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Abstract: This review highlights the relationship between the metabolism of reactive oxygen species
(ROS), reactive nitrogen species (RNS), and H2S-reactive sulfur species (RSS). These three metabolic
pathways, collectively termed reactive oxygen, nitrogen, and sulfur species (RONSS), constitute a
conglomerate of reactions that function as an energy dissipation mechanism, in addition to allowing
environmental signals to be transduced into cellular information. This information, in the form of
proteins with posttranslational modifications or signaling metabolites derived from RONSS, serves as
an inducer of many processes for redoxtasis and metabolic adjustment to the changing environmental
conditions to which plants are subjected. Although it is thought that the role of reactive chemical species
was originally energy dissipation, during evolution they seem to form a cluster of RONSS that, in
addition to dissipating excess excitation potential or reducing potential, also fulfils essential signaling
functions that play a vital role in the stress acclimation of plants. Signaling occurs by synthesizing
many biomolecules that modify the activity of transcription factors and through modifications in thiol
groups of enzymes. The result is a series of adjustments in plants’ gene expression, biochemistry, and
physiology. Therefore, we present an overview of the synthesis and functions of the RONSS, considering
the importance and implications in agronomic management, particularly on the biostimulation of crops.

Keywords: biostimulants; redox homeostasis; plant stress; tolerance inductors; elemental sulfur;
sulfur nanoparticles; nitric oxide; ROS; RNS; RSS

1. RONSS Integration as a Metabolic Cluster

Plant metabolism consists of a conglomerate of chemical reactions in which free energy
is dissipated from physical sources such as radiation or chemical sources that store energy
in chemical bonds or chemical potentials. What is obtained in organisms is metabolic
energy, biomolecules, and information to maintain cellular, tissue, and organ structures in
a dynamic steady state.

Cellular metabolism processes are believed to be descendants of ancient abiotic pro-
cesses that dissipate free energy from physical and chemical sources, which occurred before
the emergence of organized cell life [1–3]. Such abiotic processes are supposed to have
arisen spontaneously as one of several physicochemical mechanisms through which the
primordial Earth system dissipated free energy from the Sun or the stores of substances in
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the Earth’s crust [4,5]. It is thought that many of these processes occurred through reactions
that involved the transfer of electrons [6], which could partly explain the preponderance of
redox processes in the metabolism of modern organisms [7].

The goal of the above processes was to maximize entropy generation from free en-
ergy [4,8]. One way to maximize the entropy produced is to carry out cooperative work
between different molecular species, which implies the collective organization of diverse
functions in conglomerates or clusters [1,4]. It can be assumed that molecular conglomerates
functioned as collaborative energy-channeling mechanisms. Different molecular complexes
probably organized themselves to transfer energy from one molecular species to another,
making the process of energy dissipation (or entropy generation) more effective than the result
of the individual functions [9]. The chemical conglomerates or clusters were dedicated to
dissipating free energy in the form of reduction potential to produce reactive chemical species
such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur
species (RSS), collectively termed reactive oxygen, nitrogen, and sulfur species (RONSS).

The cooperative work of the different components in different compartments required
the creation of networks for the transmission of endogenous information that improved the
ability to adjust to the conditions of the environment [1,4,10]. These information networks,
which could include organic and inorganic soluble and volatile compounds (Figure 1), were
possibly the ancestors of cell signaling processes. In Figure 1, RONSS resulting from the energy
dissipation by H2S, ·NO, and inorganic and organic compounds (and lately O2) became part of
the information system that monitored the energy state or redoxtasis of the different processes,
regulating the joint action of the different components. In particular, the RSSH derived from
the interaction of H2S with thiols could be, due to their amphiphilic nature, chemical agents
that increased the system’s flexibility in terms of the degrees of freedom available for the
flow of electrons. Some elements such as K, Mg, Fe, Na, and Si possibly formed activation or
protection systems for various components of the system. It is possible that some abundant
elements, such as Fe and other heavy metals, have not been used in more significant volumes
due to their ability to trigger oxidative reactions, which could cause system instability due to
RONSS saturation. Therefore, Fe in biological organisms functions as a trace element.

