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Abstract: In this paper, a novel point cloud segmentation and completion framework is proposed
to achieve high-quality leaf area measurement of melon seedlings. In particular, the input of our
algorithm is the point cloud data collected by an Azure Kinect camera from the top view of the
seedlings, and our method can enhance measurement accuracy from two aspects based on the
acquired data. On the one hand, we propose a neighborhood space-constrained method to effectively
filter out the hover points and outlier noise of the point cloud, which can enhance the quality
of the point cloud data significantly. On the other hand, by leveraging the purely linear mixer
mechanism, a new network named MIX-Net is developed to achieve segmentation and completion of
the point cloud simultaneously. Different from previous methods that separate these two tasks, the
proposed network can better balance these two tasks in a more definite and effective way, leading to
satisfactory performance on these two tasks. The experimental results prove that our methods can
outperform other competitors and provide more accurate measurement results. Specifically, for the
seedling segmentation task, our method can obtain a 3.1% and 1.7% performance gain compared
with PointNet++ and DGCNN, respectively. Meanwhile, the R2 of leaf area measurement improved
from 0.87 to 0.93 and MSE decreased from 2.64 to 2.26 after leaf shading completion.

Keywords: point cloud segmentation; point cloud completion; leaf area measurement; MIX-Net;
seedlings; deep learning

1. Introduction

Phenomics is a discipline that studies the observable morphological characteristics and
their change patterns exhibited by individual plants or groups under specific conditions [1].
Plant phenomics is a key technology to further explore the intrinsic genotype–phenotype–
environment association, and provides technical support for genomic functional analysis,
molecular breeding, and precise management of agricultural production [2,3]. However,
for plants, leaves are the most important for their external morphology and physiological
functions [4]. Most of the traditional leaf measurement methods use the two-dimensional
projection of the leaf on the CCD plane in a two-dimensional image to generate pixel
points, so as to calculate the leaf parameters [5,6]. In practice, measurements based on
2D images cause serious measurement errors because the growth pattern and natural
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deformation of the plant make it impossible for the leaf to be an absolute plane. To solve this
problem and achieve more accurate measurements, it is crucial to capture the morphological
configuration of leaves in three dimensions. With the rapid development of sensing
technology and the improvement of computational performance, we can easily accomplish
rapid data acquisition and phenotype extraction on a 3D scale. For example, LiDARR [7],
low-cost RGB-D depth cameras [8], and multi-view imaging techniques [9] have been
widely used in 3D plant data acquisition. However, the current techniques for processing
3D plant data, LiDAR and multi-view imaging, are very time-consuming and require
much manual intervention, resulting in the accumulation of large amounts of raw data [10].
In addition, these methods limit the high throughput resolution of phenotypic indicators
of interest to agronomists. However, low-cost RGB-D depth cameras are widely used in
mapping, 3D reconstruction, indoor robotics, gesture recognition, and object detection
and recognition due to their low cost, high measurement accuracy, and fast measurement
speed [11]. Nowadays, low-cost RGB-D depth cameras are also increasingly used in plant
phenotyping techniques.

In the process of measuring plant phenotypes with low-cost RGB-D depth cameras, one
method is to measure plant phenotypes in a complete 3D point cloud, mainly through multi-
view 3D point cloud registration [12]. This method can completely eliminate occlusions
and obtain high-accuracy point clouds, but the point cloud alignment is demanding and
time-consuming for image processing algorithms. Moreover, there is no good solution to
the flexible registration problem under the jitter condition. Another approach is to measure
plant phenotypes mainly in single-view 3D point clouds by using the mapping relationship
between color and depth images [13]. However, this method is a single-view 3D point
cloud, and the occlusion and overlap between leaves becomes more and more serious as
the plant grows during the measurement process, which leads to more and more errors
in measuring phenotypes. Especially at present, with the increasing demand for high-
throughput acquisition, a low-cost, accurate measurement, and high-throughput method is
urgently needed. So this paper proposes a 3D leaf shading segmentation and restoration
technique using a low-cost RGB-D depth camera in a single view. This technique overcomes
the problem of inter-leaf occlusion and overlap in current depth camera measurements of
plant phenotypes to increase the accuracy of plant phenotype measurements over longer
growth periods. However, there are still many issues to be addressed in order to achieve
this goal.

First is the need to address the quality of point cloud data. Specifically, the data
obtained from RGB-D sensors are coarse, and outlier and hover point noisy point clouds
are severe [14]. Traditional methods use radius filtering and straight-pass filtering to filter
out these noisy point clouds. For example, the researchers used Kinect V2 to capture
rapeseed point clouds and remove other outliers and hover point noise based on line of
sight and surface normal [15]. Although it can effectively improve the quality of the point
cloud, it will remove some important points. A depth image-based filtering approach
has also been proposed that can filter the noise of hover points and outliers well, but this
approach cannot be directly applied to 3D point clouds [12]. Considering the shortcomings
of these methods, hover points are generated because the light source is refracted when
injected into the edge of the object, resulting in the receiver not receiving the signal properly.
Therefore, this paper is mainly based on the fact that the normal vector of normal points
in the depth camera when photographing the object has a very different offset angle with
respect to the camera coordinate system line of sight compared with the hover point.
As well as the sparse characteristics of outlier points, the two are combined to determine
the offset angle of each normal vector relative to the camera line of sight and the spatial
density of the point cloud. A new method based on domain space constraint is proposed to
greatly filter out the hover points and outlier noise in 3D space.

Secondly, in the process of measuring plant phenotype, we need accurate leaf segmen-
tation results. Especially under the condition of single view cloud processing, the phenotype
detection accuracy is more sensitive to the segmentation accuracy. Due to the mapping be-
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tween the color image and the depth image, depth cameras often segment in the color image
and then align with the depth image to obtain the target segmentation result [16]. However,
the resolution of color images of mainstream depth cameras such as Azure Kinect is much
higher than that of depth images, which makes the quality of point clouds converted by
this alignment effect poor. Moreover, considering the single-view object, although occluded
and overlapped in the two-dimensional image, there is a certain spatial distance in the
three-dimensional point cloud. So in this paper, we mainly focus on the segmentation
of single-view 3D point clouds captured by depth cameras. In recent years, phenotypic
measurements based on 3D models have attracted more and more research [17–20]. For ex-
ample, an octree algorithm has been used to divide a single-plant point cloud into many
small parts, and then each part is combined into one organ for segmentation based on the
spatial topology [21]. Others first segmented 2D images using distance transform and wa-
tershed algorithms, and then performed leaf segmentation before mapping the segmented
images into 3D [22]. However, these aforementioned methods require a lot of human
interaction, rely on empirical parameter settings, and cannot meet the requirements of
high-throughput processing in plant phenotyping studies. In contrast, deep learning-based
methods can automatically extract features from large data volumes through algorithm
design, providing a new perspective to address these issues [23]. For example, semantic
segmentation of tomato plants in greenhouses was developed using PointNet++ [24] and
further estimated leaf area indices [25]. A point cloud grid segmentation algorithm has
also been improved and a hybrid segmentation model has been proposed that can adapt to
the morphological differences of different individuals of cotton to achieve stem and leaf
separation [5]. Recently, a point cloud segmentation network with dual-neighborhood fea-
ture extraction and dual-granularity feature fusion has been proposed to achieve semantic
segmentation and leaf instance segmentation of three plants simultaneously [26]. However,
the experimental materials of these methods mentioned above are mostly generated by
LiDAR and multi-view 3D reconstruction techniques with good point cloud quality and
less occlusion between plant leaves. However, the experimental accuracy of these methods
drops dramatically when dealing with single-view 3D point clouds from RGB-D depth
cameras due to the presence of large amounts of occlusion and overlap.

