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Abstract: Traditional rice (Oryza sativa L.) production by flooding is a source of greenhouse gases
(GHG), especially methane. The high consumption of water, as well as the chemical and physi-
cal degradation caused by these traditional practices in rice soils, is promoting a decrease in rice
production in the Mediterranean area. The aim of this study was to monitor GHG emissions and
the net ecosystem carbon balance (NECB) from rice produced with sprinkler irrigation techniques
and also assess the impact of olive mill waste compost (C-OW) application and tillage on GHG
emissions and the NECB. A field experiment for irrigated rice production was implemented by
considering four different treatments: (1) tillage (T); (2) no tillage—direct seeding techniques (DS);
(3) application of C-OW followed by tillage (TC); and (4) application of C-OW followed by direct
seeding (DSC). The C-OW was only applied in the first year at a dose of 80 Mg ha−1. GHG emissions
were monitored over three years in these four treatments in order to estimate the direct (first year)
and residual (third year) effects of such practices. The application of C-OW caused an increase of 1.85
times the emission of CO2-C in the TC-DSC compared to the T-DS in the first year. It is noteworthy
that the TC treatment was the only one that maintained an emission of CO2-C that was 42% higher
than T in the third year. Regardless of the treatments and year of the study, negative values for
the cumulative CH4 were found, suggesting that under sprinkler irrigation, CH4 oxidation was the
dominant process. A decrease in N2O emissions was observed under direct seeding relative to the
tillage treatments, although without significant differences. Tillage resulted in an increase in the
global warming potential (GWP) of up to 31% with respect to direct seeding management in the third
year, as a consequence of the greater carbon oxidation caused by intensive tillage. DS presented a
positive NECB in the accumulation of C in the soil; therefore, it provided a greater ecological benefit
to the environment. Thus, under Mediterranean conditions, rice production through a sprinkler
irrigation system in combination with direct seeding techniques may be a sustainable alternative for
rice crops, reducing their GWP and resulting in a lower carbon footprint. However, the use of C-OW
as an organic amendment could increase the GHG emissions from rice fields irrigated by sprinklers,
especially under tillage conditions.
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1. Introduction

Today, rice (Oryza sativa L.) is a crop of enormous importance for feeding the world
population in permanent growth. Being the second most cultivated cereal in the world,
it is the main source of food for more than 50% of the world’s population [1]. In Europe,
rice production takes place mainly in Mediterranean basin countries, with 70% of the total
rice production attributed to Spain and Italy. In these countries, climate change has led to
a sharp decrease in rainfall [2,3], jeopardizing the survival of the traditional crop, which
is extremely important in environmental, economic and social terms. In fact, rice crops
are one of the crops with the highest water consumption, being able, particularly in hot
years, to reach values in the order of 35 000 m3 ha−1 [4]. It is therefore urgent to increase
the efficiencies of water use [5,6], either through alternating flooding systems or through
irrigation by sprinkling [7], and by either changing soil tillage systems or the use and
typology of production factors.

In Mediterranean ecosystems, rice production coexists with other agroforestry crops
typical of this region, namely olive groves. Thus, the olive oil extraction industry has a very
significant socio-economic impact. However, important amounts of wastes are generated
by this industry. In the particular case of two-phase continuous extraction, which is the
commonest process used, the amount of waste represents about 80% of the total weight
of fruit processed. Thus, from 1000 kg of olives, 800 kg of waste and 200 kg of oil are
produced. Therefore, it is urgent to provide an economically, technically, and environ-
mentally sustainable destination for this waste. This is a serious and emerging problem,
and in the 2021/2022 campaign, several olive oil production companies, both in Spain
and Portugal, had to stop working because they had no outlet for this residue. Olive oil
production residues are, however, highly phytotoxic, containing high amounts of phenolic
substances, lipids, and organic acids [8]. These characteristics make its application without
any previous treatment on agricultural soils undesirable [9], and it is even prohibited by
the legislation of several EU countries, namely Spain, Portugal, Italy, and Greece. On the
other hand, this residue is very rich in organic matter and has some nutrients of interest for
agricultural activity [8,10]. This product can be composted, with obvious benefits for agri-
cultural use in terms of composition, namely a much lower content of phenolic compounds
and a much more balanced C:N and C:P ratio [9,11–13]. The use of olive pomace compost
as organic fertilizers in agricultural activity has numerous advantages [9,13], including
increasing soil organic matter, which is a very scarce component in Mediterranean soils and
of enormous importance for the sustainability of agricultural systems [9,13,14]. The use of
this co-product of olive oil production as organic fertilizer in rice fields is an interesting
possibility from an economic, agronomic, and environmental point of view that empha-
sizes the principles of a circular economy, using the by-products of agricultural activity as
fertilizers in the same activity. However, it is necessary to carry out more studies that can
clarify the advantages/disadvantages of the use of this residue as an agricultural fertilizer.