Compartmentalization gave rise to more sophisticated systems for copying structures,
the precursors of reproduction systems, probably based on the ability to store information
on functional patterns through the emergence of Hopfield-like attractor dynamics [11].
Such compartmentalization may have given rise to the first cellular organisms with different
metabolic abilities, according to the energy and matter use niche in which they evolved [1].Plants 2022, 11, x FOR PEER REVIEW 3 of 29 
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chemical signals created by metabolites. It is possible that the RSS:RNS ratio, and later the 
RSS:RNS:ROS ratio, modified the redox homeostasis of the prebiotic system, modified internal sig-
nals, and caused changes in the nucleic acids, proteins, peptides, and other organic molecules of the 
prebiotic supramolecular complexes [12,13]. E: energy; RSS: reactive sulfur species; RNS: reactive 
nitrogen species; ROS: reactive oxygen species. 
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different phenomena that allow cellular life. The metabolic pathways that produce reac-
tive species of certain elements, such as S (RSS), N (RNS), and O (ROS), can be an example 
of the above since they are linked to energy metabolism, functioning as dissipative pro-
cesses of the reduction potential in excess [15,16] and can, to a certain extent, be visualized 
as a cluster of processes with diverse functions: the primary being energy dissipation, fol-
lowed by information transfer or signaling. The dissipative processes possibly did not in-
itially have a goal of regulation or control of the redoxtasis but were spontaneous pro-
cesses for energy dissipation. Their use as regulatory or signaling agents may be a later 
adaptation [17]. 

Other inorganic reactive species, e.g., I, Se, and P reactive species, and RONSS-de-
rived reactive species such as lipid hydroperoxides (LOOH), carbonyl species (RCS), and 
malondialdehyde (MDA), have similar signaling functions [18–23]. However, they may 
operate at smaller concentrations than S, N, and O reactive species. 

Perhaps initially with a preponderance of the RSS (H2S) and RNS (·NO) during the 
long Archean anoxygenic phase of planetary evolution, to later incorporate ROS [24,25], 
when O2 increased its concentration during the Proterozoic phase of Earth’s evolution 
[6,26,27]. However, if O2 or oxygen compounds such as H2O2 were present as traces before 
the complete oxygenic phase ([atmospheric O2] > 2%) [28], they could be sources of ROS. 
In the latter case, the joint evolution of the RONSS could have started before the concen-
tration of O2 rose substantially. 

Figure 1. Schematic representation of a prebiotic supramolecular complex that processes energy
and matter [1]. The different components represented by the colored rectangles carried out spe-
cialized functions and interacted with each other coordinating through energy signals (redoxtasis)
and chemical signals created by metabolites. It is possible that the RSS:RNS ratio, and later the
RSS:RNS:ROS ratio, modified the redox homeostasis of the prebiotic system, modified internal sig-
nals, and caused changes in the nucleic acids, proteins, peptides, and other organic molecules of the
prebiotic supramolecular complexes [12,13]. E: energy; RSS: reactive sulfur species; RNS: reactive
nitrogen species; ROS: reactive oxygen species.
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As a consequence of the above, the metabolic processes of living organisms not only
function as a mechanism to maintain the structure and functions of organisms but, as a
consequence of their intrinsic dissipative nature, they still operate cooperatively to maxi-
mize the generation of entropy [8,14]. Metabolism is the set of biochemical processes that,
in addition to processing matter and information, allows the acquisition, transformation,
and dissipation of free energy available in the environment. Metabolism comprises a set
of supramolecular conglomerates or clusters that work cooperatively, giving rise to the
different phenomena that allow cellular life. The metabolic pathways that produce reactive
species of certain elements, such as S (RSS), N (RNS), and O (ROS), can be an example of the
above since they are linked to energy metabolism, functioning as dissipative processes of
the reduction potential in excess [15,16] and can, to a certain extent, be visualized as a clus-
ter of processes with diverse functions: the primary being energy dissipation, followed by
information transfer or signaling. The dissipative processes possibly did not initially have
a goal of regulation or control of the redoxtasis but were spontaneous processes for energy
dissipation. Their use as regulatory or signaling agents may be a later adaptation [17].