We consider that it is because most of the feature extraction of the above methods only
divide the point cloud into local point cloud blocks to enrich the extraction of local features
of the point cloud. However, for the interaction between point cloud blocks, the above
methods all only perform simple interaction between adjacent blocks. Subsequently, some
people also use attention mechanisms to enhance this interaction, but this approach will
occupy a lot of space, and there is no simple and effective attention mechanism for 3D point
clouds that can well solve the segmentation of such overlapping point clouds. Therefore,
we develop a point cloud segmentation method based on the U-net shape hybrid point-
mixer mechanism, referred to as MIX-Net, which consists of a continuous encoder–decoder
network. In the encoder, considering previous point cloud feature extraction methods, such
as PointNet++ [24] and DGCNN [27], the point cloud is first transformed into point cloud
blocks using the K-nearest neighbor algorithm, and the features of each point cloud block
are extracted by a convolutional neural network (CNN) or a custom convolutional module.
However, converting the whole point cloud into point cloud blocks is too costly, there is also
a large amount of redundancy, and the interaction between point cloud blocks is missing.
We propose a simpler interactive feature fusion module that samples key points in the
complete point cloud using point cloud curvature sampling, and then uses the key points
for K-nearest neighbors to form point cloud blocks, which reduces the computational
cost and redundancy between point cloud blocks. In addition, to increase the feature
interaction between point cloud blocks, we borrow the success achieved by purely linear
mlp-mixer in 2D images [28]. We design a purely linear point-mixer feature interaction
network. It mainly includes the feature interaction within the interactive feature fusion
point cloud blocks and the feature interaction between each point cloud block. Finally,
considering that this interactive feature fusion module loses some feature information, we
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also use multi-resolution feature extraction to extract the deep features of the missing point
clouds. In the decoder, we employ the up-sampling module [29] to incrementally generate
higher resolution point clouds, and after up-sampling, we resort to the point-mixer feature
interaction network to generate complete point clouds with detailed details. Finally, we
not only segmented the plant stems and leaves, but also added the mean-shift clustering
algorithm at the end of the network to segment the instances among the leaves. Through
experimental comparison, we found that this feature extraction and interaction approach
achieves good results when dealing with plants with occlusions and overlaps.

A final challenge is the completion of missing leaves in segmented plant leaves.
Although this technique is an emerging field in the application of 3D phenotypes to plants, it
has been an important research problem in the graphics and vision community. For example,
Poisson reconstruction has been used to complete holes in the surface of objects, but this
method is characterized by a small patching area [30]. The geometric symmetry of the
object is used to complete the complete object, but this method is characterized by a low
quality of completion [31]. The above traditional methods perform poorly in the plant-
completion task because they can only handle simple missing data and are less effective for
missing plant leaves due to their varying angles and degrees of missingness. In recent years,
3D point cloud completion methods based on deep learning have achieved great success,
which provides insights to solve the plant data problem. For example, a voxel-based grid
algorithm has been developed to repair incomplete input data. However, the voxel-based
approach is limited by its resolution, as the computational cost increases significantly with
the resolution [32]. There are also global features learned first from a partial input point
cloud to produce a rough complete point cloud and generate more details by collapsing the
decoder operation [33]. Recently, researchers have proposed a point cloud fractal network
for repairing incomplete point clouds using partial point clouds as input to keep the space
of the original part unchanged and output only the missing part of the point cloud instead
of the whole object [34]. Although the deep learning-based point cloud completion method
has made some research progress, it still faces some challenges such as large computation
and low resolution, and it is difficult to cope with the missing leaves in plants due to
various missing angles and different degrees of missingness. Therefore, we would like
to propose a new method that is efficient, stable, and applicable to plant leaf restoration.
Firstly, for various missing angles and different degrees of missing in plants, we adopt
a self-supervised learning training approach by using existing intact leaves, setting 14
missing angle viewpoints (8 vertices of squares and 6 face centers of squares) in 3D space
by 3D squares, finding the distance from the viewpoints to the leaves, and removing the
distance from the viewpoints to the leaves by different degrees of the missing set (15%,
25%, 50%). The nearest distance from the viewpoint to the leaf is removed to generate the
missing leaf data. The network structure, we use the same network structure as the plant
leaf segmentation, only in the last layer of the network structure and the loss function is
different. We found that MIX-Net can also be well adapted to the plant leaf completion task
and achieved good experimental results.

In conclusion, the current research methods cannot achieve satisfactory results in the
tasks of denoising, plant leaf segmentation, and plant leaf completion for single-view 3D
point clouds of depth cameras. To this end, this paper uses seedlings as the experimental
object and first proposes a neighborhood spatial constraint method using a combination of
spatial density of point clouds and differences in the angle of normal vectors relative to the
camera view offset. In the filtering process of the seedling point cloud, not only can the
hover points and outliers around the seedling point cloud be filtered out, but also relatively
small details, such as relatively thin and narrow stems, can be retained. Subsequently,
we also developed a plant point cloud segmentation and plant leaf completion method
based on a U-net shape hybrid point-mixer mechanism, referred to as MIX-Net. This
method consists of two main components: (1) a neighborhood aggregation strategy, which
mainly transforms a complete point cloud into a sequence of point cloud blocks; (2) a
point-mixer mechanism, which allows for enrichment within and between point cloud
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blocks. To demonstrate the effectiveness of our method, we constructed a dataset of single-
view seedling point clouds containing real labels for seedling segmentation and seedling
leaf completion tasks. Experimental results show that the method not only balances
the two tasks of plant segmentation and plant leaf completion well, but also both tasks
obtain satisfactory performance on various common datasets. Moreover, in experiments
on seedlings with occlusion and overlap, the method was able to separate stems and
leaves under occlusion and to complete the missing leaves. In summary, our method
provides a critical solution for inter-leaf shading and overlap in depth camera-based plant
phenotyping studies. It makes it possible to achieve high-throughput acquisition and
high-precision measurement of plant phenotypes using depth cameras.

2. Materials and Methods
2.1. Experimental Materials

The experimental subjects of this paper were typical melon seedlings, including
watermelon seedlings (zaojia 8424), pumpkin seedlings (Jingle Fengjia), and cucumber
seedlings (Jinchun No. 2). Samples were grown in the greenhouse of the Central China
Branch of the Vegetable Crop Improvement Center of Huazhong Agricultural University
from January 2021 to March 2021, and phenotypes were determined at the Key Laboratory
of the Ministry of Horticultural Plant Biology. Seedlings were soaked in warm water,
removed and drained, wrapped in gauze, and placed in a 28 °C thermostat for germination,
and sown in 50-hole cavity trays. The mass ratio of grass charcoal, vermiculite, and perlite
in the seedling substrate was 3:1:1, and Yara miaole compound fertilizer (1.0 kg/m3)
was added to the substrate before sowing. After that, seedlings were cultivated in an
artificial climate chamber at a diurnal temperature of 28 °C–18 °C and humidity of 65–85%,
and seedlings were sprayed 1000 times with lairui Seedling Compound Fertilizer No. 1
after the 1-leaf-1 stages and 800 times with Yara Seedling Compound Fertilizer No. 1 until
the end of 3-leaf-1 stages.

