and

glutamic acid), commercial
formulation

Controlled environment
room, pots with substrate

Foliar
228 and 319 mg L−1

Number of flowers, number,
and weight of fruits, Vit. C. [65]

Hydrolyzed feather meal Greenhouse, pots with soil 0.10 g kg−1 soil
Indole Acetic Acid (IAA),

Abscisic acid (ABA),
Isopentenyl adenosine (iPA).

[66]

Amino acids (Glycine) Open field, soil conditions Drench
0.5 g L−1

Number and length of
runners, roots length. [54]

3.3. Seaweed and Algal and Microalgal Extracts

Extracts of marine algae have gained importance in recent years due to the beneficial
effects reported in various crops [67]. The main species used for producing these extracts
are Ascophyllum nodosum, Sargassum spp., and Laminaria spp., among others [7]. The
production of seaweed extracts is based on different methodologies, but mainly involve
subjecting the biomass to high temperatures and pressures and using alkaline solutions to
ensure the extraction of the active compounds [68]. An abundance of phenolic compounds,
as well as the presence of phytohormones such as gibberellins, could be found within the
specific mechanisms of action of seaweed extracts [69]. One of the main compounds found
in these extracts is alginic acid, which can be perceived by plants and triggering a positive
response; in addition, this substance favors the chelation of minerals in the soil, increasing
the assimilation and accumulation of nutrients in plants [59]. In general, the positive effects
of extracts on crop growth and quality are partially explained by the regulation of the genes
RD29A, RD22, SOS, CBF3, COR15A, as well as the increase in osmolytes, greater efficiency
in water use, and increase in photosynthetic pigments and mineral concentration [67].
Furthermore, these extracts improve the enzymatic and nonenzymatic systems of plants,
providing greater tolerance to abiotic stress [70]. Seaweed extracts of several species with
various forms of application have been reported in strawberry cultivation, highlighting
some aspects of vegetative plant growth and fruit quality, mineral concentration, and
enzymatic-nonenzymatic antioxidant systems. However, it is essential to have information
related to transcriptomics and proteomics, resistance of plants to pathogens, and the
postharvest life of fruits (Table 3).
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Table 3. Positive effects of seaweed and microalgal extracts on some growth or quality variables of
strawberry crops.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Ascophyllum nodosum,
commercial extract

Greenhouse, pots with substrate Drench
0.2, 0.4, 1.0, or 2.0 g L−1

Number, surface area,
volume, and length of roots. [71]

Open field, soil conditions Drench
2 and 4 g L−1

Leaf area, shoot dry weight,
number of fruits and yield.

Sargassum spp., commercial
extract Open field, pots with substrate Drench

0, 2, 4, and 8 g L−1 Mn concentration. [72]
Sargassum spp., commercial

extract Open field, pots with substrate Drench
0, 2, 4, and 8 g L−1

Number of crowns, number
and volume of fruits, yield. [73]

Ascophyllum nodosum,
commercial extract Greenhouse, pots with substrate Foliar

0.1, 0.2, and 0.3%

Phenolics and flavonoids
concentration; activity of

PAL and POD.
More resistance to

Podosphaera aphanis.

[74]

Seaweed extract, NS High tunnel, soil conditions Drench
20 g ha−1

Concentration of N, P, K, Ca,
Mg, and Mn. [75]

Mix of Sargassum sp.,
Ascophyllum

nodosum, Laminaria sp.
Open field, soil conditions Foliar

1 and 2 mL L−1

Plant height, number of
leaves, leaf area, root dry
weight, fruit weight, TSS.

[76]

Ascophyllum
nodosum, commercial extract Open field, soil conditions 4.68 L ha−1 Number of crowns, root dry

weight, fruit yield. [77]

Seaweed extract, NS High tunnel, soil conditions Foliar
1.3 g L−1

Leaf area, fruit N
concentration, fruit yield. [78]

Seaweed extract, NS High tunnel, soil conditions Foliar
1.3 g L−1

TSS, fructose, sucrose, and
quercetin. [79]

Mix of Duvillaea potatorum
and Ascophyllum nodosum Open field, soil conditions 10 L ha−1 Number of runners, fruit

yield, roots length. [80]

Seaweed extract, NS Open field, soil Foliar
2 and 4 mL L−1

Leaf and root dry weight, N
concentration, number of

flowers, yield.
[42]

Ascophyllum
nodosum, commercial

formulation
Greenhouse, pots with substrate Foliar

3 g L−1
Root dry weight, leaf area, Si

in roots, phenolics. [51]
Spirulina spp., commercial

formulation Greenhouse, pots with substrate Foliar
3 g L−1

Root dry weight, Fe and Si in
roots, fruit firmness and TA.

Ascophyllum
nodosum, commercial

formulation
Greenhouse, pots with substrate Drench

0.5 mL L−1

Vegetative growth,
chlorophyll concentration,

photosynthetic rate, number,
and weight of fruits.

[81]

3.4. Botanical Extracts

Botanical extracts are products generally derived from fresh plant tissues, especially
from plants recognized for their high concentrations of bioactive compounds, minerals,
phytohormones, and amino acids, among others [82,83]. Several species have been used
to produce extracts; an example is the plant Moringa oleifera, of which there are several
reports on its positive effects on plants [84,85]. However, despite all the above, the group
of botanical extracts has not yet been sufficiently studied as a biostimulant because such
products are mainly used as pesticides [4]. The methods for elaborating botanical extracts
use solvents such as water or different alcohols, which are mixed with the biomass to
be later stirred, blended, and even applied with ultrasound techniques [85]. The specific
mechanism of action of botanical extracts is not yet well known. However, it is related to
the high availability of minerals, amino acids, bioactive compounds, and phytohormones,
which fulfill specific functions such as promoting growth and vegetative development,
improving the antioxidant system, and greater tolerance to biotic and abiotic stress, among
others [86]. Several works have been reported using botanical extracts as biostimulants
in strawberry cultivation. An experiment in the open field with soil conditions and foliar
applications of M. oleifera extract at concentrations of 2, 4, and 6% increased the fresh
and dry weight of plants, the number of leaves, plant height, SPAD, carbohydrates, and
the concentration of N, P, K, Ca, Mg Fe, Mn, and Cu, as well as some characteristics of
fruits, such as weight, firmness, TSS, Vit. C, anthocyanins, and total yield [87]. On the
other hand, foliar applications of a mixture of three grass species, Lolium perenne L. (60%),
Festuca spp. (20%), and Poa pratensis L. (20%) promote root and shoot dry weight and
chlorophyll concentration in strawberry plants grown under greenhouse conditions [88].
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In a similar experiment carried out using the same botanical extract in the strawberry plant
cv. Diamond, foliar applications increased shoot and root dry weight, chlorophyll, and
concentrations of succinic, malic, and citric acid in root tips, as well as concentrations of P,
K, Mg and Ca in different organs of the plant [89]. On the other hand, drench applications
of a Pelargonium hortorum extract increased some parameters of the radicular system, such
as root diameter and root volume, as well as the photosynthetic rate in strawberry plants
cv. Duch [61].