Other inorganic reactive species, e.g., I, Se, and P reactive species, and RONSS-derived
reactive species such as lipid hydroperoxides (LOOH), carbonyl species (RCS), and malon-
dialdehyde (MDA), have similar signaling functions [18–23]. However, they may operate
at smaller concentrations than S, N, and O reactive species.

Perhaps initially with a preponderance of the RSS (H2S) and RNS (·NO) during the long
Archean anoxygenic phase of planetary evolution, to later incorporate ROS [24,25], when
O2 increased its concentration during the Proterozoic phase of Earth’s evolution [6,26,27].
However, if O2 or oxygen compounds such as H2O2 were present as traces before the
complete oxygenic phase ([atmospheric O2] > 2%) [28], they could be sources of ROS. In the
latter case, the joint evolution of the RONSS could have started before the concentration of
O2 rose substantially.

The final integration and cooperation of RONSS may result, through the self-organization
and creation of novelties that characterize complex systems [29], in the obtention of cooperative
systems to transform free energy into information [30,31]. The information accumulated in the
dynamic structures and the complexes of structures coordinated through signaling allowed
the synchronization of the activities of the metabolism: first, coordinated abiotic processes,
and later cellular metabolism [6,7,32,33].

Considering the abovementioned assumptions and that the different metabolic path-
ways for the energy dissipation and matter transformation may have formed cooperative
clusters during the prebiotic era, it is to be expected that RONSS constitutes in modern
organisms a system tightly coupled and coordinated with the rest of the cellular pro-
cesses (Figure 2) [7,27,34]. The impact and biological functions of reactive species on
plants have been extensively described in the scientific literature for ROS, RNS, and RSS
individually [12,22,33,35–44]. It has been determined to a much lesser extent for the
ROS–RNS, ROS–RSS, and RNS–RSS pairs [45–56] and to a lesser extent for the RONSS
cluster [13,34,57–59,59–61].

The issue of the agricultural application of the RONSS constitutes, in addition to a
fertile field for scientific research, a potential seedbed for the development of innovations
in the field of biostimulants for crop production [34,57,60,61]. This manuscript aims to
present a brief view of the metabolism of RONSS and their use as plant biostimulants.
Different literature sources are presented, which comprise the application of at least two of
the various reactive species in priming, signaling, and adaptive processes.
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Figure 2. Model of different energy capture and dissipation processes. Both photosynthesis and
respiration, as well as the metabolism coupled with these activities, constitute dissipative mechanisms.
Photosynthesis and respiration are further associated with other photochemical and biochemical
energy dissipation pathways, including the production of RONSS. During the abiotic evolutionary
process and later during the early biotic evolution, the production of RONSS went from being only
a mechanism for the dissipation of free energy, with the consequent generation of entropy, also
constituting a mechanism for regulation and transfer of information on redox and energy status
between the different components of the system.

2. RONSS in Plant Metabolism

The sources of RONSS for plants are O2·− from atmospheric O2; ·NO generated
mainly from nitrogenous compounds (NO3

−, NO2
−, and amino acids) that the plant takes

as nutrients and to a much lesser extent from traces of ·NO present in the atmosphere; and
the H2S produced as part of the assimilation of the sulfur compounds that the plant takes
as nutrients and to a much lesser extent the traces of H2S and other compounds such as
dimethyl sulfide (DMS) and carbonyl sulfide (COS) present in the atmosphere.

Figures 3–5 present the transformations in plant cells to obtain the different reactive
species, ROS, RNS, and RSS.
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Figure 3. Most important sources of ROS in plant cells. Singlet oxygen (1O2) may originate from
excited triplet chlorophylls (Chl) that activate ground-state O2 in the photosystem II (PSII) reaction
center. In PSI, superoxide and hydrogen peroxide can be produced by reducing O2. In the mito-
chondrial electron transport chain, complexes CI, CII, and CIII are ROS-generating systems. AltDH,
alternative dehydrogenase; AOX, alternative oxidase; cyt. c, cytochrome c; CI-V, mitochondrial
complex I–V; PGA, phosphoglycerate; PS, photosystem; PRX, peroxidase; RBOH, respiratory burst
oxidase homologs; RuBP, ribulose 1,5-bisphosphate; Sugar-P, sugar–phosphate; TCA, tricarboxylic
acid. Modified from [62].
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Figure 4. Metabolism of ·NO in plant cells. ·NO can be produced by nitrate reductase (NR), L-Arg
NO synthase (NOS), or other reductive processes. ·NO can react by S-nitrosation with glutathione
(GSH) to form S-nitrosoglutathione (GS-N=O). GS-N=O can be converted by S-nitrosoglutathione
reductase (GSNOR) into oxidized glutathione (GSSG) and NH3. As part of the signaling process, the
protein sulfhydryl groups can react with GS-N=O and other S-nitrosothiols to produce S-nitrosated
proteins (P-S-N=O). Peroxynitrite (ONOO−) is an oxidant obtained by interacting ·NO with O2·−.
The NOOO− can mediate the nitration of proteins (P-Tyr-NO2) and fatty acids (NO2-FAs). ·NO in
the presence of O2 is transformed into N2O3 and NO2, which are subsequently transformed into
NO2