2.2. Mix-Net Based Seedling Point Cloud Processing Method
2.2.1. Overview

Figure 1 shows the flow of the method in this paper with watermelon seedlings as
an example. The method consists of five main parts: high-throughput data acquisition of
seedlings, point cloud preprocessing, datasets construction, point cloud segmentation and
completion, and leaf area calculation.

2.2.2. Data Acquisition

Five trays (160 plants in total) of watermelon seedlings, cucumber seedlings, and pump-
kin seedlings were grown for algorithm design and validation experiments using the
method in Section 2.1, and destructive experiments were taken at the 1-leaf-1 stages, 2-
leaf-1 stages, and for 3-leaf-1 stages phenotypic algorithm validation. High-throughput
data acquisition was performed by using a semi-automatic image acquisition platform
for single seedlings. It can be observed that a depth camera is mounted directly above
the seedlings, and the depth camera is connected to an external computer. Target plant
seedlings grown in the intelligent greenhouse are transplanted into pots and then placed
in the instrument where Azure Kinect is deployed. Image acquisition and processing
algorithms were developed using Azure Kinect SDK 1.4.1, Microsoft Visual Studio 2019,
Window10 OS, and Tesla P100 GPU. Using this software system, 1024 × 1024 depth images
can be acquired. Image acquisition was performed in a room with natural light. For the
seedlings after image capture, the hand-picked flattened leaves were scanned using an
Epson Expression 12000XL scanner to obtain leaf area data.
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Figure 1. Flowchart of the procedure in this paper. (a) High-throughput seeding data acquisition
using Kinect. (b) Point cloud preprocessing includes point cloud filtering, point cloud down-sampling,
and normalization. (c) Annotation of data, data enhancement, and missing point cloud datasets
construction using Cloud compare software. (d) Semantic segmentation of seedlings and missing leaf
completion by MIX-Net. (e) Phenotype extraction using organ semantic segmentation and missing
completion results.
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2.2.3. Point Cloud Preprocessing

The point clouds collected by the Azure Kinect platform are dense, containing ap-
proximately 600,000 to 1 million points per plant. However, it contains a large amount of
background noise. Hence, to ensure the accuracy and integrity of the data, the original
point cloud needs to be processed by background removal and point cloud filtering before
being used in subsequent steps. As shown in Figure 1b, the processing steps are as follows.

(1) Straight-pass filtering to filter out the background. For the invalid background
beyond the seedlings, thresholds of 0.5 m, 0.5 m, and 0.7 m in length, width, and height
are selected for direct-pass filtering since the camera height is known. Subsequently, flat
ground is fitted using least squares to split the ground from the seedlings, thus removing
the ground. Finally, for the seedling tray, the ground is advanced in the opposite direction
of the z-axis by 0.11–0.13 as the cutting point, and the seedling tray is removed using
direct-pass filtering on the z-axis.

(2) Point cloud filtering is based on the neighborhood space constraint. It includes the
following steps.

• The original point cloud is filtered by (1) to obtain the point cloud containing only the
plant area.

• Set a threshold N, find N neighborhoods around each centroid using KNN, and find
the average value D of the Euclidean distance between the centroid and the neighbor-
hoods.

• The angle W between the normal vector and z-axis is solved by fitting the plane
with least squares to predict the normal vector of each centroid through the set
neighborhood threshold N.

• Repeat the above operations First and second, if D ≥ d or W ≥ c, it is judged to be
a hover point, and the point is deleted. Iterate through the whole point cloud to
eliminate all the hover points.

Through comparison experiments, it is found that the best filtering effect is achieved
when the parameter N is 12, d is 0.0034 and c is 60°. The setting of parameters is entirely
based on the adjustment of the algorithm, independent of the parameters of the camera and
the external shooting environment of the plant. Compared with the traditional point cloud
filtering method, this method can not only remove the suspended points well, but also
retain a large amount of point cloud details.

2.2.4. Datasets Construction

Point cloud data were collected from 50 samples of each of three types of melon
seedlings (watermelon seedlings, cucumber seedlings, and pumpkin seedlings), covering
the 1-leaf-1 stages, 2-leaf-1 stages, and 3-leaf-1 stages of the seedlings. The point clouds
were then annotated using Cloud Compare software, and the annotation enhanced the
data to four times the original size. A total of 600 seedling point clouds were obtained
for the three types of seedlings, which constituted a point cloud segmentation data set.
The complete leaf point clouds segmented by Mix-Net were generated by the missing point
cloud generation method and formed 1800 point cloud pairs together with the complete
point clouds as the point cloud complementary data set, as shown in Figure 1c. The division
of the datasets is represented in Table 1.

(1) Data augmentation. Considering that the rotation-translation invariance and scale
invariance of the point cloud, the seedling point cloud is subjected to some random panning
in [−0.2, 0.2], random anisotropic scaling in [0.67, 1.5] changes to increase the training data.

(2) Point cloud annotation. In this study, cloud compare was used to annotate the
training data for stem and leaf segmentation. The stems and leaves of seedlings were
first separated by entering the crop tool in the seedling point cloud selection software.
For semantic segmentation, manual interactions were given to two different classes of
scalar color information. Stem points were marked as 0 and leaf points were marked as
1. For the instance segmentation stem points were marked as 0 and each leaf was marked
with a different marker. It takes only about 30 s to mark each seedling point cloud using
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Cloud Compare software. This is very efficient due to the small size and clear structure of
the seedlings.

(3) Missing point cloud generation. Firstly, for various missing angles and different de-
grees of missingness of plant leaves, we adopt a self-supervised learning training approach
by using existing intact leaves, setting 14 missing angle viewpoints (8 square vertices and
6 square face centers) in 3D space by 3D square, finding the distance from the viewpoints
to the leaves, and removing the nearest distance from the viewpoints to the leaves by
different degrees of missingness set (15%, 25%, 50%) in order to generate missing leaf data.
This approach generates missing point clouds similar to the missing occlusion between
leaves and allows control of viewpoints as well as radii to simulate more types of missing
occlusion. It has been experimentally verified that this missing approach can effectively fill
in the occluded leaves.

Table 1. Training datasets and testing datasets settings.

Numder of
Training Point

Clouds

Number of
Testing Point

Clouds
Points

Number of
Training Point
Clouds after
Augmention

Number of
Testing Point
Clouds after
Augmention

Number of seedlings point cloud 130 20 2048 520 80
Number of leaf point clouds 500 100 2048 1800 300

2.2.5. MIX-NET Network for Segmenting and Completing Point Clouds

Encoder. The overall structure of MIX-Net’s encoder is shown in the left half of
Figure 2. The aim is to encode the input points into a new high-dimensional feature space.
By employing a similar approach to the neighbor point aggregation mentioned in Point-
Net++ and PointCNN [35], the features of the point cloud are transformed into a new higher
dimensional feature space, which characterizes the semantic affinity between neighbor
points and serves as the basis for various point cloud processing tasks. The embedded
features are then fed into the point-mixer module to learn the rich semantics within each
neighbor point and the rich semantic and discriminative representations between individ-
ual neighbor points. To obtain richer point cloud features, the encoder uses multi-resolution
point cloud feature extraction with 2048, 1024, 512, and 256 resolutions and neighbor points
extracted in 32, 16, 8, 4, and point-mixer feature processing module dimensions of 1024,
512, 256, and 128.