In order to respond to the new challenges of rice production, namely greater environ-
mental sustainability, less available labor, and significantly reduced production costs [15,16],
new techniques of production have been implemented, moving from a traditional tillage
system to minimal tillage or direct seeding and using sprinkler irrigation or intermittent
flooding [17]. Direct sowing is a cheaper system, with a faster implantation of the crop,
less use of labor, a lower water consumption [18], a greater possibility of obtaining optimal
seeding densities [17], and lower greenhouse gas emissions [19]. However, some negative
aspects are sometimes pointed out for this technology, namely a greater number of weeds,
which are more difficult to control; less support for rice plants; and, consequently, a lower
production [20]. According to Tiefenbacher et al. [21], this shift should substantially reduce
crop water requirements, weed biota, greenhouse gas emissions, and soil organic-matter
turnover and improve nutrient relations and carbon sequestering in the soil.

Another concern regarding flooded rice crops is the huge production of greenhouse
gases, especially methane and nitrous oxides, emitting four times more GHG than wheat
or maize [22]. According to these authors, a normal rice crop is responsible for emissions in
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the order of 100 kg of CH4-C ha−1 season−1. Several strategies have been implemented
to respond to this serious environmental problem, namely by changing the irrigation
system, the mobilization system, the residue management, or even the fertilization man-
agement [22]. These changes in the production system have to be considered very carefully,
since a reduction in methane emissions, achieved by irrigating rice crops without perma-
nent flooding, is usually accompanied by an increase in nitrous oxide emissions [23,24].
Indeed, the application of organic fertilizers can have a significant effect on greenhouse
gas emissions [25]. There are several techniques that can lead to an increase in carbon
sequestration in the soil and thus reduce its presence in the atmosphere [26]. The first
technique, which aims to decrease the mineralization of organic matter, is the use of reduce
tillage or, even more efficiently, no tillage [27]. Another technique is the incorporation of
organic matter into the soil, increasing carbon sequestration in the form of special stable
organic residues [28]. However, the application of organic matter leads to an increase in
the CO2 emissions produced during the mineralization process, and close attention must
be paid to the balance between the amount of CO2 released and the amount of carbon
sequestered in the soil, so that this balance does not lead to an increase in greenhouse
gases in the atmosphere. This balance will obviously depend on the amount of compost
added to the soil, the type of compost, and soil management practices [29]. Regarding the
emission of nitrous oxides, the effect of applying organic compounds to the soil is not so
clear, depending on the type of compound and especially its C:N ratio [30]. Jeong et al. [31]
found that compost application can be a reasonable soil management strategy to reduce
the impact of GHG emissions and to increase crop productivity in rice cropping systems.

The objective of this study was to monitor GHG emissions and the net ecosystem
carbon balance (NECB) from rice produced with sprinkler irrigation and also assess the
impact of the application of olive mill waste compost (C-OW) and tillage on GHG emissions
and the NECB. Since these effects could be time-dependent, we considered measurements
of GHG emissions made in the first and the third years after the application of the C-
OW, corresponding to direct and residual impacts, respectively. Furthermore, since GHG
emissions depend on the biological properties of soils, the activity of different enzymes
was also studied to assess their effects on GHG emissions and GWP.

2. Materials and Methods
2.1. Site and Experiment Description

A field experiment was designed in the irrigated area of the Guadiana River, in the
southwestern area of Spain (Lat: 38◦55′58.14” N, Long: 6◦57′13.42” O; Datum ETRS89).
The location described above is an area traditionally used for growing rice under flooding
systems, with an age of 11 years. According to the classification reported in [32], this
area has a subtropical Mediterranean climate, and the mean values of rainfall and air
temperature registered at field locations during the rice growing period in 2015–2017 are
presented in Figure 1. This study was carried out between the 2015 and 2017 rice harvests,
and crop and soil monitoring were performed between May and October each year. The
rice fields began to be irrigated in the first days of May and the sprinkler irrigation ended
in mid-September when the rice crop finished the days of the cycle with the full maturity
of the plant.

A total of 3256 m2 of soil surface was used; each plot had an area of 10× 18 m (180 m2),
and each plot was separated from the remaining plots by a corridor of almost 2 m. Alperujo
compost (C-OW) obtained from the Los Pedroches olive cooperative in Cordoba, Spain
was used. The main C-OW characteristics were as follows: total organic carbon, 382 g kg−1;
total nitrogen, 21.7 g kg−1; pH, 7.71; electrical conductivity, 2.32 ds m−1; and C:N ratio, 17.6.
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Figure 1. Mean rainfall and air temperature pattern registered at field locations during the rice
growing period in 2015–2017. DAS: days after seeding. (-) maximum temperature air, (-) medium
temperature air and (-) rainfall.

2.2. Treatments

The treatments considered here were:
(1) With tillage (T);
(2) No tillage—direct seeding techniques (DS);
(3) Application of C-OW followed by tillage (TC);
(4) Application of C-OW followed by direct seeding (DSC).
An amount of 80 Mg ha−1 of C-OW was applied at the beginning of the study, in the

month of April of the year 2015; it was incorporated to a depth of 15–20 cm using a harrow
of discs.

Irrigation was applied to the rice through sprinklers, adding a total of each year
of 10803 m3 ha−1, 8625 m3 ha−1, and 10309 m3 ha−1 for the years 2015, 2016, and 2017,
respectively. The variety of rice used was Gladio, which belongs to the subspecies Indica;
the rice was sown at a dose of 160 kg ha−1 with a Semeato TDNG 320 sowing machine.