3.5. Chitosan and Other Biopolymers

Biopolymers are compounds widely used in the pharmaceutical, cosmetic, textile, and
food industries. The main ones are cellulose, collagen, alginate, chitin, and chitosan, which
have the most significant applications in agriculture [90]. Chitosan is a biopolymer obtained
through the chemical or enzymatic deacetylation of chitin, mainly from crustaceans or
insects, where the result can be D-glucosamine and N-acetyl-D-glucosamine [91]. Deacety-
lation consists of replacing acetyl groups (CH3CO) with amino groups (NH2), where the
degree of this process (reaction time and temperature) defines the final form of chitosan
(D-glucosamine or N-acetyl-D-glucosamine) [91]. The multiple applications of chitosan are
due to its biocompatibility, biodegradability, high absorption capacity, and nontoxicity [92].
In plants, chitosan is mainly used to improve the response against pathogens and resistance
to abiotic factors, in addition to promoting vegetative growth [90]. The primary mechanism
of action of chitosan applications could be related to the octadecanoid pathway, which
begins in the chloroplast of the cell and ends in the production of response genes related to
enzymes such as PAL and CAT, as well as other response mechanisms such as stomatal
opening/closing [93]. Signals ranging from chitosan perception to transduction factors
include NO, Ca2+, and phytohormones such as JA, SA, and ABA [94]. Currently, no specific
receptors have been identified for chitosan. However, the first perception could be related
to the difference in charges between the amino groups of chitosan (positive charge) and the
cell membrane (negative charge) [93]. The forms of chitosan application in plants range
from seed priming, drench, and leaf sprays, while beneficial effects range from increased
biomass gain, more photosynthetic pigments, and antioxidant compounds [95]. Some
reports of the application of this product in strawberry cultivation are shown in Table 4. In
this Table, the emphasis is placed on aspects related to fruit quality (size, weight, TSS, firm-
ness, yield), postharvest life, antioxidant system, and, to a lesser extent, the concentration
of minerals. There is little or no information related to the physiological issues of plants.

Table 4. Favorable effects of chitosan applications on some growth or quality variables of strawberry
crop.

Product Experimental Conditions Forms and Levels of
Application

Variables that
Increase Reference

Chitosan, commercial product Open field, soil conditions Foliar
1, 2, 3, and 4 mL L−1

Plant height, number of
leaves, biomass, number

and weight of fruits.
[96]

Chitosan, commercial product Open field, soil conditions Foliar
125, 250, 500, and 1000 mg L−1

Leaf size, fresh and dry
weight of shoot and roots,

fruit weight and yield.
[97]

Chitosan, commercial product Open field, soil conditions Foliar
125, 250, 500, and 1000 mg L−1

Anthocyanins, phenolics,
flavonoids, carotenoids,

antioxidant capacity.
[98]

Chitosan oligosaccharide,
commercial formulation Open field, soil conditions Foliar

50 mg L−1

Fruit firmness, TSS, Vit. C,
phenolics, flavonoids,
antioxidant capacity.

[99]

Chitosan, commercial product Greenhouse, pots with substrate Foliar
10 mL L−1

Root dry weight, B and Si
concentration in roots,
weight, firmness, and

fruit yield.

[51]
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Table 4. Cont.

Product Experimental Conditions Forms and Levels of
Application

Variables that
Increase Reference

Chitosan, commercial product Greenhouse, pots with substrate Foliar
2, 4, and 6 g L−1

Reduction of %
postharvest decay, fruit

firmness, citric acid.
[100]

Chitosan, commercial product Greenhouse, pots with substrate Foliar
1, 2, and 3 g L−1

Plant height, number of
leaves, leaf aera, dry

biomass, fruit size, weight,
and yield.

[101]

Chitosan, commercial product Open field, soil conditions 2.5 and 5 mL L−1

Plant height, number of
leaves, leaf area, root dry

weight, N, P, K, fruit
weight, yield.

[102]

Chitosan, commercial product Open field, soil conditions Foliar
15 g L−1

Fruit firmness,
anthocyanin

concentration, phenolics
and antioxidant capacity.

[103]

3.6. Beneficial Elements

Beneficial elements are not considered essential for plants, but their presence or ap-
plication positively affects growth and development parameters [104]. The most studied
elements in this group are silicon (Si), selenium (Se), iodine (I), vanadium (V), cobalt (Co)
and titanium (Ti) [105]. These elements can be considered biostimulants because they
can promote plant growth and provide tolerance to stress through mechanisms such as
strengthening cell walls, osmoregulation, synthesis of phytohormones, greater assimilation
of essential elements, and reduction of transpiration, among others [4]. Si is the most bene-
ficial element studied; several authors have considered it a biostimulant for plants [106].
Among the main functions of Si in plants is its ability to accumulate in cell walls, providing
greater rigidity to tissues and reducing damage by organisms such as insects or microor-
ganisms [107]. In addition, Si can reduce the absorption of ions such as Na+ and Cl− when
plants are under saline stress conditions [108] and increase the production of antioxidant
compounds in the face of various types of biotic and abiotic stress [106]. On the other hand,
Se promotes the quenching of ROS, regulates enzymatic and nonenzymatic antioxidants,
and improves the photosynthesis and homeostasis of elements in plants [109]. Likewise,
iodine has been an element of interest in recent years, where its functions are mostly related
to the increase in antioxidant compounds when this element is at low concentrations;
however, high concentrations produce phytotoxicity in cells [110]. Finally, V, Co, and Ti are
the elements less studied. However, it has been reported that these elements promote the
assimilation of other nutrients, are involved in redox reactions, and stimulate enzymatic
activity and photosynthesis [104,105,111]. These elements have been applied in strawberry
cultivation, obtaining favorable responses in various groups of variables, such as agronomic
(growth and development), fruit quality (size, weight, firmness, TSS, anthocyanins), the
antioxidant system of the plant, aspects related to photosynthesis (photosynthetic rate,
stomatal conductance), and the concentration of minerals in the tissues. However, further
studies related to the tolerance against pathogens and postharvest quality of the fruits are
needed (Table 5).
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Table 5. Positive effects of beneficial element applications on some growth or quality variables of
strawberry crop.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Silicon

K2SiO3 Greenhouse, pots with substrate Drench
1000 and 1500 mg L−1

Shoot dry weight, leaf area, root
volume, relative water content. [112]

K2SiO3 Greenhouse, pots with substrate Drench
1000 and 1500 mg L−1

Plant biomass, fruit number, TSS,
TA, antioxidant activity. [113]

K2SiO3 Greenhouse, pots with substrate Drench and Foliar
75 mg L−1

General vegetative growth,
chlorophyll, stomatal

conductance, soluble sugars,
CAT, APX, POD, SOD,

anthocyanins.

[114]

Si(OH)4 Greenhouse, pots with substrate Drench
1 and 2 mM

Leaf number, leaf area, dry
weight, photosynthetic rate,

stomatal conductance.
[115]

Si chelate In vitro
Growing media

2.5, 5, and 10 mg L−1
Number and length of shoots,

CAT, SOD. [116]

K2SiO3 Shade house, pots with substrate Drench and Foliar
5, 10, and 15 mM

Shoot and root dry weight,
chlorophyll, number of flowers
and fruits, yield, fruit firmness.

[117]

Si, commercial
formulation Greenhouse, pots with substrate Foliar

0.3 mL L−1
Zn and Si concentration, weight

of fruit, yield. [51]

Na2SiO3 Greenhouse, soil conditions Foliar
3 and 6 mM

SOD, phenolics, flavonoids,
anthocyanins. [118]

SiO2 Open field, soil conditions Foliar
5, 10, and 15 mg L−1 Fruit firmness and anthocyanins. [119]

Na2SiO3 Greenhouse, soilless system Drench
50 and 100 mg L−1 Flavonoids and Si concentration. [120]

SiO4H4 Open field, pots with substrate Drench and Foliar
1.5 mM

Leaf area, SPAD, fruit size and
weight, fructose concentration. [121]

K2SiO3 Greenhouse, pots with substrate Drench and Foliar
75 mg L−1

Leaf size, fresh and dry weight
of shoot, Si concentration,
chlorophyll fluorescence.