Decoder. The decoder takes the final feature vector as input and aims to output M × 3
to represent the complete 3D point cloud shape, as shown in the right half of Figure 2.
To generate higher quality complete 3D point clouds, based on FPN [36], we propose a
complete progressive point cloud generation approach with the idea of generating 3D
point clouds progressively from low to high resolution, such that primary, secondary, and
detailed points will be predicted from layers of different feature depths. The primary and
secondary points will try to match their corresponding feature points, gradually increase the
number of points by interpolation up-sampling [29], and generate their high-dimensional
feature maps, which will be decoded by the point-mixer module to propagate the overall
geometric information to the final detailed points. In the whole process of point cloud
complementation, the output point cloud resolutions of the four stages are 256, 512, 1024,
and 2048; the dimensions are 1024, 512, 256, and 128.

Point cloud classification. We use a classification network using MIX-Net to classify a
point cloud P into NC classes of objects. The features map is fed to the classification decoder.
It consists of two cascaded feed-forward neural networks LBRs (combining linear, batch
norm (BN), and LeakyReLU layers), each with a Dropout probability of 0.5. A linear layer
is finally used to predict the final classification. Each category scores C ∈ RNc . The category
label of the point cloud is determined as the category with the maximum score.
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Point cloud segmentation. The segmentation point cloud task is to divide it into
several parts. A part label must be predicted for each point. To learn a general model
applicable to various objects, we also encode the object category vector and connect it to
the features map. The structure of the final output is essentially the same as that of the
classification network. Then, the segmentation score S ∈ RN×Ns for each point of the final
output point cloud is predicted. Finally, the label with the maximum score for each point
is also identified as the label for that segment. For instance, in segmentation, the features
are concatenated and then reduced to five dimensions by a feature dimension module
(1D Convolution with LeakyReLU). Then the class of each instance is predicted by the
mean-shift clustering algorithm.

Point cloud completion. We use the same network architecture as in point cloud
segmentation. The difference is that in the process of generating the complete point cloud,
the feature map of the same resolution in the encoder is fused with the interpolated feature
maps to keep the structure of the input missing point cloud unchanged during the decoding
work, after which the point-mixer is used to process the features, and then MLP is used to
generate the 3D coordinates of the point cloud for each resolution.

Figure 2. The complete structure of MIX-Net. The left part of the figure is the encoder, and the right
part is the decoder. The neighborhood aggregation module is the neighborhood aggregation strategy
proposed in Section 2.2.6. The point-mixer is the multi-level feature fusion module proposed in
Section 2.2.7. The UP-conv module is the PointAtrousGraph, the point cloud up-sampling module
proposed in the paper.

2.2.6. Neighborhood Aggregation Strategy

In most previous works, encoders are mostly used for feature extraction with multi-
layer perception (MLP). However, they ignore the local neighborhood information, which
is essential in the point cloud structure. We design a neighborhood aggregation strategy to
enhance local feature extraction with neighborhood point embedding, as shown in Figure 3.
More specifically, assume that the neighbor feature aggregation layer takes a point cloud
P with N points and corresponding features Fn as input and outputs a sampled point
cloud Ps with Ns points and their corresponding aggregated features Fs. First, we use the
curvature sampling algorithm [37] to down-sample Fn, and generate features Fi. Then,
with each point in feature Fi as the center, find the nearest k points in feature Fi to form a
neighborhood Fik. Finally, the output features Fs in the way shown in Equation (1):

Fs = MP(LBR(concat(Fi − Fik, RP(Fi, k)))) (1)
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where MP is the maximum pooling operator and RP(x, k) is the operator that repeats
the x vector k times to form a matrix. To extract more comprehensive features, multi-
resolution point cloud feature extraction is used to extract and fuse their features at different
resolutions.

Figure 3. Neighborhood aggregation strategy framework diagram.

2.2.7. Point-Mixer Mechanism

We propose a feature processing network that can interact within and between locali-
ties, called a point-mixer. As shown in Figure 4. The point-mixer generates S sequences of
non-overlapping point cloud groups as input after passing through a local neighborhood
aggregation strategy, and the point cloud group sequences are linearly projected to the
desired dimension using the same projection matrix. Where point-mixer consists of multi-
ple layers of the same size, each layer consists of two MLP blocks [28]. The first layer is
the point-mixer intra-group blending MLP: it acts between the interiors of the point-mixer
and maps the point-mixer sequences. The second is the inter-group hybrid MLP: it acts
between point cloud groups and again maps the mapping back to the same dimensions
and representation. Each MLP block contains two fully connected layers and a nonlinear
operation is applied to each row of its input data tensor independently. The point-mixer
process can be written in the form of Equation (2):

Fc = Fs + MLP(LayerNorm(Fs))
Fo = Fc + T(MLP(T(LayerNorm(Fc))))

(2)

where T is a flip operation. Fc and Fo are tunable hidden features in the intra-group
blending and inter-group blending MLP, respectively. Note that the dimension selection is
independent of the number of input point cloud groups.

Figure 4. Point-mixer multi-level feature fusion framework.



Plants 2022, 11, 3342 11 of 21

2.2.8. Loss Function

Semantic segmentation. The softmax cross-entropy function was used as a loss
function during training and is shown in Equation (3):

Losssem = ∑
n=1

(−yn × log(ŷn)) (3)

where n is the total number of points in the input point cloud; yn is the ground truth of
the multi-level classification corresponding to this point cloud; ŷn is the probability of the
output of each point cloud category using the softmax function. The specific for ŷn mulae
for are shown in Equation (4):

ŷn =
eJn

∑i eJi
(4)

According to Equation (4) for the known nth input point, the value of Jn was calculated
using Equation (5):

Jn = w× qn (5)

where w is the weight of the network as a whole, and qn is the input parameter for the nth
point in the point cloud.

Instance segmentation. Lossins is given by Equation (6):

Lossins = Ls + Lreg

Ls =
1
I

I

∑
i=1

1
Ni

Ni

∑
j=1

[
max

[
0,
∥∥∥ci − f j

∥∥∥
2
− δs

]]2

Lreg =
1
I

I

∑
i=1
‖ci‖2

(6)

where I represents the number of instances in the current point cloud batch being processed
and Ni represents the number of points contained in the i-th instance; ci represents the
center of the points belonging to the i-th instance in the current feature space; and f j
represents the feature vector of the point j in the current feature space. The parameter δs
defines a boundary threshold that allows the aggregation of points of the same instance.