2.3. Crop Management

The preparation of the land prior to sowing was carried out only in the T and TC
treatments by tillage with a cultivator to a depth of about 15–20 cm, followed by the
application of the seed to the ground. The sowing period coincided within the range of
the first 5 days of May of each year [33]. Days before sowing each year, a complex bottom
fertilizer was applied at a dose of 49.5 kg N ha−1, 99 kg P2O5 ha−1, and 148.5 kg K2O ha−1

(Fertiberia complex fertilizer) in the most important periods of crop development. Two top
dressing fertilizations were performed, with urea applied at a rate of 80.5 kg of N ha−1 at
each application.

2.4. Soil Analysis and GHG Sampling

The samples to determine the physical–chemical properties of the soil were taken
at a depth of 0–20 cm (Table S1), of which the total organic carbon (TOC) variable was
measured by the wet oxidation method, with potassium dichromate and a subsequent
evaluation of excess ferrous ammonium sulfate [34]. The water-soluble organic carbon
(WSOC) of the soil was determined by extraction with distilled water in a proportion of
1/100 (p/v), and then a partial oxidation of the carbon was carried out with 1N potassium
dichromate in a sulfuric acid medium followed by quantification using spectrophotometry
at = 590 nm [35]. Measurements of the pH, FA, and HA content of the soil were also carried
out, as described by Sims et al. [35]. N (Kjeldahl) was also measured as described by
Sánchez-Llerena et al. [4].

The enzymatic properties were obtained on soil samples collected at a depth of 0–10 cm
(Table S2). For the dehydrogenase (DH) activity, 1 g of soil was incubated for 20 h at 20 ◦C in
the dark with 0.20 mL of 0.4% 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium
chloride (INT) as the substrate. The β-Glucosidase (GL) activity was determined by



Plants 2022, 11, 3454 5 of 17

incubating 1 g of soil with 4 mL of 25 mM 4-nitrophenyl-β-d-glucopyranoside in 0.1 M
modified universal buffer (MUB) with a pH of 6.0. To assay the urease (UR) activity, 2 mL
of 0.1 M phosphate buffer with a pH of 7.0 and 0.50 mL of 1.07 M urea were added to 0.50 g
of soil and incubated for 1.5 h at 30 ◦C [36].

Static polyethylene chambers were used to assess the greenhouse gas emissions. At
the time of sampling, the chambers were closed and a 20 mL air sample was taken from
the headspace air inside the chamber at 0 and 30 min after closure. The air samples were
stored in 30 mL airtight glass vials and were analyzed to quantify the concentration of
nitrous oxide, methane, and carbon dioxide using the Agilent 5973 mass detector. All the
quantification processes are described by Fangueiro et al. [24].

2.5. Net Carbon Balance in Aerobic Environments of Rice (NECB)

To estimate the SOC stock change under different management systems of soil, the
NECB was calculated using the difference between the C input and output [37,38].

NECB = ∑ input (NPP + fertilizer + rice straw) −∑ output (harvest C removal + respired C loss)

The C input sources included the net primary production (NPP) of rice, where the
NPP means the total C fixation by plant biomass through photosynthesis, fertilizer, and the
applied C-OW. The harvest removal and the respired C losses were considered as C output
sources. In two different treatments, the amendment C-OW input was calculated using
the compost application amount and its associated C content. The fertilizer C input was
calculated using the C content of nitrogen (0.200) contributed by urea complex fertilizer. The
respired C loss refers to heterotrophic respiration, which comes from SOC mineralization
via CO2 and CH4 emissions from soils. The gas fluxes were investigated using the static
chamber method, which was described above.

The NPP of rice was calculated by integrating the C uptake of each biomass part [39].

NPP (kg C ha−1) = NPPgrain + NPPstraw + NPProot + NPPlitter + NPPrhizodeposit

The NPP of the aboveground biomass was calculated by multiplying each biomass
yield and its C content at harvesting time. The NPP of the root biomass was estimated
as 10% of the NPP of the aboveground biomass [40]. The NPP of litter was assumed to
account for 5% of the total biomass (aboveground and belowground biomass) NPP [41].
The NPP of the rhizodeposit was assumed to be 15% of the total biomass NPP [42]. The C
input from the C-OW addition was calculated by multiplying the applied C-OW weight
and the total C content.

2.6. Estimation of Global Warming Potential, Crop Yield, and GHG Intensity

Just before starting to collect the gas samples, the outside and inside temperature of
the static chambers was recorded.

Fluxes of N2O, CO2, and CH4 (F, m3 m−3 min−1) were calculated as follows:

F = (Ct30 − Ct0)/30 (1)

where C (m3 m−3) is the gas concentration at time t (0–30 min).
The emission rates of the GHG´s (CH4, CO2, and N2O) (RE, g C or N ha−1 day−1) for

each sample were calculated using the following Equation (2). The cumulative emissions
were expressed in kg of carbon and nitrogen (i.e., CO2-C, CH4-C, and N2O-N):

ER = F ×M/V × (273 + T/273) × h × k 10000 (2)

where F is the gas emission flux calculated above (ppm min−1), M is the gas molecular
weight (44 g mol−1 for CO2 or N2O and 16 g mol−1 for CH4), V is the volume of an ideal
gas (0.022 m3 mol−1), T is the temperature during the sampling period (in ◦C), h is the
height of the chamber (m), and k is the time corrected for a 1-day duration (1440 min).
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To check the linearity of the increase in the gas concentration inside the chambers,
air samples inside the chambers were taken at 0, 10, 20, 30, 40, 50, and 60 min [37] at
the beginning of the experiment. This methodology was carried out in each treatment.
Observing the results obtained, a final time of 30 min closure was chosen for all samples.