− and NO3
− in aqueous media. Modified from [40].
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Figure 5. A simplified model of the interactive action of ROS, RNS, and RSS (RONSS) on plant
responses during development events or stress-inducing environmental challenges.

2.1. Reactive Oxygen Species

Figure 3 illustrates the processes associated with ROS synthesis in plant cells. ROS are
the result of a sequential series of one-electron reductions of dioxygen:

O2 ← e− → O2·− ← e− → O2
2− ← e− → O2

3− → O− + e− → O2− (1)

↓ + 2H+ ↓ + 2H+
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H2O H2O

With the contribution of H+, the ROS are transformed as follows:

O2
− + H+ → HO2· (perhydroxyl radical) (2)

O2
2− + 2H+ → H2O2 (3)

O− + H+ → OH· (hydroxyl radical) (4)

O2− + 2H+ → H2O (5)

The above processes allow the dissipation of the excess reducing potential that oc-
curs; for example, in chloroplasts under conditions of high irradiance, or low or high
temperature, in mitochondria when low temperatures occur, and in general under any
situation that causes an imbalance between the production and the metabolic use of the
reducing potential.

The presence of unpaired electrons in O2, the high electronegativity (only less than
that of F), and the various oxidation states of oxygen (Table 1) explain its ability to accept
electrons successively, forming different ROS. S and N are also highly electronegative
elements (with S > N), partly explaining their ability to form reactive species.

Table 1. Representative oxygen compounds and their oxidation state. ROS are in bold letters.

Oxidation State Representative Compound and Formula

+2 OF2

+1 O2F2

0 O2

−1/2 All superoxides, O2
−, O2

−, HO2

−1 All the peroxides, H2O2, HO2
−, HO

−2 All the oxides, H2O, CO2

In addition to their energy dissipation role, ROS act as signaling agents in practically
all metabolic and plant development processes [6,63,64]. Interaction with ROS produces
peroxidative changes in membranes, protein cysteine and transcription factors, nucleic
acids and histones, and low molecular weight metabolites. The above changes modify
the functionality of biomolecules, allowing cellular behavior adjustments in response to
changes in the redox balance. An example is ROS peroxidation of protein cysteines to
sulfenic acid (RSOH). This is a class of oxidative posttranslational modification (oxPTM) of
proteins that modifies the redox properties and the capacity for interaction in the cellular
environment of the modified protein [6,65]:

RSH + H2O2 → RSOH + H2O (6)

This kind of modification can, for example, change the ability of transcription factors
or histones to interact with DNA or the stability or capacity of an enzyme to bind to its
substrate. The ROS oxPTM of proteins occurs, for example, in Calvin cycle enzymes, sulfur
and starch metabolism, and the proteins hormone-responsive associated with adaptation
to stressful environments [66].

The above oxidation of thiols can be reversed using the reducing potential of NADPH:

RSOH + NADPH→ RSH + H2O + NADP+ (7)

acting effectively as a redox switch to move from one protein signaling state to a different
one. Most likely, during the prebiotic stage of evolution, this reversible mode of chemical
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reaction was greatly favored by the ability to dissipate large amounts of free energy using a
relatively modest investment in molecular infrastructure.