Point cloud completion loss. The loss measure in the point cloud completion process
represents the difference between the true complete point cloud corresponding to the
missing point cloud and the predicted point cloud. Fan [38] proposed two alignment-
invariant metrics to compare the difference between disordered point clouds, namely
Chamfer distance (CD) and bulldozer distance (EMD). Because the bulldozer distance
(EMD) occupies more memory and takes longer to calculate, while the Chamfer distance
(CD) is more efficient to calculate, this paper chooses the Chamfer distance as the loss
function for point cloud completion as follows Equation (7):

LCD(S1, S2) =
1
2

(
1
| S1| ∑

x∈S1

min
y∈S2
‖x− y‖+ 1

| S2| ∑
y∈S2

min
x∈S1
‖x− y‖

)
(7)

The mean nearest square distance, referred to as the Chamfer distance (CD), be-
tween the predicted point cloud S1 and the true point cloud S2 is measured using Equa-
tion (13). The progressive deconvolution completion network is a special progressive
deconvolution 3D point cloud completion network in which the complete point cloud is
generated in four stages with resolutions. The predicted point cloud outputs of the four
stages are denoted by Y1, Y2, Y3, and Y4; the true complete point clouds sampled from the
true point cloud by IFPS to N/8, N/4, N/2, and N resolutions are denoted by Ygt, Y′gt, Y′′gt,
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and Y′′′gt . The Chamfer distances (CD) of the four stages are denoted by dCD1 , dCD2 , dCD3 ,
and dCD4 . The complete loss function for the training process is shown in Equation (8):

Lcom = dCD1

(
Y1, Ygt

)
+ dCD2

(
Y2, Y′gt

)
+ dCD3

(
Y3, Y′′gt

)
+ dCD4

(
Y4, Y′′′gt

)
(8)

3. Results
3.1. Point-Cloud Noise Removing

The proposed method is compared with statistical filtering, radius filtering, and
domain maximum filtering for two-dimensional depth maps. The experimental results
are shown in Figure 5b–e, respectively. As one can observe, all three methods result in
incomplete filtering if a small radius range is set, as shown in the yellow box in Figure 5b.
However, if the radius is large, the other three methods will delete some important points,
as shown in the red boxes in Figure 5c,d.

Figure 5. (a) The original point cloud with hover point noise. (b) Statistical filtering. (c) Radius
filtering. (d) The domain maximum filtering of a two-dimensional depth map. (e) Our proposed
filtering results. (f) denotes the local magnification of our method after filtering.

3.2. Evaluation Metrics

We compare our MIX-Net with other popular competitors on two public datasets. For a
fair comparison we use the same training strategy to optimize our method and competitors
and use several popular metrics in point cloud classification and segmentation to evaluate
the performance, including accuracy ACC (accuracy) and part-average intersection over
union ratio IoU (intersection over union). In the formula, TP (true positives) means the
positive class is determined as a positive class, FP (false positives) means the negative class
is determined as a positive class, FN (false negatives) means the positive class is determined
as a negative class, and TN (true negatives) means the negative class is determined as a
negative class.

The accuracy of the i-th class of objects in N classes is shown in Equation (9):

ACCi =
TPi + TNi

TPi + FPi + FNi + TNi
(9)
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In the N class object, the intersection ratio of the i class is shown in Equation (10):

IoUi =
TPi

TPi + FPi + FNi
(10)

The average cross-merge ratio of all classes is shown in Equation (11):

mIoU =
1
N

N

∑
i=1

IoUi (11)

The parameter C is the number of semantic classes for the calculation of the mean
precision (mPrec) and the mean recall (mRec).

mPrec =
1
C

C

∑
i=1

|TP(sem = i)|
| IP(sem = i)|

mRec =
1
C

C

∑
i=1

|TP(sem = i)|
| IG(sem = i)|

(12)

Because the semantic classes include the stem class and the leaf class of each plant
species, C is fixed at 2. The notation |TP(sem = i)| represents the number of predicted
instances whose IoU is above 0.5 in the semantic class i. The notation |TP(sem = i)|
represents the total number of predicted of instances in semantic class i. | IG(sem = i)|
represents the number of instances of the ground truth in semantic class i.

We evaluate the reconstruction accuracy by calculating the CD between the predicted
complete shape and the true shape (Equation (7)). At the same time, considering the
sensitivity of CD to outliers, we also use F-score to evaluate the distance between object
surfaces, which is defined as the harmonic mean between precision and recall. EMD is
only defined when S1 and S2 have the same size in Equation (13):

LEMD(S1, S2) = min
φ:S1→S2

1
|S1| ∑

x∈S1

‖x− φ(x)‖2 (13)

where φ is a bijection.
The correlation coefficient (R2) and mean square error (MSE) were calculated to

compare the results, which can be calculated using Equation (14):

R2 = 1− ∑m
l=1
(
vl − v′l

)2

∑m
l=1(vl − v̄l)

2

RMSE =

√
1
m

m

∑
l=1

(
vl − v′l

)2

(14)

where m denotes the number of objects to be compared; vl indicates the value of the manual
measurement result; v′l denotes the values of the phenotypic parameters extracted from
the segmentation results according to the MIX-Net model; v̄l indicates the mean of manual
measurement results.

3.3. Effectiveness of MIX-Net Network on Seedling Datasets

The experimental performance of MIX-Net on the seedling point cloud datasets was
evaluated and compared with other methods in a comprehensive manner. For all network
models, the batch size was 32, and each network was trained 250 times individually.
The initial learning rate was 0.01, and a cosine function was used to decay the learning rate
to adjust the learning rate for each period.
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Results of Seedling Leaf Segmentation

Experiments were conducted using MIX-Net on the seedling point cloud semantic
segmentation datasets and compared with PointNet++ and DGCNN networks. The ex-
perimental results are shown in Table 2 below, and MIX-Net improved by 3.1% and 1.7%,
respectively. The semantic segmentation example of seedlings segmented by MIX-Net
is shown in Figure 6. Additionally, the results of the instance segmentation of seedlings
compared with Soft-Group and ASIS are shown in Table 3 and Figure 7 below.

Figure 6. The qualitative semantic segmentation comparison on the three species. DGCNN and
PointNet++ are compared with our MIX-Net. The parts with segmentation errors are highlighted by
red dotted circles.

Figure 7. The qualitative instance segmentation comparison on the three species. SoftGroup and
ASIS are compared with our MIX-Net. The parts with segmentation errors are highlighted by red
dotted circles.
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Table 2. Semantic segmentation results of MIX-Net on seedling point cloud datasets.

Methods Input Points mIoU (%)

PointNet++ [24] P 2048 91.5
DGCNN [21] P 2048 92.9

MIX-Net (Our) P 2048 94.6

Table 3. Instance segmentation results of MIX-Net on seedling point cloud datasets.

Methods Input Points mPrec (%) mRec (%)

Soft-Group [39] P 2048 74.26 68.04
ASIS [40] P 2048 79.13 75.64

MIX-Net (Our) P 2048 82.31 77.46

3.4. Results of MIX-Net Applied to Leaf Completion under Self-Supervised Learning

We conducted experiments using MIX-Net on the seedling leaf datasets in Section 2.2.4
and compared it with its point cloud completion method. The CD and EMD evaluation
metrics are given in Table 4, and the results show that MIX-Net outperforms other networks
in both evaluation metrics. The results of leaf completion are given in Figure 8. It can be
seen that the completion result ensures the original leaf structure remains unchanged while
the output leaf is more uniform.

Table 4. Leaf completion results of MIX-Net on seedling point cloud leaf datasets.