The global warming potential (GWP) was calculated based on Equation (3) [43], as
follows [44]:

GWP = con CO2 + con CH4 × 28 + con N2O × 265 (3)

where con is the concentration of each gas (CO2, CH4, and N2O) analyzed throughout the
experiment (Mg CO2 eq ha−1).

The yield-scaled GHG emission (GWPr) (kg CO2 eq kg−1)) was calculated using the
GWP and the rice yields reported by Peña et al. [33].

GWPr =
GWP

riceyield
(4)

2.7. Statistical Analysis

The results were analyzed by analysis of variance (a two-way ANOVA) with repeated
measures on the “treatment” factor and the “year” factor for the GHG, GWP, and GWPr
emission data. IBM SPSS statistics software, package version 25.0, was used. All pairwise
multiple comparisons were performed using the Duncan test. The Pearson correlation coef-
ficient was used to study possible correlations between different parameters. Differences
were considered statistically significant at a p-value of less than 0.05.

3. Results and Discussion
3.1. Emissions Rates of CO2-C and CH4-C

The emissions of CO2 and CH4 from the soil are important fluxes of C in the ecosystem
and can represent 60 to 90% of the total ecosystem respiration [45]. The Table 1 shows the
cumulative emissions of CO2-C, CH4-C, and N2O-N (kg ha−1) obtained with the different
treatments considered here throughout the rice cycle and during the three years of the
study.

In treatments DS and T (with no compost amendment), CO2-C emission rates of 3703
and 3855 kg ha−1, respectively, were obtained during the first year. These rates are higher
than those reported by Lee et al. [46] from 2355 to 3246 kg C ha−1 in the first year of a
study where they considered similar treatments. Nevertheless, Fangueiro et al. [24], in a
study with tillage management and sprinkler irrigation performed in the same region as
the present one, observed accumulated CO2-C emissions of 3103 kg C ha−1, in the same
range of values as those obtained here.

In the first year of the study, the application of C-OW caused an increase in the net
CO2 emissions of DSC and TC, by 1.57 times higher in DSC compared to DS and 2.13 times
higher in TC versus T. In tilled management (T and TC), there was a significant increase
in CO2 emissions (Table 1), probably due to the release of most of the C applied with the
compost as well as a potential priming effect induced by the compost, which stimulated the
release of soil-derived carbon [47]; however, CO2-C emissions accounted for 17.8% in tilled
management for the first year and 15.6% in direct seeding management of the total C input
on the ground (Table 2). The increase in the mineralization of the original organic matter
of the soil (positive priming effect) was evidenced by an increasing microbial activity and
respiration, resulting in an increase in CO2 emissions. The less intensive tillage used in
the conservation agriculture management (DSC) was a key factor in the reduction of CO2
emissions, since DSC led to 2388 kg CO2-C ha−1 fewer net emission compared to the TC
treatment in the first year following compost application. Lu et al. [48] also concluded that
the practice of conservation agriculture inhibited CO2 emissions, which was due to the
solidification of carbon with the increase in soil aggregation.
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Table 1. Effect of the different management systems on the cumulative emissions of CO2-C, CH4-C,
and N2O-N (kg ha−1) during the rice cultivation cycle.

CO2-C
(kg ha−1)

CH4-C
(kg ha−1)

N2O-N
(kg ha−1) GWP GWPr

2015
DS 3703 aA −0.270 aB 15.3 aB 19.9 aB 2.27 aA
DSC 5832 aB 1.05 aB 17.1 aB 28.5 bA 3.22 bA
T 3855 aA −4.41 aA 19.5 aA 22.1 abA 2.27 aA
TC 8220 bA −2.50 aA 19.4 aA 38.1 cA 4.30 cA

2016
DS 3222 aA −10.8 aA 9.29 aA 15.3 aA 2.31 aA
DSC 5391 abB −15.5 aA 12.3 abA 24.3 abA 5.34 bB
T 4491 aA −10.3 aA 18.3 abA 23.7 abA 4.50 abC
TC 6892 bA −7.29 aA 19.9 bA 33.3 bA 5.80 bA

2017
DS 3153 aA −3.45 abB 20.6 aC 20.0 aB 2.74 aA
DSC 3765 aA −8.46 aAB 22.2 aC 22.7 aA 3.42 abA
T 3639 aA −5.79 abA 28.0 aB 24.8 aA 3.18 abB
TC 5182 bA −1.61 bA 29.3 aA 31.1 bA 3.63 bA
Y 8.30 ** 6.44 ** 25.7 *** 3.66 * 17.9 ***
T 14.3 *** NS NS 13.2 ** 8.45 **
Y x T NS NS NS NS 3.35 *

Rice cultivated by: DS, direct seeding; DSC, direct seeding compost; T, tillage; and TC, tillage compost. GWP:
global warming potential; GWPr: global warming potential yield. ANOVA factors are: Y, year; T, treatment; and Y
x T, interaction of year * treatment. F-values indicate the significance levels: * p < 0.05; ** p < 0.01; *** p < 0.001; and
NS, not significant. Different letters indicate differences (p < 0.05) between treatments in the same year (lower-case
letters) and between years within the same treatment (upper-case letters).