[122]

Na2SiO3 Greenhouse, pots with substrate Drench
3 mM

Shoot and root dry weight, net
photosynthesis, relative water

content, protein, phenolics.
[123]

K2SiO3
Na2SiO3
CaSiO3

Greenhouse, pots with substrate Drench and Foliar
35 and 70 mg L−1 CAT, SOD and POD activity. [124]

Na2SiO3 Greenhouse, pots with substrate Drench
3 mM

Shoot and root dry weight, Si,
Zn, soluble sugars, soluble
proteins, PAL, phenolics.

[125]

Na2SiO3 Greenhouse, pots with substrate Drench
3 mM

Shoot and root biomass, net
photosynthesis, stomatal

conductance, water efficiency
use, CAT, SOD, POD.

[126]

K2SiO3 Shade house, pots with substrate 5, 10, and 15 mM
Root dry weight, chlorophyll

fluorescence, net photosynthesis,
water efficiency use.

[127]

Selenium

Na2SeO4 Greenhouse, soilless system Nutrient solution
10 and 100 µM

Shoot fresh weight, leaf area, K,
Ca, Mg in roots, TSS, fructose,

sucrose.
[128]

Na2SeO3 Greenhouse, pots with soil Foliar
2.5, 5, and 10 mg L−1

Net photosynthesis, stomatal
conductance, chlorophyll, SOD,

CAT, POD.
[129]

Se NS Growth chamber, pots with soil Mix with soil
40 mg kg−1 soil Fruit weight, Se concentration. [130]

Na2SeO3 Growth chamber, pots with soil Foliar
10, 30, and 60 mg L−1

Number of fruits, yield, Vit. C,
APX. [131]

Na2SeO3 Greenhouse, pots with substrate Drench
2 and 4 mg L−1

Fresh and dry weight of crown,
K, Ca, Mg, Zn, Se. [132]

Na2SeO4 Greenhouse, pots with substrate Drench
1, 5, and 10 mg L−1

Plant biomass, phenolics,
flavonoids, antioxidant capacity. [133]
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Table 5. Cont.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Iodine

KIO3 Greenhouse, pots with substrate
Drench

1, 2.5, and 7.5 mg L−1 Fruit I concentration. [134]
KI Foliar

0.25, 0.75, and 1.5 mg L−1

I-based commercial
product Greenhouse, pots with soil

Foliar
0.5 mL L−1

Phenolics, APX, CAT, K, I
concentration. [135]

KIO3
Foliar

100 µM
Fruit firmness, Vit. C, I

concentration.
KI Greenhouse, soilless system

Nutrient solution
0.25, 0.5, 1, 2.5, 5 mg L−1 Vit. C, soluble sugars, I

concentration.
[136]

KIO3
Nutrient solution

0.25, 0.5, 1, 2.5, 5 mg L−1

Titanium

Ti, commercial product Greenhouse, soil conditions Soil mix
0.05%

Number of root tips, root dry
weight. [137]

TiO2 Greenhouse, soil conditions Foliar
50, 100, and 150 mg L−1

Chlorophylls, yield, glucose,
oxalic, malic, and citric acid. [138]

Ti, commercial product Open field, soil conditions Foliar
0.02%

Phenolics, Vit. C, antioxidant
capacity, anthocyanins. [139]

3.7. Metal, Carbon, Zeolite, and Chitosan Nanomaterials

Nanotechnology has gained importance in recent years due to its applications in
industry, medicine, and agriculture, with uses such as pesticides or fertilizers found in the
latter [140]. Nanomaterials (NMs) are considered products of a size between 1–100 nm,
ranging from metals (ZnO, FeO3, SiO), carbon (carbon and graphene nanotubes), zeolite,
and nanochitosan [141]. Recently, nanomaterials (NMs) have been proposed as plant
biostimulants [5]. The positive effects of NMs in plants can be explained by the specific
mechanisms by which NMs induce biostimulation in plants, which can be encompassed in
two main phases: The first phase is due to the initial contact of the material with the cell
walls or membranes, where interactions occur due to the difference in corona composition,
surface charges, size, shape, and hydrophobicity of the NMs. NMs cause damage or
modifications in the structures of integral proteins, cell walls, or membranes. These, in turn,
can produce cascades of signalers (signaling metabolites, alterations of the redox balance,
the membrane potential, and transcriptional and posttranslational modifications) inside
or between cells and trigger a biostimulation response [5,142]. Once NMs cross the cell
membrane through existing pores, inducing new pores or mechanisms such as diffusion or
endocytosis, a series of similar reactions usually occur between NMs and organelles such
as the nucleus, mitochondria, or chloroplasts [143]. In the second phase, once the NMs are
internalized and transported through plant cells, the biotransformation of the NM core into
specific ions (e.g., Zn, Fe, Cu, Si) occurs. The ions will be available in the cytoplasm of the
cells and can fulfill specific roles in the metabolism of plants [144]. Several reports of NM
applications in strawberry plants can be found in Table 6, where greater interest has been
placed on the effects on vegetative growth, quality of fruits, bioactive compounds, and, to
a lesser extent, the concentration of minerals and organic acids in tissues. There is little
information regarding the biotic stresses and the postharvest life of the fruits.
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Table 6. Positive effects of NM applications on some growth or quality variables of strawberry crop.

Material/Form/Size Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Se-NPs/spherical/
10–45 nm Greenhouse, pots with substrate Foliar

10 and 20 mg L−1

Root and shot dry weight,
number and weight of fruits,

yield, chlorophyll
concentrations, POD, SOD.

[145]

ZnO NPs
25–50 nm Open field, soil conditions Foliar

7.5 × 10−3 M Number of flowers. [146]

ZnO NPs
<100 nm Open field, soil conditions Foliar

200, 400, and 600 µg g−1

Plant height, number of leaves,
leaf area, number of runners,

fruit size and yield.
[147]

ZnO NPs
NS Open field, soil conditions Foliar

50, 100, and 150 mg L−1
Plant height, number of leaves,

number of fruits and yield. [148]

Zn NPs
NS Greenhouse, soil conditions Foliar

10 and 20 mg L−1 Number, weight, and fruit yield. [149]
CeO2 NPs
2–50 nm Greenhouse, soil conditions Drench

300, 600, 1000, and 2000 mg L−1
Shoot and root biomass, root

surface area, SPAD. [150]

CeO2 NPs
2–50 nm Greenhouse, soil conditions 6, 20, 41, 70, and 115 mg L−1 Phenolics, Vit. C, soluble protein,

IAA, number of fruits. [151]

Fe NPs
NS In vitro

Growing medium
0.8 mg L−1

Shoot length, root dry weight,
relative water content. [152]

Fe NPs
NS In vitro

Growing medium
0.8 mg L−1

Branch number, root length,
plant weight. [153]

FeO NPs
NS Open field, soil conditions Foliar

50, 100, and 150 mg L−1
Plant height, number of leaves,

number of fruits and yield. [148]

Fe NPs
NS Greenhouse, soil conditions Foliar

20 and 40 mg L−1 Number, weight, and fruit yield. [149]

Ag NPs
<20 nm In vitro

Growing medium
0.2, 0.4, 0.6, 0.8, and 1 mg L−1

Number and height of shoots,
fresh and dry weight,

chlorophyll concentration,
number and length of roots.