Methods Input Points m-Value CD × 103 EMD

PCN [33] P 2048 50%, 25%, 15% 1.947 0.106
MSN [41] P 2048 50%, 25%, 15% 0.870 0.072

PF-Net [42] P 2048 50%, 25%, 15% 1.947 –
Vrc-Net [34] P 2048 50%, 25%, 15% 1.783 0.107

MIX-Net (Our) P 2048 50%, 25%, 15% 1.679 0.071

Figure 8. Representation of the complete results of the point cloud leaf datasets on MIX-Net, where
(a,d,g) are the missing point cloud leaves from the input network, (b,e,h) are the real complete leaves,
and (c,f,i) are the predicted outputs of the MIX-Net network.
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3.5. Results of MIX-Net Applied to Leaf Completion under Supervised Learning

In the above experiments, the training process is self-supervised, but the actual leaf
point cloud completion process is supervised learning, and since the missing leaves are
extracted from reality, so to evaluate the point cloud completion capability of MIX-Net on
supervised learning, the same experiment was conducted on the seedling leaf datasets in
Section 2.2.4, where the missing leaf point clouds were generated, normalized, and then
formed a leaf point cloud pair with the complete leaf. The results on supervised learning
are given in Table 5 below, and the complete results for missing 50%, 25%, and 15% leaves
are given in Figure 9 below.

Figure 9. Supervised training results of MIX-Net on the point cloud leaf dataset. In the experiments,
the predicted outputs of various methods after supervised training after missing 50%, 25%, and 15%.

Table 5. The results on supervised learning of MIX-Net on seedling point cloud leaf datasets.

Methods Input Points m-Value CD × 103 EMD

PCN [33] P 2048 50%, 25%, 15% 1.773 0.113
MSN [41] P 2048 50%, 25%, 15% 1.914 0.065

MIX-Net (Our) P 2048 50%, 25%, 15% 1.276 0.063

3.6. Nondestructive Leaf Area Measurement Results Using MIX-Net

To verify that our experimental results are helpful in realistic phenotypic measure-
ments, we selected 40 seedlings with occlusion, as shown in Figure 10 below, and then used
MIX-Net to isolate the missing leaves of the seedlings, and to complete them. Figure 11
gives the correlation coefficient between the true leaf area (by leaf area meter) and the leaf
area before repair with R2 = 0.87, MSE = 2.64. The correlation coefficient between the true
leaf area (by leaf area meter) and the leaf area after repair after completing is R2 = 0.93,
MSE = 2.26. The presence of occlusion is particularly serious, we select the leaves which are
severely occluded, and from the result of the patching, we can get complete and uniform
leaves, and our method provides help for the nondestructive testing of the whole tray
of seedlings.
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Figure 10. Complementary results of MIX-Net in real phenotypic measurements, where indicates the
presence of occlusion in phenotypic measurements of seedlings and our corresponding complemen-
tary results.

Figure 11. Correlation analysis after leaf area measurement, (A) indicates the correlation analysis
between the leaf before restoration and the real leaf; (B) indicates the correlation analysis between the
restored and the real leaf.

4. Discussion

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

4.1. Point Cloud Classification Results on the Modelnet40 Datasets

The ModelNet40 datasets [43] contain 12,311 CAD models in 40 object classes; it is
widely used for point cloud shape classification benchmarks. For a fair comparison, we
use 9843 objects from the office for training and 2468 objects for evaluation. The same
sampling strategy as PointNet [44] was used, sampling each object uniformly to 1024 points.
During training, no data augmentation or voting methods were used during testing. For all
network models, the batch size was 32, and each network was trained 250 times individually.
The initial learning rate was 0.01, and a cosine function was used to decay the learning rate
to adjust the learning rate for each period. The experimental results are listed in Table 6.
Compared with PointNet and PCT, MIX-Net improved by 4.2% and 0.2%. The overall
accuracy of MIX-Net was 93.4%. It is worth mentioning that our network currently does
not consider normal vectors as input.
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Table 6. Comparison with state-of-the-art methods on the ModelNet40 classification datasets. Preci-
sion implies overall accuracy. All cited results are taken from the cited papers. P denotes the number
of points, and N denotes the normal.

Methods Input Points Accuracy (%)

PointNet++ [24] P 1024 90.7
PointNet++ [24] P, N 1024 91.9
PointCNN [35] P 1024 92.5
DGCNN [27] P 1024 92.9

PCT [45] P 1024 93.2
MIX-Net (Our) P 1024 93.4

4.2. Point Cloud Segmentation Results on the ShapeNet-Part Dataset

We experimentally evaluate the ShaptNet-Part dataset [46], which contains 16,880 3D
models trained to test segmentation from 14,006 to 2874. It has 16 object classes and 50 part
labels, and each instance contains no less than two parts. All models were down-sampled
to 2048 points, preserving the individual point annotations. The models have a batch size
of 16, a training count of 250, and a learning rate of 0.001. Table 7 shows the segmentation
results for each type of network. The evaluation metric used is part-average intersection
over union. The results show that our MIX-Net improves by 2.0% over PointNet. MIX-Net
reaches 85.7%.

Table 7. Comparison using ShapeNet-Part segmentation dataset. mIoU denotes the average intersec-
tion over union. All cited results are taken from the cited papers.

Methods Input Points mIoU (%)

PointNet++ [24] P 2048 85.1
DGCNN [27] P 2048 85.2

MIX-Net (Our) P 2048 85.7

4.3. Point Cloud Completion Validated on a ShapeNet-Part Dataset

To train our model, we used 13 different objects in the ShapeNet-Part of the benchmark
dataset. The total number of shapes is 14,473 (11,705 for training and 2768 for testing). All
input point cloud data are centered at the origin, and their coordinates are normalized to
[−1, 1]. Ground truth point cloud data were created by sampling 2048 points uniformly
on each shape. Incomplete point cloud data were generated by the missing point cloud
generation method. We control the parameters to get different numbers of missing points.
When comparing our method with other methods, incomplete point clouds with 50% of the
original data missing are set up for training and testing. For all network models, the batch
size is 16, and each network is trained 100 times separately. The initial learning rate was
0.0001, and a cosine function for learning rate decay was used to adjust the learning rate for
each period. Table 8 shows the completion results for each type of network. The evaluation
metrics used are CD distance and F-score@1%. The results show that our MIX-Net achieves
optimal results in both CD and F-score@1%.

Table 8. Point cloud completion results (CD and F-Score@1%) on the ShapeNet-Part dataset
(2048 points).

Methods Input Points m-Value CD × 103 F-Score@1%

PCN [33] P 2048 50% 2.929 0.29
TopNet [47] P 2048 50% 3.805 0.38

MSN [41] P 2048 50% 2.376 0.41
PF-Net [42] P 2048 50% 3.037 –
Vrc-Net [34] P 2048 50% 2.881 0.42

MIX-Net (Our) P 2048 50% 2.111 0.45
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4.4. Ablation Experiments

In Table 9 we will discuss the effectiveness of the proposed framework in this paper.
We will evaluate it separately in point cloud classification, point cloud segmentation, and
point cloud completion. Firstly, for point cloud classification, the feature extraction ability
of these modules for point clouds can be verified. Among them, we choose the encoder
of PointNet++ as a baseline. Then it is combined with Nas (neighborhood aggregation
strategy) and point-mixer to verify the effectiveness of the proposed framework on the
modelnet40 datasets. Then for semantic segmentation and instance segmentation of point
clouds, we select PointNet++ and ASIS as baselines, respectively, and then experiment
on seedling point cloud segmentation datasets. Finally, we use PCN as the benchmark
and then validate the effectiveness on leaf restoration on seedling leaf completion datasets.
Through the experiments, we demonstrate that our proposed module achieves excellent
results in various fields.