Table 2. Effect of rice grain productivity and net carbon balance in aerobic environments of rice on
soils amended with composted olive mill wastes during investigation period.

Year 1st Year 3rd Year

Treatments DS DSC T TC DS DSC T TC

C input (kg C ha−1) 19020 a 49578 b 20435 a 49167 b 15683 a 14532 a 16463 a 18399 a
NPP 18988 a 18986 a 20403 a 18575 a 15651 a 14500 a 16431 a 18367 b
Grain 8785 a 8855 a 9699 a 8776 a 7308 ab 6782 a 7698 ab 8581 b
Straw 6191 a 6120 a 6394 a 5874 a 5037 a 4655 a 5262 a 5906 a
Root 749 a 749 a 805 a 733 a 617 a 572 a 648 a 724 a
Litter 786 a 786 a 845 a 769 a 648 ab 600 a 680 ab 761 b
Rhizodeposit 2477 a 2476 a 2661 a 2423 a 2041 ab 1891 a 2143 ab 2396 b
Fertilizer (urea) 32 32 32 32 32 32 32 32
C-OW 0 30,560 0 30560 0 0 0 0
C output (kg C
ha−1) 18679 a 20808 a 19944 a 22868 a 15494 a 15194 a 16593 a 19667 a

Harvest removal 14976 14975 16093 14650 12345 11437 12960 14487
CO2-C 3703 a 5832 a 3856 a 8221 b 3153 a 3765 a 3639 a 5182 b
CH4-C −0.270 a 1.05 a −4.41 a −2.50 a −3.45 ab −8.46 a −5.79 ab −1.61 b
NECB 341 28,770 491 26298 189 −661 −130 −1268

Rice cultivated by: DS, direct seeding; DSC, direct seeding compost; T, tillage; and TC, tillage compost. ANOVA
factors is: T, treatment. Different letters indicate differences (p < 0.05) between treatments in the same year
(lower-case letters).

No significant differences were observed in terms of the CO2 emissions between the
first and last years of the experiment for the two unamended treatments (DS and T) (Table 1).
Regarding the residual effect of the C-OW in the last year of study, the management
provided by this amendment during the first year reduced the CO2-C emissions by 54 and
58% for DSC and TC, respectively; however, DSC led to lower emissions of 1417 kg ha−1 of
CO2-C compared to TC management. This decrease is in agreement with those reported
by other authors, such as Liu et al. [49], who explained that zero tillage, compared to
traditional tillage, improved soil aggregation and the soil organic carbon concentrations
associated with aggregates with less disturbance and a higher crop residue input, which
promoted carbon solidification due to lower microbial activity in the soil. In the present
study, the values obtained for the microbial activity in the soil confirmed such a hypothesis,
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specifically for the DH (Table S2), in which a significant reduction in the activity of 73%
was observed for 2017 compared to 2015 in the DSC treatment. However, the accumulated
emissions by the TC treatment in 2017 presented values of up to 5182 kg ha−1 CO2-C,
and this emission rate could be attributed to the availability of the substrate and the
improvement in microbial activity, since it was obtained in the residual year. An increase
in the GL of 9.56 times with respect to the GL of T (Table S2) could be the reason for
a consequent increase in CO2 emissions under conventional tillage [50]. Table 1 shows
the values of the cumulated CH4-C emissions obtained in each treatment in each of the
three years considered here. Several chemical, physical, and biological factors regulate
the production and oxidation of CH4 in rice soils [51]. Regardless of the management
system used and the application or not of C-OW, it was observed that there were negative
cumulative emission rates for the years 2016 and 2017. Average values of −5.95 kg of
CH4-C ha−1 were obtained for all the years and management types of the study (Table 1).
Therefore, under aerobic irrigation conditions, it can be concluded that the soil serves as a
sink for CH4, because the balance between CH4 production by methanogen microorganisms
and the consumption by methanotrophs is negative [52]. Similar results were found by
Kreye et al. [53], who also obtained negative emission rates, showing the sink effect in
aerobic rice systems. However, our management with aerobic irrigation caused a lower
cumulative emission than traditional anaerobic rice management in studies carried out
in the same area and during the same dates. Fernández-Rodríguez et al. [54] obtained
cumulated CH4-C emission values that were 54 times higher than those shown in our
study with aerobic irrigation conditions. The drying period inhibits CH4 production and
leads to an increase in the O2 concentration in the soil due to the shorter duration of the
anaerobic environment [55]. Under aerobic irrigation, CH4 emissions are reduced by up
to 99% compared to anaerobic irrigation systems; therefore, the type of irrigation is a
crucial factor in the emissions of this gas [24]. Similarly, other authors have stated that
the intermittent irrigation system (wetting–drying) significantly reduces CH4 emissions
in rice cultivation [56]. García-Marcos et al. [57] also demonstrated the sink capacity in
terms of CH4 emissions, reporting average values of −0.048 kg of CH4 between tillage and
non-tillage handling in the Triticale (x Triticosecale).