[154]

Se-NPs/10–45 nm Greenhouse, soil conditions Foliar
10 and 100 µM

CAT, catechin, caffeic acid,
coumaric acid, salicylic acid. [155]

Se NPs
10–45 nm Greenhouse, pots with soil Foliar

25 mg L−1

Root fresh weight, chlorophyll,
GPX, number of leaves, water

efficiency use.
[156]

Ca5(PO4)3(OH) NPs
20–40 nm Open field, soil conditions Foliar

15, 30, 60, and 120 mg L−1
Fruit postharvest life, firmness,

Vit. C. [157]

SiO2 NPs
20–30 nm Greenhouse, soil conditions Mix with soil

0.75 and 1.5 g kg−1

Root fresh weight, Vit. C,
quercetin, proline, PAL, Ca

concentration.
[158]

SiO2 NPs
20–30 nm Greenhouse, pots with soil Foliar

125 mg L−1
Number of flowers,

anthocyanins, phenolics. [156]
SiO2 NPs

NS Greenhouse, pots with substrate Drench
50 and 100 mg L−1

Shoot and root biomass,
chlorophylls, fruit yield. [159]

SiO2 NPs
NS Greenhouse, pots with substrate Drench

2 mM

Resistance to salt stress through
improve membrane stability and

decrease H2O2.
[160]

SiO2 NPs
30–35 nm Shade house, pots with substrate Drench and Foliar

5, 10, and 15 mM

Shoot and root dry weight,
chlorophyll, number of flowers
and fruits, yield, fruit firmness.

[117]

Nanozeolite
NS Open field, soil conditions Mix with soil

5 g bed−1

Length of plant, number of
leaves, number and weight of

fruit and yield.
[161]

Se/SiO2 NPs
50–80 nm Greenhouse, pots with soil Foliar

50 and 100 mg L−1

Shot and root biomass,
chlorophyll, CAT, APX, GPX,

SOD, fruit size and yield.
[156]

Zn/Fe/Cu NPs
NS Open field, soil conditions Mix with soil + Foliar

5 mg plant−1 + 100 mg L−1

Length of plant, number of
leaves, Chlorophyll, Vit A,

number and weight of fruits,
yield.

[161]

ZnO-chitosan
50 nm Greenhouse, soil conditions Foliar

400, 800, and 1200 mg L−1
Number of leaves, number of

fruits, chlorophylls, N, Mg, Mn. [162]

3.8. Compost

The decomposition of organic matter forms composts with the help of soil microorgan-
isms. The primary sources of organic matter come from plant wastes or manure of animal
species used in livestock such as birds, cows, pigs, and horses [163]. In addition to the
conventional form of composting, it is possible to use worms to obtain a product known as
vermicompost [164]. Although some authors do not consider compost as a biostimulant [4],
the applications of these products to soil or any other culture medium have shown some of
the beneficial effects shown by other types of biostimulants [165]. Due to the limited study
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of this category as a biostimulant, the mechanisms of action are also unknown. However,
most of them are related to indirect mechanisms, such as the increase in the populations of
beneficial microorganisms, buffer for electrons and protons in the soil volume, increased
moisture retention, and increased fertility, among others [165,166]. The composts contain
a high concentration of humic substances that fulfill the roles previously explained (see
Section 3.1), in addition to having high amounts of beneficial fungi and bacteria with
biostimulant potential (see Section 4). Although the primary way of applying compost
is directly as a mixture with the soil or substrates, it is also possible to elaborate extracts
known as “compost tea”, which can be applied in a drench or foliar [167]. Composts from
various sources have been used at different levels and forms in strawberry cultivation
(Table 7). Most studies report beneficial effects on vegetative growth, yield, quality of
fruits, and the concentration of minerals in leaves and fruits. However, there is a lack
of information on variables such as photosynthesis, antioxidant compounds, postharvest
quality of fruits, and resistance of plants to pathogens.

Table 7. Beneficial effects of compost applications on some growth or quality variables of strawberry
crop.

Origin of Compost Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Agricultural waste Greenhouse
Soil conditions

Mix with soil
50% soil–50% compost

Plant dry weight, chlorophyll,
fruit weight, TSS, fructose,

glucose, sucrose, malic acid,
citric acid, yield.

[168]

Chicken manure High tunnel
Soil conditions

Mix with soil
66 g plant−1

Plant dry matter, fruit firmness,
TSS. [169]

Vermicompost
Chicken manure

Cattle manure

Open field
Soil conditions

Mix with soil
250 kg ha−1

Fruit weight, firmness, yield,
TSS, total sugars, Vit. C, N, P, K,

Ca, Fe, Zn, Mn, Cu.
[170]

Poultry manure Greenhouse, pots with soil 0.10 g kg−1 soil Indole Acetic Acid (IAA),
Isopentenyl adenosine (iPA). [66]

Ruminant manure Open field
Soil conditions 150 kg ha−1 Fruit yield. [171]

Cattle manure
(compost tea)

Open field
Soil conditions

Foliar
8:1 compost:water

1.3 L m−2

Fruit yield, resistance to
Botrytis cinerea. [172]

Vermicompost Greenhouse
Pots with soil

Mix with soil
200 g kg−1 soil

Leaf fresh weight, leaf area,
root length. [173]

Farmyard manure Open field
Soil conditions

Mix with soil
12.5 kg m−2

Fruit dry weight, firmness,
and yield. [174]

Chicken manure Greenhouse
Soil conditions

Mix with soil
6 and 12 ton ha−1

Plant height, stem thick,
fruit yield. [175]

Mixture of rose oil
processing wastes,

separated dairy manure,
poultry manure, and

wheat
straws

Greenhouse
Pots with substrate

Mix with substrate
12.5, 25, and 50% of total

substrate

Number of leaves, number of
roots, root length, stem

thickness, K, Zn.
[176]

Compost NS Greenhouse
Pots with soil

50% soil and 50%
compost

100% compost

Vit. C, GSH, phenolics,
anthocyanins. [168]

Wastes of taif rose petals
and red tea leaves Greenhouse, pots with soil Mix with soil

1.5 g kg−1 soil
Root fresh and dry weight,

leaf area. [177]

Vermicompost from
food and paper wastes High tunnel, soil conditions Mix with soil

5 and 10 ton ha−1
Number of runners and flowers,

fruit yield. [178]

Vermicompost Greenhouse, pots with soil 50% soil and 50%
vermicompost

Plant height, leaf area, number
of leaves, plant biomass, fruit

weight and yield.
[179]

Vermicompost from cow
dung and

vegetable waste
Open field, soil conditions Foliar

2 mL L−1
Leaf area, plant biomass, fruit
weight, firmness, TSS, yield. [180]

Vermicompost
Mushroom compost
Farmyard manure

Open field, soil conditions 170 kg ha−1 Number of flowers, yield. [181]

Farmyard manure
Vermicompost Open field, soil conditions 30 and 80 ton ha−1

Plant height, number of leaves,
leaf area, number of runners,

number, size, and yield of fruits,
TSS, Vit. C, phenolics.

[182]
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3.9. Biochar

Biochar, also called biocarbon or vegetable carbon, is a product obtained from trans-
forming organic matter with high temperatures and the absence of oxygen, a process
known as pyrolysis [183]. The composition and physicochemical characteristics vary de-
pending on the organic matter origin and the pyrolysis temperature. Biochar is a compound
with a porosity up to 124 m2 g−1 [184], rich in N, and with high concentrations of humic
substances [185]. Like compost, biochar is not commonly studied as a biostimulant; how-
ever, some of its effects on soil characteristics promote plant growth, development, and
quality [186]. Among the indirect mechanisms by which biochar could be considered
a biostimulant are its abilities to improve soil structure by increasing porosity that fa-
cilitates the movement of air, water, and nutrients in the soil [187]. In addition to the
afore-mentioned effects, biochar can increase soil pH, promote cation-exchange capacity,
and increase efficiency in using N, among others [166]. The application of biochar to the
soil favors root colonization and the activity of plant growth-promoting rhizobacteria
(PGPR) [188]. One of the main effects of biochar applications in strawberry cultivation
is the capacity to reduce the incidence of diseases in leaves and fruits. A study reported
that wood-biochar and greenhouse-waste biochar (mixed with soil at 1–3%) mediate the
systemic response of strawberry plants against Botrytis cinerea, Colletotrichum acutatum,
and Podosphaera apahanis, promoting the overexpression of defense genes such as FaPR1,
Faolp2, Falox, and FaWRKY1 [189]. On the other hand, a recent investigation reported that
biochar application mixed with peat substrate had a positive effect on the resistance of
strawberry fruits against Botrytis cinerea, which was attributed to changes in the microbial
community of the substrate [190]. Biochar application (1% in peat substrate) promotes
fresh and dry weight and a lower susceptibility to the fungal pathogen Botrytis cinerea on
both leaves and fruits of strawberry plants [191]. On the other hand, animal-bone biochar
(130 kg ha−1) and plant-based biochar (1 ton ha−1) improve the number of fruits and total
yield of strawberries grown in soil under open field conditions [192].