The epigenomic, proteomic, and metabolomic modifications mentioned above change
plants’ phenotype and developmental events, leading to substantial changes in chemi-
cal composition, morphology, life cycle, and in general adaptive capacity in a dynamic
environment [34,67]. On the other hand, the products of the oxidation of the fatty acids
of the membranes, of the thiol groups of the proteins, and several metabolites also con-
stitute a signaling mechanism (through the sensing of the reduction:oxidation balances,
e.g., NADPH:NADP+, ascorbate:dehydroascorbate, and GSH:GSSH), functioning as a
system for perceiving the internal energy states of the system [67,68].

2.2. Reactive Nitrogen Species

Nitric oxide (·NO) can be considered the primary RNS (Table 2). It is an ancient sig-
naling molecule present in prokaryotes and eukaryotes, including animals and plants [69].
According to Astier et al. [70], although ·NO is a common chemical theme in the signaling
of all living organisms, the way of using the signal to obtain cellular responses (the ·NO
signaling enzymes) seems to have diverged among the different lineages of eukaryotes,
and it is different between plants and animals. Those mentioned above may be part of
the explanation for the different responses of animals and plants when exposed to RNS.
For example, ·NO2 is toxic and is an allergenic agent for animals, but in plants, it is used
as a signaling agent [71]. S-nitrosothiols occur as signaling agents in both animals and
plants [70]. On the other hand, peroxynitrites are characterized as signaling agents capable
of inducing more significant toxicity in animals than in plants. In fact, in mammals can
cause guanine nitration leading to mutations and cancer due to guanine mispairs. Mean-
while, in plants, peroxynitrites can be inactivated in the presence of CO2, producing CO3

−

and ·NO2. The toxicity of ·NO is mainly due to the formation of NO-derived oxidants
characterized by greater reactivity than ·NO [72].

Table 2. Representative nitrogen compounds and their oxidation state. RNS are in bold letters.

Oxidation State Representative Compound and Formula

+5 HNO3, NO3
−, ONOO− (peroxynitrite)

+4 ·NO2 (nitrogen dioxide), N2O4

+3 HNO2, NO2
−, S-nitrosothiols (RS-N=O), NO+

+2 ·NO (nitric oxide)

+1 N2O (nitrous oxide), NO−

0 N2

−1 NH2OH (hydroxylamine)

−2 N2H4 (hydrazine)

−3 NH3, NH4
+

In animals, ·NO is primarily synthesized by nitric oxide synthase [73], while in plants,
·NO is endogenously produced by different enzyme systems. Among them are the ox-
idative pathway of the L-Arg NO synthase analogs, by reductive mechanisms such as
nitrate reductase (NR) that produces NO2 that is reduced to ·NO by the NR itself, or by
the plasma membrane-bound NO-forming nitrite reductase (NOFNiR). The mitochondrial
complexes, mainly III and IV, as well as complexes I, II, alternative dehydrogenase, and
cytochrome c, also generate ·NO reductively from NO2

− [74]. Alternative oxidase (AOX)
also produces ·NO under anoxic or hypoxic conditions in the mitochondria [75], although
under normoxia, AOX removes excess ·NO. Under anoxic conditions and in N2 fixation
nodules, nonsymbiotic hemoglobins collaborate with mitochondria creating a Phytogb1-
NO cycle of ·NO→ NO3

− → ·NO that generates anoxic ATP and allows the control of
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NADPH levels. In addition to NR and NOFNiR, some molybdoenzymes, such as xan-
thine oxidases, aldehyde oxidases, and sulfite oxidases, seem to possess NO2

− reductive
capacity [22,74,76].

As in the case of ROS, the presence of RNS is associated with dissipation processes of
free energy/reducing potential. The preceding is because the main RNS depend on their
synthesis on the interaction of ·NO with the other reactive species that dissipate free energy,
ROS, and RSS; secondly, the synthesis of ·NO is privileged when a plentiful supply of
reducing potential (electron pressure) occurs. Electron pressure is substantial, for example,
under high irradiance or stress conditions that disturb the flow of electrons in transport
chains such as low temperature, water deficit, or salinity. The nonenzymatic reduction of
NO2

− to ·NO in the presence of high nitrate concentrations in a highly reducing condition
or low pH can indeed occur [71,76].