3.2. Emissions Rates of N2O-N

There are two processes that promote the production of N2O emissions: nitrification
and denitrification. Table 1 shows the values of cumulated N2O emissions for the different
treatments studied in the three different years. In the first year of the study (2015), no
significant differences were observed between the crop management treatments (DS and
T), with an average value of 17.3 kg of N2O-N ha−1. This value is much higher than the
one of 3.91 kg of N2O-N ha−1 reported by Fernández-Rodríguez et al. [54] in a study with
traditional flooded rice. It can then be concluded that the cultivation of rice under aerobic
irrigation systems increases the emission of N2O compared to anaerobic systems [58,59].
The productions of N2O increase due to the saturation of moisture soil environs. Soil
moisture variations with subsequent moist and dry periods enhance the production of
N2O [60]. This occurs due to an increase in microbial functioning in humid environments.
In our study, T values that were 1.86 times higher than those shown by other authors
were obtained for rice flooding conditions (Table S2) [54]; therefore, microbial activity is
inhibited under very high humidity levels. Soil humidity and temperature, as well as the
application of nitrogenous fertilizers, are the main drivers of N2O emissions in soil [47,61].
Other authors [62] obtained values near 17.8 kg of N2O-N ha−1, similar to those obtained
here (16.1 kg of N2O-N ha−1). In aerobic soils with nitrogen fertilizer applications, the N2O
rate may be favored with an increase in nitrogen fertilization application [63]. However,
the use of high contributions of nitrogenous fertilizers in areas of intensive agriculture to
produce higher yields is very normalized [64]. Regarding the values shown in Table 1 for
the year 2016, a significant decrease in N2O emissions was observed for the DS and DSC
managements of 64% and 39%, respectively, compared to the year 2015, while in the tilled
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management groups, there was no significant difference with respect to the values of the
initial year. In the treatments with conservation agriculture, decreases in the peaks caused
by the background nitrogen fertilization at the beginning of the crop cycle were observed.
As a result, a lower concentration of N2O-N accumulated throughout the rice cycle, which
may have been a negative effect of the high rainfall that occurred in the first months of
the crop cycle (May and June) and which caused a drop in the temperatures compared
to the same months in 2015 and 2017, slowing down and delaying the nitrification and
denitrification processes. Other authors [65,66] have shown that the emissions of N2O
depend largely on the availability of oxygen and on the temperature in the soil. As Table 1
shows, in the third year of the study, a significant and generalized increase in N2O emissions
was observed for all management groups, and even more so, if possible, a greater increase
was observed in the management groups with C-OW, DSC, and TC, with respect to their
counterparts without amendment. The increase in N2O emissions in 2017 offered higher
values for non-till management (DS and DSC) and tilled management (T and TC) of up to
1.94 and 1.49 times, respectively, compared to 2016. Higher temperatures were recorded
in 2017 relative to 2016 in the period where the bottom and cover fertilizers were applied
(May, June, and July). Hasanah et al. [67] observed in experimental fields that the highest
N2O emission rates occurred in the 32.6 ◦C to 33.8 ◦C range of temperatures, and values
very close to the average of 31.5 ◦C were obtained in our field experiment in 2017.

In the last year of the experiment, no significant differences were observed between
all the treatments, although a general increase in N2O emissions was observed in the
tilled treatments (T and TC), as much as 1.36 times higher than the accumulated N2O-
N in T compared to DS, and a 1.32-times higher N2O-N was observed TC versus DSC.
Conventional tillage disrupts the soil structure, increases the temperature, and oxidizes
the soil organic matter, which can induce N2O emissions from the soil as compared to no
tillage [50]. In line with our results, several studies have reported the importance of the
mineral nitrogen dosage combined with different tillage methods on N2O emissions [68,69].
As a result, the dominance of soil mineralization and amendments with a low C:N ratio
(< 30) can influence the availability of “immobilized” the N that is ready to be absorbed by
plants or microbes. The existence of organic amendments (such as C-OW) in a high C:N
soil surface can enhance the “lock-in” of useful N for bacterial availability, thus reducing
denitrification reactions and the carbon dioxide and N2O emissions [70]. The WSOC of
the soil is used as a labile C resource for microbial growth, which causes a higher rate of
N2O-N emissions and which affects the representation of this gas [49]. Li et al. [71] have
already shown slightly higher values of soil temperature with tillage management versus
non-tillage management, and have also obtained positive correlations in terms of the soil
temperature and N2O emissions.

3.3. Net Carbon Balance in Aerobic Environments of Rice (NECB)

The carbon content of a soil is important in Mediterranean systems based on intensive
cultivation, which, if not addressed, leads to notable losses of the soil organic matter
content, especially in arid and semi-arid areas where soils are often already very poor in
organic matter content [72]. Table 2 shows the values of the NECB obtained at the end
of the experiment. The NPP is defined by the quantity of photosynthates that are not
used for respiration, and are therefore available for other processes; the values include a
75–80% contribution of the aboveground biomass of the rice crop, while the underground
biomass represents 20–25%. In the first year of the experiment, the NPP value did not
offer significant differences between the four treatments (DS, DSC, T, and TC), showing an
average value of 19,238 kg of C ha−1. Similarly, Xia et al. [73] obtained 19,619 kg of C ha−1