3.10. H2O2, NO, H2S, H2, CH4, and CO

Cell signalers play a key role in the biostimulant response of plants, as explained
in Section 2.2. In recent years, the exogenous application of these compounds has been
studied due to the positive effects observed in various plant species [193]. In some cases, it
is possible to directly apply the molecule of interest (such as H2O2); however, in the case of
gasotransmitters, precursor compounds must be used, such as sodium nitroprusside (SNP;
source of NO) and NaHS (source of H2S) [194]. All these compounds are applied in very
low doses since high concentrations could cause damage to plants. The primary responses
are related to the increase in the activity of antioxidant enzymes and the production of
nonenzymatic antioxidant compounds to maintain redox balance [195]. Some exogenous
applications of signalers have been reported in strawberry plants, with greater emphasis
given to H2O2, NO, and H2S and the response of enzymatic and nonenzymatic antioxidant
compounds, vegetative growth, and fruit quality (Table 8).

Table 8. Favorable effects of H2O2 and gasotransmitters on some growth or quality variables of
strawberry crop.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

H2O2

H2O2
Greenhouse

Hydroponic system (NFT)
Root dipping

1 M

Plant height, root length, leaf
number, leaf area, number of

adventious roots, plant biomass.
[196]

NO

Sodium nitroprusside
(SNP) as NO source Greenhouse, pots with substrate Foliar

50 and 75 µM
Phenolics, SOD, CAT, APX,

POD. [197]
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Table 8. Cont.

Product Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

NO

Sodium nitroprusside
(SNP) as NO source Greenhouse, pots with substrate Foliar

50 and 75 µM
Plant biomass, N, P, K, Ca, Mg,

Fe, Zn, Mn, Cu. [198]

Sodium nitroprusside
(SNP) as NO source Greenhouse, pots with substrate Foliar

0.1 mM
Shoot biomass, chlorophyll, Fe,

CAT, POD. [199]

Sodium nitroprusside
(SNP) as NO source Greenhouse, pots with substrate Foliar

75 µM Vit. C, anthocyanins, phenolics. [200]

Sodium nitroprusside
(SNP) as NO source Greenhouse, pots with substrate Foliar

50 and 100 µM
SOD, CAT, APX, GPX, Vit. C,

GSH. [201]

Sodium nitroprusside
(SNP) as NO source Greenhouse, pots with substrate Foliar

50 and 75 µM

Shoot and root dry weight, leaf
area, chlorophyll, number of
flowers, fruit size and weight,

Vit. C, anthocyanins, phenolics.

[202]

H2S

NaHS as H2S source Greenhouse, pots with substrate Foliar
0.2 mM

Plant biomass, chlorophyll, SOD,
CAT, POD, Zn, Ca, Mg. [203]

NaHS as H2S source Greenhouse, pots with substrate Root dipping
100 µM

Vit. C, GSH, DHA, heat shock
proteins and overexpression of

aquaporin-related genes.
[204]

NaHS as H2S source Greenhouse, pots with substrate
Root dipping

0.125, 0.250, 1.250, 2.500, 12.500,
25.000, and 37.500 mM

Length and dry weight of roots,
soluble sugars, SOD. [205]

NaHS as H2S source Greenhouse, pots with substrate 0.2 and 0.5 mM SPAD, chlorophyll fluorescence,
fruit yield, SOD, APX, GR. [206]

NaHS as H2S source Greenhouse, pots with substrate Root dipping
100 µM

Overexpression of genes such as
cAPX, CAT, MnSOD, or GR,

related with
ascorbate-glutathione

biosynthesis, transcription factor,
and salt overly

sensitive pathways.

[207]

4. Use of Biological Biostimulants in Strawberry Cropping

Biological biostimulants, also known as biopreparations or bioformulations, are prod-
ucts characterized as containing some living organisms, usually microorganisms such as
bacteria and fungi, as the main active ingredient [208]. In the group of bacteria, we found
plant growth-promoting rhizobacteria (PGPR) and endophytic bacteria, while in the group
of fungi, we found arbuscular mycorrhizal fungi (AMF) and fungi of the genus Trichoderma.
The main characteristics of each group, as well as its applications in strawberry cultivation,
are described below.

4.1. Beneficial Bacteria
4.1.1. PGPR

The group of plant growth-promoting rhizobacteria (PGPR) includes multiple species,
where the genera Bacillus, Pseudomonas, Azospirillum, Rhizobium, and Streptomyces stand
out [209]. In the market, it is possible to find commercial formulations with one or several
species of bacteria combined, where applications have shown positive effects on crop
growth and development [210]. The mechanisms of action of PGPR in plants can be
direct or indirect. Among the direct mechanisms are the production of phytohormones
such as auxins, indole acetic acid, gibberellins, and cytokinins, which regulate the growth
and development of plants [7]. Additionally, some species of PGPR can produce volatile
compounds that promote plant growth [211] in addition to increasing tolerance to various
types of stress through the induction of the production of antioxidant enzymes in plants,
modulation of membrane integrity, and accumulation of osmolytes [188]. In contrast,
indirect mechanisms are the biological fixation of N, solubilization of P and other elements
in soils, and production of metabolites, among others [212]. For products containing
soil-colonizing bacteria, the application forms must be carried out directly to the root
zone, either in drench, direct mixing with the soil or substrate, or root dipping, before
transplanting to the final place [211]. Several reports of PGPR applications in strawberry
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plants can be found in Table 9, where a wide diversity of agronomic variables, yield and
quality of fruits, antioxidant system, concentration of minerals, and, in some cases, variables
related to photosynthesis have been studied. However, studies related to biotic and abiotic
stresses and postharvest are necessary.

Table 9. Beneficial effects of PGPR and endophytic bacteria applications on some growth or quality
variables of strawberry crop.

PGPR Species Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Plant Growth-Promoting Rhizobacteria (PGPR)

Alcaligenes
faecalis,

Staphylococcus
arlettae,

S. simulans,
Agrobacterium rubi,
Pantoea agglomerans

Greenhouse, soil conditions
Root dipping

108 CFU mL−1
Leaf area, number and weight

of fruits, total yield. [213]

Bacillus cereus Growth chamber, pots with
substrate

Mix with substrate
106 CFU g−1 substrate

Leaf area, number, weight and
yield of fruits, sucrose

concentration.
[214]

Pseudomonas florescence,
Bacillus subtilis,

Azotobacter chroococcum
Open field, soil conditions

Root dipping
109 CFU mL−1

Plant height, number of leaves,
leaf area, number of runners,

chlorophylls, root fresh weight,
fruit number, size and yield.

[215]

Bacillus licheniformis,
B. subtilis,

B. sp. RG1,
B. sp. S1,
B. sp. S2

Open field, soil conditions
Root dipping + foliar

109 CFU ml−1

Plant height, leaf area, number
of runners, number of fruits,

yield, chlorophyll,
photosynthetic rate.