·NO generates other SNRs such as peroxynitrite (ONOO−), a reaction product between
O2
− and ·NO [77]. This reaction allows the dissipation of the stored reducing potential

resulting from the reduction of NO3
− to ·NO:

O2
− + ·NO→ ONOO− (8)

ONOO− + H+ → ONOOH→ HO· + ·NO2 → NO3
− + H+ (9)

S-Nitrosothiols are another class of RNS resulting from the reaction of ·NO with thiol
groups, as occurs, for example, when reacting with specific protein sulfhydryl groups to
mediate signaling by the S-nitrosated proteins or with H2S or glutathione (GSH), to form
S-nitrosoglutathione (GS-N=O) [77].

·NO + H2S→ HS-N=O + H+ (10)

·NO + GSH→ GS-N=O + H+ (11)

These latter reactions also allow the reduction potential to dissipate. As previously
stated, the recovery of the reduced state of thiols requires the consumption of reducing
potential (NADH, NADPH, GSH) and the action of the enzyme S-nitrosoglutathione
reductase (GSNOR), which catalyzes the irreversible GS-N=O conversion to oxidized
glutathione (GSSH) [22].

In addition to their energy dissipation role, RNS are signaling molecules in practically
all metabolic and plant development processes (Figure 4). The main mechanisms by which
RNS modify cell behavior are through S-nitrosation, nitration, and metal
nitrosylation [20,40,77].

S-Nitrosation consists of the formation of S-N=O due to the covalent attachment
between ·NO and the thiol (–SH) of cysteine (Cys). This reversible posttranslational mod-
ification (PTM) of proteins is one of the most important mechanisms for NO signaling.
The S-N=O group additionally functions as a donor and reservoir of ·NO. Proteins mod-
ified by S-nitrosation change their functionality, inducing rapid and reversible cellular
proteome changes [40].

Nitration is the addition, mediated by ONOO−, of a nitro group (–NO2) into proteins,
fatty acids, or nucleic acids. In proteins, the most-studied nitration type results in a
nitro-tyrosine formation. However, it also occurs in other amino acids such as cysteine,
tryptophan, and methionine. Nitration of amino acids can lead to gain or loss of protein
function or even absence of an effect. The most common result is the loss of function [40].

Metal nitrosylation occurs when ·NO interacts with the transition metals present in
proteins. Little information is available on the plants in this process [40].

Similar to ROS, RNS (·NO, ONOO−, ·NO2) react with fatty acids or LOO· (lipid
peroxy radicals), forming reactive lipid species called nitro-fatty acids (NO2-FAs). NO2-FAs
constitute signaling molecules and modulate gene expression during stress events and
developmental processes [22,78].
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2.3. Reactive Sulfur Species

The synthesis of H2S and other RSS is coupled with the metabolism of S that allows for
obtaining the S2− and S− necessary for cellular functions. At the same time, it is a dissipative
process that consumes reducing potential, transforming oxidized sulfur species such as S0,
SO4

2−, SO3
2−, and S2O3

2− into species with a very high reducing potential, such as H2S
with −0.23 V and glutathione (GSSG/GSH) with −0.24 V [79,80]. The reverse oxidative
process, from H2S to S0 through sequential one-electron oxidations, is the source of RSS
(Table 3) such as thiyl radical (HS·), hydrogen persulfide (H2S2), persulfide ‘supersulfide’
radical (HS2·−), and elemental sulfur (S0) [6].

S0← e− → HS2
− ← e− → H2S2 ← e−→ HS· ← e− → H2S (12)

Table 3. Representative sulfur compounds and their oxidation state. RSS are in bold letters.
Modified from [79].

Oxidation State Representative Compound and Formula

+6 Sulfate, SO4
2−

+6 and −2 Thiosulfate, S2O3
2−

+5 and −2

Polythionates (-O3S-Sn-SO3-)2−

Dithionate, S2O6
2−

Trithionate, S3O6
2−

Tetrathionate, S4O6
2−

+4

Sulfur dioxide, SO2
Sulfite, SO3

2−

Disulfite, S2O5
2−

Sulfonic acid (RSO3H) from ROS-mediated protein sulfonylation.
Sulfone, OS(S) the oxidation product of sulfoxides.