with an application of 240–300 kg of N ha−1. Good agricultural management is essential
to increase biomass productivity, thus increasing the SOC content in farmland as well as
improving crop yields to strengthen food security [74]. The NECB was positive for all
treatments in the first year, which indicates a higher carbon content in the soil at the end of
the rice campaign. Treatments receiving C-OW obtained an average of 27,534 kg of C ha−1
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in the first year; however, the DS and T management groups obtained an average of 416 kg
of C ha−1. This increase in DSC and TC management was due to the incorporation of C-OW,
which represented an amount of 30,560 kg of C ha−1. The application of the C-OW had the
objective of mitigate the three years of lack of organic matter in direct sowing management
and increasing water retention in the soil. Studies carried out by López-Piñeiro et al. [75]
used a C-OW amendment with a total organic carbon (TOC) content of 383 g kg−1, similar
to the TOC of our C-OW amendment (382 g kg−1), added to intensively cultivated soils. In
addition, in studies similar to ours, authors such as Jeong et al. [31] used composted cattle
manure with TOC values of 359 g kg−1 in an experiment where they applied 2 Mg ha−1,
and obtained results for the NPP of 8489 kg of C ha−1. In the first year (direct effect), the
entry of C into the treatments by the C-OW resulted in an increase of 550 kg of C in each
repetition of the amended treatments (180 m2).

The managements modified with C-OW, DSC, and TC (Table 2) in the year of the
direct effect obtained higher values than the DS and T administrations for the C output,
with values of 11% and 15%, respectively. Lee et al. [46] also obtained a significant increase
of 30% in the C outputs due to the application of straw in the first year, with respect to the
treatments where no straw was applied. This was mainly due to the contribution of carbon
from the C-OW, but this effect caused an increase in the CO2-C emissions of the DSC and
TC treatments compared to their DS and T counterparts, with an increase in emissions of
57% and 113%, respectively, and with a significant difference in the management of TC
compared to the management of T, which could be due to a greater availability of carbon
from the microbial biomass, carbohydrates, and organic acids [76]. The application of
tillage with C-OW in the soil for TC management could explain the significant increase
found in the C outputs of 10% (Table 2), with respect to DSC management. This could be
due to the fact that C outputs from the soil are generated by heterotrophic respiration by
microorganisms, autotrophic emissions by the roots, and methanogenic bacteria, in which
the microorganisms use substrate sources such as carbon, which is more available due to
the incorporation caused by the tillage [77].

In the third year (Table 2), the residual effect showed us an average C input value
for all treatments of 16,269 Kg of C ha−1, but no significant differences were observed
between the different treatments, although there was a slight rise for the TC management
of 1.18 times above the mean of the other managements (DS, DSC, and T). The mean values
of the residual year of entry of C were below those obtained in the first year (direct effect);
this was due to the fact that the application of C-OW was only incorporated in the first
year; therefore, it increased the mean C input values obtained in all treatments, and more
specifically, in the treatments with amendment (DSC and TC).

The outputs of C, in the form of CO2-C, showed average values of 3396 kg of C ha−1,
in the original DS and T managements. However, the residual effect values in the TC
treatment were 1.42 times higher than in its T counterpart, and were also 1.38 times higher
than in the DSC treatment. These results could explain how in the third year, the effect of
no tillage in rice cultivation caused a lower C output in the form of CO2-C [77]. In addition,
the application of C-OW helped to increase the values of the C output compared to not
tilling with C-OW.

During the last year, the NECB showed positive values in the DS treatment (Table 2),
indicating that a positive result was produced in the accumulations of C in the management
group, resulting in the storage of up to 189 kg of C ha−1. The T management, although it
did not obtain a significant difference, showed negative values (−130 kg of C ha−1), which
turned out to be more of an emitter of C to the environment than an accumulator of C in
the soil, as demonstrated by Thapa et al. [78] obtaining 53% more accumulation of C ha−1

in non-tillage soils compared to soils tilled in strips. The amended DSC and TC treatments
had NECB values of −661 and −1268 kg of C ha−1, respectively, which could increase the
enzyme activity of the soils [33]. This respiration was promoted by the application of C-OW
OW in the first year of the experiment, demonstrating that a high soil and air temperature
shows a quadratic response with the outputs of C ha−1 [78].
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3.4. Global Warming Potential (GWP) and GWP Yield (GWPr)

The effect of the application of organic matter (C-OW) combined with the use of direct
sowing and traditional tillage on the GWP was determined. For the year 2015, Table 1
indicates a range of values between 19.9 and 38.1 Mg CO2 eq ha−1. These results are
similar to those obtained in other experimental fields, where spring cereals were grown
with differences in mineral fertilizer techniques and organic fertilizers and the researchers
obtained variations from 25.6 to 33.8 Mg CO2 ha−1 [79]. It should be noted that in our
study, the chemical fertilizer was applied to all the treatments. The soils where C-OW
(DS and T) were not applied obtained average values of 21 Mg CO2 eq ha−1, without
showing a significant difference between them; however, a very pronounced increase was
observed in the management of TC with respect to its counterpart T, with the GWP being
up to 72% times higher. Other studies have indicated a scaled increase in the GWP of 56
and 163% for cultivated rice fields with the application of manure and straw compared
to a mineral amendment [80]. This could be because the application of manure residues
and straw provides abundant sources of fresh C, which promotes GWP production in
aerobic paddies [81]. In addition, the TC treatment obtained higher scaled GWP values
than the DSC management (1.33 times higher). It has been shown in cereal crops with the
incorporation of organic amendment with residues of straw from the previous year that the
application of no tillage causes a lower GWP of up to 1.32 times, compared to management
with tillage, which demonstrates that the alteration of soil with working machinery has
a significant effect on global warming [82]. As indicated in Figure 2, the contribution of
CO2 gas to the GWP of the total treatments was on average 71% between the managements
with an application of CO-W and those without CO-W. A 16% greater contribution was
observed for the treatments with CO-W, this increase being normal due to the effect caused
by CO-W of a higher COT content in the soil. The contribution of N2O gas to the GWP
showed lower percentages than those contributed by CO2 gas in all handlings. However,
the management without CO-W (DS and T) obtained a greater representation of N2O over
the GWP of 34%, while the treatments with C-OW obtained a representation of 23% of N2O
over GWP (Figure 2). This decrease in the contribution of N2O may have been favored
by the low C:N ratio obtained by the managements in which a CO-W amendment was
applied. This has been demonstrated by the results obtained in other studies, where the
N2O emissions were negatively correlated with the C:N ratio [83].