[216]

Bacillus subtilis,
B. atrophaeus,
B. spharicus,

Staphylococcus kloosii
Kocuria erythromyxa

Open field, soil conditions
Root dipping

108 CFU mL−1

Shoot and root dry weight,
chlorophyll, relative water

content, yield, N, P, K, Ca, Mg,
Fe, Mn, Zn, Cu.

[217]

Pseudomonas BA-8,
Bacillus OSU-142,

Bacillus M-3
Open field, soil conditions

Root dipping + foliar
109 CFU ml−1 Fruit yield, total sugars. [218]

Bacillus megaterium,
Bacillus spp.,

Paenibacillus polymyxa,
Bacillus simplex

Open field, soil conditions
Root dipping

109 CFU mL−1
Number and weight of fruits,

TSS, Vit. C, yield. [219]

Pseudomonas sp. Greenhouse, soil conditions NS
Plant height, fresh-dry weight,
number of runners, number of

fruits, yield.
[220]

Azotobacter chroococcum,
A.

vinelandi, Derxia sp.,
Bacillus megatherium, B.

lichenformis,
B. subtilis

Open field, soil conditions Drench
20–40 × 106 CFU mL−1 TSS, total sugars, TA, yield. [221]

Kocuria E43,
Alcaligenes 637Ca
Pseudomonas 53/6

Greenhouse, pots with soil
Root dipping

109 CFU mL−1

Fruit number, weight, and
yield, SPAD, stomatal

conductance, CAT, SOD, APX.
[222]

Azospirillum brasilense Open field, soil conditions
Root dipping

109 CFU mL−1
SPAD, photosynthesis, yield,

amino acids and organic acids. [223]

Pseudomonas BA-8,
Bacillus OSU-142,

Bacillus M-3
Open field, soil conditions

Root dipping
109 CFU mL−1 Fruit yield, P, Fe, Zn. [224]

B. methylotrophicus In vitro
Growing medium

104 CFU
Shoot and root fresh weight,

petiole length. [225]

Commercial formulation
of several PGPR Open field, soil conditions

Root dipping
109 CFU mL−1 CAT, POD, SOD, fruit yield. [226]

Azotobacter chroococcum,
Pseudomonas fluorescens Open field, soil conditions

Root dipping
3 × 107 CFU mL−1

Plant height, number of leaves,
leaf area, number of runners,

number, size, and yield of
fruits, TSS, Vit. C, phenolics

[182]
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Table 9. Cont.

PGPR Species Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Endophytic bacteria

B. velezensis Greenhouse, pots with substrate Drench
5 × 105 spores plant−1

Shoot and root fresh weight,
fruit yield. [227]

Arthrobacter agilis,
B. methylotrophicus

In vitro Growing medium
100 µL of bacterial suspension

% Seed germination, shoot
fresh weight. [228]

Greenhouse Root dipping
100 µL of bacterial suspension Fruit yield.

Azospirillum brasilense,
Burkholderia cepacian,
Enterobacter cloacae

Greenhouse, pots with soil
Root dipping

109 CFU mL−1
Root length and dry weight,

aerial dry weight. [229]

Azospirillum brasilense Growth chamber, pots with
substrate

Root dipping
106 CFU ml−1

Root length and dry weight,
shoot dry weight, total sugars

of root exudates.
[230]

B. amyloliquefaciens,
Paraburkholderia

fungorum
Open field, soil conditions

Root dipping
109 CFU mL−1

Root length, fresh and dry
weight, shoot dry weight, fruit

weight, anthocyanins,
carotenoids, flavonoids,
phenolics, antioxidant

capacity.

[98]

4.1.2. Endophytic Bacteria

Endophytic bacteria are characterized by colonizing the internal tissues of plants and
crossing the root epidermis to reach the vascular bundles, through which they can reach
the stems, leaves, flowers, and fruits [210]. Most endophytic species include Bacillus, Pseu-
domonas, Azospirillum, Rhizobium, and Streptomyces [209]. The mechanisms of action of this
group of microorganisms are like those mentioned in the section PGPR, to which are added:
the increase of cellulose, providing greater resistance to the attack of herbivores; reduction
of toxicity by heavy metals through extracellular precipitation, sequestration or biotransfor-
mation; and modifications in gene expression to increase defense by pathogens [231]. On
the other hand, one of the main characteristics of endophytic bacteria is the production of
siderophores, which function as chelating agents of Fe, promoting the assimilation of this
element by the roots [232]. Several reports of endophytic bacteria use in strawberry plants
can be found in Table 9; however, unlike the PGPR group, only effects have been reported
on variables related to vegetative growth and some antioxidant compounds.

4.2. Beneficial Fungi
4.2.1. Arbuscular Mycorrhizal Fungi (AMF)

Arbuscular mycorrhizal fungi (AMF) are different species of fungi characterized by
a symbiotic association with plant roots [233]. The main species of AMF are Rhizophagus
intraradices (formerly known as Glomus intraradices), Funneliformis mosseae (formerly known
as Glomus mosseae), and some species of the genus Gigaspora [234]. One of the main
characteristics that identify AMF is the ability to form an extension of up to 40 times
the root system of plants, exploring a greater volume of soil [233]. This functional root
surface expansion explains the main mechanisms of action by which AMF are considered
biostimulants, since they allow an increase in the absorption of water and nutrients, produce
P solubilizing compounds in the soil, alter the architecture of the root, produce antioxidant
compounds and induce signaling phytohormones such as ABA [59]. In addition, AMF
provide plants with greater resistance to abiotic stress—such as drought, salinity, nutritional
deficiencies, heavy metals, and changes in pH—due to the production of ascorbic acid,
phenolic compounds, flavonoids, and carotenoids when the roots perceive the stimulus
caused by AMF [234]. Several reports of AMF applications in strawberry plants can be
found in Table 10. Most of the studies focus on determining the mineral concentrations
in tissues, vegetative growth, and the antioxidant system of plants, with some related to
photosynthetic variables. However, in this category, reports on the effects of AMF on fruit
quality and postharvest life are lacking.
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Table 10. Positive effects of arbuscular mycorrhizal fungi and Trichoderma applications on some
growth or quality variables of strawberry crop.

Fungi Species Experimental Conditions Forms and Levels of
Application

Variables That
Increase Reference

Arbuscular Mycorrhizal Fungi (AMF)

R. intraradices Greenhouse, pots with substrate 0.5 g plant−1
CO2 assimilation, stomatal
conductance, relative water

content.
[235]

G. mosseae,
G. aggregatum Greenhouse, pots with substrate NS P concentration, free amino acids

concentration. [236]

G. mosseae Greenhouse, pots with soil 1 g plant−1 Dry weight of shoots, phenolics,
antioxidant activity, SOD. [237]

F. mosseae,
F. geosporus,

C. claroideum,
G. microagregatum, R.

irregularis

Greenhouse, pots with substrate 20 g plant−1 Fruit yield, root length. [238]

G. intraradices Greenhouse, pots with substrate 2 mL plant−1 from solution of
50 g L−1

K, Cu, phenolics, anthocyanins,
flavonoids. [239]

G. intraradices Open field, soil conditions 1 g plant−1 Root biomass, daughter plants
per mother plant. [240]

R. clarus Greenhouse, pots with substrate 60 g plant−1
Shoot and root biomass, relative

water content, net
photosynthesis.