+3 Dithionite, S2O4
2−

Disulfide-S-dioxide (thiosulfonate) RS(O2)SR

+2 Carbonyl Sulfide (COS), OCS.
Sulfinic acid (RSO2H) from ROS-mediated protein sulfinylation.

+1 Disulfide-S-monoxide (thiosulfinate) RS(O)SR

0

S0 (sulfane sulfur), elemental sulfur, mainly S8 (cycloocta-S).
Sulfoxide (R-S(-O)-R such as the dimethyl sulfoxide (DMSO).
Oxidized derivatives of sulfide and sulfenic acid (RSOH) from
ROS-mediated protein sulfenylation.
Near the six electrons, valence S0 never exists by itself. Sulfane sulfur (S0,
S-S, or S2) is labile. There are a variety of compounds such as S8,
thiosulfate, polysulfanes, and polysulfides, that contain S0

−1

Disulfide (RSSR) is a persulfide −S-S− found in the linkages between two
cysteine residues in proteins. RSSH denotes persulfides (also called
hydrosulfides or hydropersulfides) obtained by the action of H2S on
cysteine residues (R-SH). Thioethers and thiols can be oxidized to
disulfides.
Persulfides such as CysSSH, GSSH, and protein-SSH act as signaling
compounds in organisms.
Major products of the decomposition of persulfides are polysulfanes
Disulfide-S-monoxide (thiosulfinate) RS(O)SR
Disulfide-S-dioxide (thiosulfonate) RS(O2)SR
Thiyl-radical HS· or RS·
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Table 3. Cont.

Oxidation State Representative Compound and Formula

−2

Sulfide, S2
− and organic polysulfides, S2

2−, S3
2−, S5

2−

Disulfides (R-S-S-R)
Carbon disulfide (CS2)
FeS2
NaHS and Na2S are sources of S2

− and of its conjugated acids SH−

and H2S.
Organic and inorganic polysulfides (with Sn > 2) contain S0 atoms, which
allows a diversity of oxidation states.

−2

Hydrogen sulfide (H2S), disulfane or hydrogen persulfide (H2S2), H2S3,
other inorganic polysulfides (H2Sx) x ≥ 1, and polysulfanes (RSSnH,
RSSnSR, n > 2). Polysulfanes contain S0 atoms, which allows a diversity of
oxidation states.

−2 Thioethers (C-S-C) such as dimethyl sulfide (DMS), CH3-S-CH3 and
dimethyl disulfide (DMDS), CH3-S-S-CH3.

−2

Thiols (R-SH) such as glutathione (GSH) and methyl mercaptan, CH3-SH.
Thiols are derived from the sulfhydryl group -SH of cysteine that enables
multiple oxidation states (−2 to +6).
Thiolates are anionic derivatives of thiols in which a metal or other cation
replaces H.

The reducing potential of H2S can also be used to reduce disulfides, such as glutathione
disulfide (GSSG) and certain protein-based disulfides (PrSSG, PrSSPr). The persulfuration
and polysulfuration of protein thiols to obtain persulfides R-S-SH are of great importance
in cell signaling [20,81], as well as S2− found in biomolecules and H2S, which can be
partially oxidized to obtain polysulfides (H2Sx y S2

2−, S3
2−, S5

2−) that are RSS involved
in cell signaling. It appears that H2S exerts signaling actions indirectly via H2S-derived
polysulfides, such as the persulfides RS-SH obtained by the action of H2S on thiols and
cysteine residues (R-SH), and higher-order polysulfur compounds, i.e., RSxH, RSxR, with
R = glutathione or protein and x≥ 3. This mechanism can be considered a reversible switch
with value to dissipate reducing potential, to signal the redox state of the system, to protect
protein thiols from oxidation by ROS (e.g., carbonylation) and to regulate the function of
proteins in different metabolic pathways [82]:

RSH (thiol)← e− → R-S-SH← e− → R-Sx-SH (13)

RS-SH contains bound (or sulfane) sulfur, the reactive form of sulfur with a formal
oxidation number of −1, but with the capacity of -S-S- to adopt different oxidation states
(0 to −2), allowing greater diversity and flexibility of posttranslational modification states
in proteins [80,83].