The residual effect of the treatments showed values between 20 and 31.1 Mg CO2 eq
ha−1; these results do not demonstrate significant differences with respect to the effect
of the GWP in the first year. However, the CO-W treatment in no-till management (DSC)
caused a decrease in the gases affecting the GWP compared to the first year (25%), which
brought the GWP (DSC) values closer to the original DS management. This could be the
reason for the decrease in the TOC content in the DSC treatment and the no-till regime
for 3 years, which caused a more compact physical condition of the soil, thus avoiding a
light flow of gas emissions. In the TC treatment, a non-significant decrease in the GWP
values was also observed with respect to the initial year. In addition, the TC management
maintained a greater GWP content with respect to the T management in the year of the
residual effect; however, this increase was reduced compared to the first year, since it went
from having a significant difference of 72% in the first year to a significant difference of
25% in the second year, which may have been due to a significant decrease in the content
of WSOC in the third year with respect to the first year, by 79% (Table 1). The content of
WSOC is a resource for microbial activity that favors the gases that participate in increasing
the GWP [84]. In the residual year, the contribution of each gas to the average GWP of the
total number of treatments was 58% for CO2 and 42% for N2O, while CH4 continued its
activity of capturing this gas. Regarding the original managements, DS and T showed very
similar values (57% and 53%, respectively), while the managements with an application of
CO-W, DSC and TC, showed values 4% or above the mean of the total of the treatments.
Regarding the contribution of N2O gas to the total GWP, the values did increase in the
residual year with respect to the initial year, by 1.48 times in general for all treatments,
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without there being a large gap between the different treatments (DS, DSC, T, and TC).
However, the original treatments, DS and T, obtained, on average, a higher contribution of
N2O to the GWP than their counterparts, DSC and TC, by 12%. A positive correlation of
the WSOC with GWP emissions was observed (r = 0.477, p < 0.05). Therefore, this effect
could explain the increase in the WSOC content originating in the residual year compared
to the initial year for the DS and T managements (50% and 145%, respectively).
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Regarding the effect of the application of C-OW, it was observed that during the first
year of study (2015, direct effect), there were significant increases. Thus, the GWPr in
DSC increased with respect to DS by 1.41 times, and in TC, it increased with respect to T
by 1.89 times (Table 1). In a meta-analysis carried out by Zhao et al. [85] after reviewing
230 publications, it was indicated how the application of organic amendments in rice
cultivation could cause an average increase of 37.3% in the GWPr values. Three years after
the application of the compost (residual effect), the value of the GWPr in the treatments
that received the amendment was higher than that registered in the original treatments.
Thus, the GWPr in DSC increased with respect to DS by 1.24 times, and in TC, it increased
with respect to T by 1.14 times (Table 1). However, unlike the direct effect, in the residual
effect the increases were not significant. These results show how, in the medium term, the
application of organic materials under aerobic irrigation systems results in lower GWPr
values compared to anaerobic irrigation systems [33], probably due to differences in the
mineralization of organic matter from the amendment. In fact, the correlation study shows
that there is a significant (p < 0.05) and negative correlation between the GWPr and HI
(r = −0.465). Therefore, authors such as Thangarajan et al. [47], with the aim of reducing
GWP, recommend using stabilization processes, such as composting, to transform easily
degradable compounds into stable organic matter.
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4. Conclusions

The use of sprinkler irrigation in combination with a C-OW application under different
tillage systems leads to important changes in the soil properties (organic matter, pH, and N),
which may affect the GHG emissions. Thus, under sprinkler irrigation, the implementation
of direct seeding rather than tillage managements could be an interesting alternative to
reduce the emissions of CO2 and N2O from rice soils. Furthermore, regardless of treatments,
the use of sprinklers is an optimal irrigation management strategy in order to reduce the
emissions of CH4, which is considered one of the major contributors to the global warming
potential. The effects of a C-OW application on the GWP were time-dependent, probably
due to the aging process. Thus, whereas the application of C-OW led to significant increases
in the first year (direct effect), regardless of the tillage system, in the third year (residual
effect), there were no significant differences between direct seeding treatments. Therefore,
the combination of sprinkler irrigation with direct seeding and a C-OW application could
be a viable technique for rice crops in order to reduce the GHG emissions and GWP under
Mediterranean conditions.
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