[126]

F. mosseae,
F. geosporus Greenhouse, pots with substrate 1:10 inoculated substrate:

growing substrate mix
Shoot and root length and fresh

weight, SPAD, fruit weight. [241]

Mix of various
Glomus species Greenhouse, pots with substrate

100 mL of mycorrhizal
preparation plant−1 Anthocyanins concentration. [242]

G. fasciculatum,
G. etunicatum Greenhouse, pots with substrate 2.5 g plant−1 Shoot dry weight, P and K

concentration. [243]

G. irregularis Greenhouse, pots with substrate 80–100 spores plant−1 Length, volume, and dry weight
of roots. [244]

Cetraspora pellucida,
Claroideoglomus
etunicatum and

mycorrhizal community
Greenhouse, pots with substrate 10 g plant−1

Aerial biomass, root length and
biomass, anthocyanins,
flavonoids, phenolics.

[245]

Gigaspora
margarita Greenhouse, pots with soil 30 spores plant−1

Root biomass, Mg, Mn.
[246]G. clarum P, Mg, Ca, S, Fe, Cu, Zn.

Gigaspora rosea N, P, Mg, Ca, S, Fe, Cu, Mn Zn.
G. mosseae,

G. intraradices Greenhouse, pots with substrate 20 spores g−1 of substrate SPAD, number of leaves and
flowers, number of fruits. [247]

G. mosseae NS 10% of inoculated substrate
Plant height, leaf area, fresh and
dry weight of shoot and roots,

chlorophyll.
[248]

AMF NS Open field, soil conditions 20 g plant−1 Plant height, biomass, fruit
size, yield. [180]

Trichoderma

T. harzianum
T. virens Greenhouse, pots with soil 25 mL plant−1

(107 spores mL−1)

Root length and dry weight,
number of fruits, yield, Vit. C,

anthocyanins.
[249]

T. harzianum
T. viride Open field, soil conditions

Root dipping in fungi
preparation

(106 spores mL−1)
Root biomass, fruit yield. [250]

T. citrinoviride Greenhouse, pots with substrate
Root dipping in fungi

preparation
(2 × 106 CFU mL−1)

Plant dry weight, PSII efficiency. [251]

T. harzianum Greenhouse, pots with soil 50 mL plant−1

(9.90 × 106 CFU 100 mL−1)

Vegetative growth, number of
flowers, number, weight, and
yield of fruits, TSS, TA, Vit. C.

[252]

T. viride NS 10% of inoculated substrate
Plant height, leaf area, fresh and
dry weight of shoot and roots,

chlorophyll.
[248]

4.2.2. Trichoderma

Trichoderma is a genus of beneficial fungi for plants that comprise more than 200 species;
Trichoderma harzianum is the most studied [253]. These fungi are characterized by their usual
endophytic growth habit, penetrating through the roots of plants [254]. Therefore, plants
perceive the stimulus by the spores or mycelia of the fungus, obtaining a response similar
to the microorganisms described in the previous Sections 4.1.1, 4.1.2 and 4.2.1. Among the
primary mechanisms of action of Trichoderma is the modulation of hormonal signaling by
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ABA, ET, JA, and IAA, in addition to favoring the activity of MAPK cascades [253]. On
the other hand, inoculation with Trichoderma increases the assimilation of elements such
as P, Mg, Zn, Fe, and B [55]. There are also reports where the absorption and efficiency
in using N were increased [254]. On the other hand, Trichoderma can produce antioxidant
compounds such as glucosinolates and phytoalexins, which allow counteracting the attack
of other phytopathogenic microorganisms [255]. Additionally, some reports indicate that
Trichoderma increases the populations of some beneficial bacteria in soils [256]. Colonization
with Trichoderma also induces changes in the plant proteome, modifying the synthesis
of proteins involved in essential processes such as carbohydrate metabolism and photo-
synthesis, among others [253]. Several reports of Trichoderma inoculation in strawberry
plants can be found in Table 10. Although there are few reports on the application of this
microorganism in strawberry plants, research has covered aspects related to vegetative
growth, fruit quality, and photosynthetic variables. However, more research is needed
regarding the strawberry antioxidant system and tolerance to pathogens.

5. Use of Physical Biostimulants in Strawberry Cropping

This group includes supplementary applications of light (mainly through LEDs),
priming with extreme temperatures (high or low) and treatments with magnetism.

5.1. Biostimulation and Priming Using UV and Visible Light

Supplementation with artificial light, either visible or UV light, has been shown to
have positive effects on plant growth and development [257]. In the first instance, visi-
ble light supplementation, mainly within the photosynthetically active radiation range
(PAR: 400–700 nm), increases the photosynthetic activity of plants [258], resulting in more
significant dry matter gain and crop yields. However, another mechanism is the ability
to stimulate plants, induce morphological and anatomical changes, and regulate some
developmental processes, such as flowering [259]. Plants have specific receptors for differ-
ent wavelengths, including phytochromes (red/far red light, 600–750 nm), cryptochromes
(blue, 350–500 nm), phototropins, F-box-containing flavin-binding proteins (blue/UV-A,
320–500 nm), and UVR8 (UV-B, 280–320 nm) [260]. Once these receptors perceive a light
stimulus, signal transduction is carried out mainly through ROS [261] and hormonal sig-
nalers such as IAA, brassinosteroids, and ethylene [262,263]. Once TFs detect the signals,
the changes in gene expression are like those reported for other groups of biostimulants.
Some studies have shown the positive effects of different types of supplementary light
on strawberry cultivation (Table 11). Due to the nature of this biostimulant method, most
research has focused on studying some photosynthetic parameters (e.g., stomatal conduc-
tance, CO2 assimilation, photosynthetic rate), as well as vegetative growth and fruit quality.
Information on antioxidant compounds, pathogen resistance and postharvest life of fruits
is still scarce.

Table 11. Positive effects of UV and visible light supplementation on some growth or quality variables
of strawberry crop.

Light Source Experimental Conditions

Wavelength
(nm)/Photosynthetic Photon

Flux Density (PPFD)
(µmol m−2 s−1)

Variables That
Increase Reference

LED
Greenhouse, pots with substrate

450–550/400
Photosynthetic rate, leaf area, leaf
dry weight, fruit number, weight,

yield, TSS and firmness. [264]
Fluorescent
lamp (FL) 405–610/NS Photosynthetic rate, leaf area, leaf

dry weight.
Blue LED

Greenhouse, pots with substrate

447/335
Leaf area, number of leaves, number
of flowers, N, K, Ca, Fe, Mn, and Zn

concentration.
[257]

Red LED 666/375
White LED 494/330

FL 479/275
FL+UV 480/314
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Table 11. Cont.

Light Source Experimental Conditions

Wavelength
(nm)/Photosynthetic Photon

Flux Density (PPFD)
(µmol m−2 s−1)

Variables That
Increase Reference

Red:Blue
LED (8:2)

Greenhouse, pots with substrate

445–659/106–117

Number of leaves, crown diameter,
plant dry weight, number of flowers,

number, and weight of fruits, TSS,
Vit. C. [65]

Red:Blue
LED (5:5) 445–659/107–125 Crown diameter, plant dry weight,

TSS of fruits.
Red:Blue
LED (2:8) 445–659/105–121 Crown diameter, plant dry weight, K

concentration.
Blue LED

Greenhouse, pots with substrate
448/75 Fruit yield, glucose concentration.

[265]Red LED 661/75 Sucrose, citric acid, malic acid
concentration.

Blue + Red LED 634/75 Fruit yield, fructose, glucose

Red LED In vitro 660/45 Plant height, number of leaves,
root length. [266]

Blue LED Greenhouse, pots with substrate 470/190 Days to anthesis, fruit yield. [267]
Light with various
color temperatures

(3000, 4000, 5000, and
6500 K)

Growth chamber, pots with
substrate NS Leaf number and size, crown

diameter, dry weight of plant, SPAD. [268]

Red, Blue and
Red:Blue LED Greenhouse, pots with substrate 450–730/190 Fruit anthocyanins and

proanthocyanins. [269]

LED NS Greenhouse, pots with substrate 450–550/400

Less days to flowering, number of
flowers, dry biomass of plant,

number, weight, and yield of fruits,
TSS, firmness.