Table 9. The ablation analysis of MIX-Net. The checkmark stands for the use of a module. The best
quantitative values are shown in bold.

classification
(modelnet40
dataset)

PointNet++ (encoder) [24] Nas Point-mixer Accuracy (%)

! 90.7
! 89.4

! ! 92.7
! ! 93.4

semantic segmentation
(seedling semantic
segmentation dataset)

PointNet++ (encoder) [24] PointNet++ (decoder) [24] Nas Point-mixer mIoU (%)

! ! 91.5
! ! 92.4
! ! ! 93.7

! ! 91.8
! ! 94.6

instance segmentation
(seedling instance
segmentation dataset)

ASIS (encoder) [40] ASIS (decoder) [40] Nas Point-mixer mPrec (%) mRec (%)

! ! 79.13 75.64
! ! 77.41 72.36
! ! ! 81.32 79.56

! ! 78.44 76.54
! ! 82.31 77.46

Leaf completion (seedling leaf
completion dataset)

PCN (encoder) [33] PCN (decoder) [33] Nas Point-mixer CD × 103 EMD

! ! 1.773 0.113
! ! 1.345 0.094
! ! ! 1.254 0.061

! ! 1.493 0.108
! ! 1.276 0.059

5. Conclusions

In this study, based on high-throughput data acquisition and deep neural networks,
automatic segmentation and completion method for seedling 3D point clouds is proposed.
The proposed method can achieve high-quality segmentation and completion from two
aspects. Firstly, during the data processing we developed a new method for eliminating
hover points and noise points, which can retain more detailed features while removing
noise compared with traditional statistical filtering and radius filtering. Secondly, a new
network named MIX-Net is proposed to achieve point cloud segmentation and completion
simultaneously, which can better balance these two tasks in a more definite and effective
way and ensure high performance on these two tasks. Experimental results prove that,
compared with state-of-the-art methods, the average performance gain brought by our
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methods on classification, seedling segmentation, and seedling leaf completion tasks are
more than PCT, DGCNN, and Vrc-Net, respectively, leading to more accurate measurement
performance on the leaf area phenotypes of seedlings. Furthermore, we also explored
the effect of restoration in dealing with the presence of extensive occlusion in the whole
tray of seedlings, which provides feasible help for future nondestructive testing of whole-
tray seedlings.

Author Contributions: B.H.: Conceptualization, Investigation, Methodology, Visualization, Writing—
original draft. Y.L.: Data curation, Software. Z.B.: Resources. C.P.: Validation. Y.H.: Funding
acquisition, Supervision. S.X.: Funding acquisition, Methodology, Writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key Research and Development Program of China
(grant number 2019YFD1001900); the Fundamental Research Funds for the Central Universities (grant
number BC2021201); the HZAU-AGIS Cooperation Fund (grant number SZYJY2022006); the Hubei
provincial key research and development program (grant number 2021BBA239).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feng, L.; Raza, M.A.; Li, Z.; Chen, Y.; Khalid, M.H.B.; Du, J.; Liu, W.; Wu, X.; Song, C.; Yu, L.; et al. The influence of light intensity

and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front. Plant Sci. 2019, 9, 1952. [CrossRef]
2. Ninomiya, S.; Baret, F.; Cheng, Z.M.M. Plant phenomics: Emerging transdisciplinary science. Plant Phenomics 2019, 2019, 2765120.

[CrossRef]
3. Liu, H.J.; Yan, J. Crop genome-wide association study: A harvest of biological relevance. Plant J. 2019, 97, 8–18. [CrossRef]

[PubMed]
4. Gara, T.W.; Skidmore, A.K.; Darvishzadeh, R.; Wang, T. Leaf to canopy upscaling approach affects the estimation of canopy traits.

GIScience Remote Sens. 2019, 56, 554–575. [CrossRef]
5. Fu, L.; Tola, E.; Al-Mallahi, A.; Li, R.; Cui, Y. A novel image processing algorithm to separate linearly clustered kiwifruits. Biosyst.

Eng. 2019, 183, 184–195. [CrossRef]
6. Sapoukhina, N.; Samiei, S.; Rasti, P.; Rousseau, D. Data augmentation from RGB to chlorophyll fluorescence imaging application

to leaf segmentation of Arabidopsis thaliana from top view images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

7. Panjvani, K.; Dinh, A.V.; Wahid, K.A. LiDARPheno—A low-cost lidar-based 3D scanning system for leaf morphological trait
extraction. Front. Plant Sci. 2019, 10, 147. [CrossRef]

8. Hu, C.; Li, P.; Pan, Z. Phenotyping of poplar seedling leaves based on a 3D visualization method. Int. J. Agric. Biol. Eng. 2018,
11, 145–151. [CrossRef]

9. Wu, S.; Wen, W.; Wang, Y.; Fan, J.; Wang, C.; Gou, W.; Guo, X. MVS-Pheno: A portable and low-cost phenotyping platform for
maize shoots using multiview stereo 3D reconstruction. Plant Phenomics 2020, 2020, 1848437. [CrossRef]

10. Wang, Y.; Wen, W.; Wu, S.; Wang, C.; Yu, Z.; Guo, X.; Zhao, C. Maize plant phenotyping: Comparing 3D laser scanning, multi-view
stereo reconstruction, and 3D digitizing estimates. Remote Sens. 2018, 11, 63. [CrossRef]

11. Xu, H.; Hou, J.; Yu, L.; Fei, S. 3D Reconstruction system for collaborative scanning based on multiple RGB-D cameras. Pattern
Recognit. Lett. 2019, 128, 505–512. [CrossRef]

12. Teng, X.; Zhou, G.; Wu, Y.; Huang, C.; Dong, W.; Xu, S. Three-dimensional reconstruction method of rapeseed plants in the whole
growth period using RGB-D camera. Sensors 2021, 21, 4628. [CrossRef] [PubMed]

13. Lee, J.E.; Park, R.H. Segmentation with saliency map using colour and depth images. IET Image Process. 2015, 9, 62–70. [CrossRef]
14. Hu, Y.; Wu, Q.; Wang, L.; Jiang, H. Multiview point clouds denoising based on interference elimination. J. Electron. Imaging 2018,

27, 023009. [CrossRef]
15. Ma, Z.; Sun, D.; Xu, H.; Zhu, Y.; He, Y.; Cen, H. Optimization of 3D Point Clouds of Oilseed Rape Plants Based on Time-of-Flight

Cameras. Sensors 2021, 21, 664. [CrossRef] [PubMed]
16. Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn

architecture. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; pp. 213–228.
17. van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine learning in plant science and plant breeding. Iscience 2021,

24, 101890. [CrossRef] [PubMed]
18. Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture.

Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [CrossRef]

http://doi.org/10.3389/fpls.2018.01952
http://dx.doi.org/10.34133/2019/2765120
http://dx.doi.org/10.1111/tpj.14139
http://www.ncbi.nlm.nih.gov/pubmed/30368955
http://dx.doi.org/10.1080/15481603.2018.1540170
http://dx.doi.org/10.1016/j.biosystemseng.2019.04.024
http://dx.doi.org/10.3389/fpls.2019.00147
http://dx.doi.org/10.25165/j.ijabe.20181106.4110
http://dx.doi.org/10.34133/2020/1848437
http://dx.doi.org/10.3390/rs11010063
http://dx.doi.org/10.1016/j.patrec.2019.10.020
http://dx.doi.org/10.3390/s21144628
http://www.ncbi.nlm.nih.gov/pubmed/34300368
http://dx.doi.org/10.1049/iet-ipr.2014.0044
http://dx.doi.org/10.1117/1.JEI.27.2.023009
http://dx.doi.org/10.3390/s21020664
http://www.ncbi.nlm.nih.gov/pubmed/33477933
http://dx.doi.org/10.1016/j.isci.2020.101890
http://www.ncbi.nlm.nih.gov/pubmed/33364579
http://dx.doi.org/10.1007/s00253-020-10888-2


Plants 2022, 11, 3342 21 of 21

19. Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants.
Trends Plant Sci. 2016, 21, 110–124. [CrossRef]

20. Grinblat, G.L.; Uzal, L.C.; Larese, M.G.; Granitto, P.M. Deep learning for plant identification using vein morphological patterns.
Comput. Electron. Agric. 2016, 127, 418–424. [CrossRef]

21. Duan, T.; Chapman, S.; Holland, E.; Rebetzke, G.; Guo, Y.; Zheng, B. Dynamic quantification of canopy structure to characterize
early plant vigour in wheat genotypes. J. Exp. Bot. 2016, 67, 4523–4534. [CrossRef]

22. Itakura, K.; Hosoi, F. Automatic leaf segmentation for estimating leaf area and leaf inclination angle in 3D plant images. Sensors
2018, 18, 3576. [CrossRef] [PubMed]

23. Jiang, Y.; Li, C.; Takeda, F.; Kramer, E.A.; Ashrafi, H.; Hunter, J. 3D point cloud data to quantitatively characterize size and shape
of shrub crops. Hortic. Res. 2019, 6, 43. [CrossRef] [PubMed]

24. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of
the 1st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30.

25. Masuda, T. Leaf area estimation by semantic segmentation of point cloud of tomato plants. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1381–1389.

26. Li, D.; Li, J.; Xiang, S.; Pan, A. PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants. Plant
Phenomics 2022, 2022, 9787643. [CrossRef] [PubMed]

27. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. Acm
Trans. Graph. (tog) 2019, 38, 1–12. [CrossRef]

28. Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al.
Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272.

29. Pan, L.; Chew, C.M.; Lee, G.H. PointAtrousGraph: Deep hierarchical encoder-decoder with point atrous convolution for
unorganized 3D points. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, 31 May–31 August 2020; pp. 1113–1120.

30. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. (ToG) 2013, 32, 1–13. [CrossRef]
31. Mitra, N.J.; Pauly, M.; Wand, M.; Ceylan, D. Symmetry in 3d geometry: Extraction and applications. Comput. Graphics Forum

2013, 32, 1–23. [CrossRef]
32. Yang, B.; Wen, H.; Wang, S.; Clark, R.; Markham, A.; Trigoni, N. 3d object reconstruction from a single depth view with adversarial

learning. In Proceedings of the IEEE international Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 679–688.

33. Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. Pcn: Point completion network. In Proceedings of the IEEE 2018 International
Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 728–737.

34. Pan, L.; Chen, X.; Cai, Z.; Zhang, J.; Zhao, H.; Yi, S.; Liu, Z. Variational relational point completion network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8524–8533.

35. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. In Proceedings of the 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018.

36. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

37. Pagani, L.; Scott, P.J. Curvature based sampling of curves and surfaces. Comput. Aided Geom. Des. 2018, 59, 32–48. [CrossRef]
38. Fan, H.; Su, H.; Guibas, L.J. A point set generation network for 3d object reconstruction from a single image. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 605–613.
39. Vu, T.; Kim, K.; Luu, T.M.; Nguyen, T.; Yoo, C.D. SoftGroup for 3D Instance Segmentation on Point Clouds. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2708–2717.
40. Wang, X.; Liu, S.; Shen, X.; Shen, C.; Jia, J. Associatively segmenting instances and semantics in point clouds. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4096–4105.
41. Liu, M.; Sheng, L.; Yang, S.; Shao, J.; Hu, S.M. Morphing and sampling network for dense point cloud completion. In Proceedings

of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11596–11603.
42. Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. Pf-net: Point fractal network for 3d point cloud completion. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7662–7670.
43. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp.
1912–1920.

44. Li, R.; Li, X.; Heng, P.A.; Fu, C.W. Point cloud upsampling via disentangled refinement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 344–353.

45. Guo, M.H.; Cai, J.X.; Liu, Z.N.; Mu, T.J.; Martin, R.R.; Hu, S.M. Pct: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199.
[CrossRef]

46. Yi, L.; Kim, V.G.; Ceylan, D.; Shen, I.C.; Yan, M.; Su, H.; Lu, C.; Huang, Q.; Sheffer, A.; Guibas, L. A scalable active framework for
region annotation in 3d shape collections. ACM Trans. Graph. (ToG) 2016, 35, 1–12. [CrossRef]

47. Tchapmi, L.P.; Kosaraju, V.; Rezatofighi, H.; Reid, I.; Savarese, S. Topnet: Structural point cloud decoder. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 383–392.

http://dx.doi.org/10.1016/j.tplants.2015.10.015
http://dx.doi.org/10.1016/j.compag.2016.07.003
http://dx.doi.org/10.1093/jxb/erw227
http://dx.doi.org/10.3390/s18103576
http://www.ncbi.nlm.nih.gov/pubmed/30360406
http://dx.doi.org/10.1038/s41438-019-0123-9
http://www.ncbi.nlm.nih.gov/pubmed/30962936
http://dx.doi.org/10.34133/2022/9787643
http://www.ncbi.nlm.nih.gov/pubmed/35693119
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1111/cgf.12010
http://dx.doi.org/10.1016/j.cagd.2017.11.004
http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1145/2980179.2980238

	Introduction
	Materials and Methods
	Experimental Materials
	Mix-Net Based Seedling Point Cloud Processing Method
	Overview
	Data Acquisition
	Point Cloud Preprocessing
	Datasets Construction
	MIX-NET Network for Segmenting and Completing Point Clouds
	Neighborhood Aggregation Strategy
	Point-Mixer Mechanism
	Loss Function


	Results
	Point-Cloud Noise Removing
	Evaluation Metrics
	Effectiveness of MIX-Net Network on Seedling Datasets
	Results of MIX-Net Applied to Leaf Completion under Self-Supervised Learning
	Results of MIX-Net Applied to Leaf Completion under Supervised Learning
	Nondestructive Leaf Area Measurement Results Using MIX-Net

	Discussion
	Point Cloud Classification Results on the Modelnet40 Datasets
	Point Cloud Segmentation Results on the ShapeNet-Part Dataset
	Point Cloud Completion Validated on a ShapeNet-Part Dataset
	Ablation Experiments

	Conclusions
	References