[270]

Red LED

Greenhouse, pots with substrate

660/200 Leaf fresh weight, fruit number
and size.

[271]Blue/Red 460–660/200 Leaf fresh weight, leaf area, SPAD,
fruit number and size, TSS.

White–Yellow 400–700/200 Leaf fresh weight, crown fresh
weight, SPAD, fruit number and size.

Red LED
Greenhouse, pots with substrate

660/200 CO2 assimilation rate, water use
efficiency, stomatal conductance,

transpiration.
[272]Blue/Red 460–660/200

White–Yellow 400–700/200

5.2. Biostimulation and Priming Using Heat Shock and Chill Priming

Plants have various mechanisms to respond to temperature changes in the air or
rhizosphere. This category of biostimulation consists of subjecting plants for a certain time
to high or low temperatures, without them becoming lethal, which triggers a response to
achieve acclimatization. Some of the thermo-sensors identified in plants are glutamate
receptor-like (GKR) and cyclic nucleotide-gated channels (CNGCs) [273]; however, plants
also use some of their photoreceptors, such as phytochromes and phototropins, to per-
ceive stimuli by temperature [274] and begin the transduction of signals, mainly through
signaling by Ca2+cyt, H2O2, and NO [275]. These signalers reach the heat shock tran-
scription factors (HSFs), which have been identified as at least 20 members, from which
the overexpression of the HSP90 and HSP70 genes occurs [276]. These genes produce
heat shock proteins (HSPs), which are proteins that reduce molecular damage caused by
temperature extremes [277]. In an experiment carried out in strawberry fruits subjected
to a temperature of 45 ◦C for 3.5 h, an increment was found in the activity of the enzymes
chitinase (CHI), β-1,3-glucanase, PAL, SOD, CAT, and APX, providing resistance against
the fungus B. cinerea [278]. In addition, Widiastuti et al. [279] performed root dipping of
strawberry seedlings in water at different temperatures (40, 45, and 50 ◦C) for 20 s, as
well as immersion of the basal leaf in water at 50 ◦C for 20 s. In both cases, they found
overexpression of the CHI2-1 gene, the precursor of the CHI enzyme. They also reported
an increase in the concentration of salicylic acid (SA) in leaves. All the above resulted
in a decrease in the incidence of the fungus Colletotrichum gloeosporioides, which causes
strawberry crown rots. In another work carried out by Brown et al. [280], strawberry roots
were placed in a water bath at 37 ◦C for 1 h, resulting in the overexpression of genes related
to the synthesis of heat shock proteins (HSP), such as HSP90 and HSP70, which would
mean a greater tolerance to heat shock stress in strawberry plants. Kesici et al. [281] placed



Plants 2022, 11, 3463 22 of 34

strawberry plants in growth chambers under different high-temperature treatments (35, 40,
45, and 50 ◦C) for 24 h and also found overexpression of the HSP90, HSP70, and small heat
shock protein (sHSPS) genes, seen as an increase in soluble protein in plants.

5.3. Magnetopriming

Magnetopriming consists of subjecting seeds or other plant organs to a magnetic
field for a specific time to produce changes in metabolism [282]. The mechanisms by
which magnetic fields act in plants are not yet well known. However, it is most likely
that they are related to changes in the electrical charges of cellular components, producing
reorganizations of the various structures [283]. Likewise, magnetopriming increases the
production of ROS such as H2O2 and O2

− [284], favoring signaling cascades in plants. On
the other hand, it has been reported that magnetism induces the production of enzymatic
and nonenzymatic antioxidant compounds, providing greater tolerance to different abiotic
stresses, such as saline stress [285]. Therefore, magnetopriming can be considered a form of
biostimulation since numerous works have reported positive effects on plants, such as more
significant vegetative growth, increased photosynthesis, and favoring germination, among
others [286]. Currently, there are no reports on the use of magnetism for the biostimulation
of strawberry plants.

As a general summary, Figure 3 presents the main ways of applying biostimulants in
strawberry plants, as well as the parameters of interest that are increased in this crop.
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plants. 

5.3. Magnetopriming 
Magnetopriming consists of subjecting seeds or other plant organs to a magnetic field 

for a specific time to produce changes in metabolism [282]. The mechanisms by which 
magnetic fields act in plants are not yet well known. However, it is most likely that they 
are related to changes in the electrical charges of cellular components, producing reorgan-
izations of the various structures [283]. Likewise, magnetopriming increases the produc-
tion of ROS such as H2O2 and O2- [284], favoring signaling cascades in plants. On the other 
hand, it has been reported that magnetism induces the production of enzymatic and non-
enzymatic antioxidant compounds, providing greater tolerance to different abiotic 
stresses, such as saline stress [285]. Therefore, magnetopriming can be considered a form 
of biostimulation since numerous works have reported positive effects on plants, such as 
more significant vegetative growth, increased photosynthesis, and favoring germination, 
among others [286]. Currently, there are no reports on the use of magnetism for the bi-
ostimulation of strawberry plants. 

As a general summary, Figure 3 presents the main ways of applying biostimulants in 
strawberry plants, as well as the parameters of interest that are increased in this crop. 
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6. Comments and Future Perspectives

The application of biostimulant products in strawberry cultivation has constantly
been evolving over the years. However, as seen in this review, for some of the categories
of biostimulants, there are still few reports on their effects on this crop, which can be
explained due to their more recent discovery or development, as is the case for the categories
of nanomaterials or magnetopriming. In contrast, biostimulants types such as humic
substances, protein hydrolysates, and composts have more reports in the literature, most of
them in the years prior to 2010. For beneficial microorganisms, this review presents reports
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since 2000. However, their biostimulant potential has been known for a long time and is still
a source of new information derived from research and field applications. As previously
mentioned, new categories of biostimulants such as nanomaterials, beneficial elements,
and physical methods (temperature, light, magnetism) have become very important in
recent years. Therefore, in addition to studying the positive effects on the growth and
development of plants, there is also interest in explaining the physiological, biochemical,
and metabolic mechanisms by which these biostimulants produce responses in plants. In
addition to the categories considered in this review, it is possible that, in coming years, new
definitions and classifications of biostimulants will emerge. Thus, the constant evaluation
of new physical, chemical, and biological agents is of utmost importance, not only to focus
on characteristics of agronomic interest, but also to pay greater interest to the mechanisms
of action of the biostimulants applied to plants; this in turn will allow us to develop new
techniques to increase the nutraceutical quality of strawberries, add to a higher fruit yield
and increase resistance to biotic and abiotic stress factors.

7. Conclusions

The reviewed reports indicate that the great variety of biostimulants and ways of apply-
ing them exert a beneficial effect on the plant’s agronomic, physiological, and biochemical
variables, with an equally favorable impact on the quality variables of the strawberry
fruit. Regarding the variables mentioned above, those related to vegetative growth and
fruit quality have received more significant interest. Nevertheless, it is necessary to study
in-depth responses in the antioxidant system of plants and some physiological variables,
such as photosynthesis, in addition to some studies referring to the postharvest quality of
strawberries. Although most categories of biostimulants have been studied for physiolog-
ical, biochemical, and molecular mechanisms, in some categories (e.g., gasotransmitters,
botanical extracts, compost, biochar, nanomaterials, and physical biostimulants), the plant
responses are poorly understood. As a result, there are great opportunities to conduct
research in different biostimulation areas that have not yet been sufficiently explored
in strawberries.
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