The interaction between thiols and ROS was mentioned previously. The interaction
between H2S and RNS, e.g., ·NO, also generates several classes of H2Sx, which seems
to establish a direct chemical link between the two reactive molecules [20]. Similarly,
GS-N=O when reacting with H2S produces ·NO and a series of RNSS, e.g., SSNO−, HSNO,
and HNO [84]. Polysulfides can also be obtained by a reductive route using GSH and
other RSS (sulfenic acid and thiosulfinates R-S(O)-S-R) and organic polysulfanes (RSSnSR,
n > 2) as precursors [20]. Thiosulfinates are highly reactive toward the thiol groups of
GSH and proteins; they are disulfide-S-monoxides found naturally in Allium spp. and
Petiveria spp. Among the thiosulfinates, allicin is one of the most-studied compounds
used as a biostimulant, microbicide, and medicine [85]. Organic polysulfanes and those
contained in elemental sulfur (S8) and sulfur nanoparticles constitute another group of
thiol-reactive compounds with great potential for agricultural use as biostimulants and
microbicides [79,86–88]. On the other hand, organic polysulfanes (diallyl and dipropyl
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polysulfanes) subject to reduction can generate RSS- (reduced organic persulfides), which
when reacting with GS-N=O produce RSS and ·NO [89].

Similar to ROS and RNS, RSS are important in cell signaling. Indeed, Olson (2020) [6]
notes that RSS has much greater importance than it has been given. The author mentions
that RSS includes a more significant amount of reactive chemical species, in addition to the
fact that once sulfur is oxidized from its−2 state (H2S and S2−) to−1, it can be utilized again
to reductively regenerate H2S from a diversity of organic and inorganic persulfides (RSSH)
and polysulfides (H2Sx), e.g., H2S3, H2S4, CysSSH, CysSSSH, GSH(Sx)H, GSH(Sx)GSH.
Therefore, it is highly likely that a significant source and sink for RSS, compared with
ROS and RNS, exists in the cells. Additionally, RSS signaling flexibility is increased by
modifying the number of S atoms in persulfides and polysulfides. The higher the number
of S atoms, the greater promoted the anionic forms (RSS-) with a nucleophilic character
in the terminal S and electrophilic in the nonterminal S, contrary to what occurs with the
protonated forms (RSSH) with an electrophilic character in both S atoms [82].

Redox signaling in proteins occurs mainly through redox-sensitive cysteine residues.
The -SH group of cysteine has multiple oxidation states (from −2 to +6) that allow a
great diversity of modifications when reacting with ROS, RNS, and RSS (Figure 5). The
mechanism by which RSS works is called persulfidation:

RSH + H2S2 → RSSH + H2S (14)

Persulfidation is an oxidation that can be reversed through thiol exchange:

R1SSH + R2SH→ R1SH + R2SSH (15)

using antioxidant pathways such as peroxiredoxin (Prx), thioredoxin/thioredoxin reductase
(Trx/TrxR), or glutaredoxin (Grx). R1 and R2 can be H or small thiols such as cysteine
(CysSH) or glutathione (GSH) [6].

2.4. Reactive Oxygen, Nitrogen, Sulfur Species (RONSS)

Although the reducing capacity of H2S could directly counteract the oxidizing capacity
of · ·NO and O2

− (Figure 5), the direct antioxidant action of H2S under physiological
conditions does not seem particularly important. This is derived from the volatility and
reactivity of H2S, making it a short-lived chemical species in cells, with HS− and other
RSS being more abundant. Therefore, the antioxidant action of H2S is indirect through the
abovementioned interactions between RSS, RNS, and ROS [39,80].

Crosstalk has been shown to occur between RSS, RNS, and ROS; these interactions have
been studied mainly in signaling molecules ·NO, O2

−, and H2S [60]. For example, H2O2
10 mM induces the synthesis of ·NO in leaf epidermal preparations of Phaseolus aureus [90],
and during the induction of thermotolerance by applying H2O2 in corn seedlings, it was
shown that H2O2 causes an increase in the synthesis of ·NO, which, in turn, causes that of
H2S [91]. With the stimulation of heat shock (45 ◦C for 30 min), A. thaliana plants sprayed
with H2O2 (20–200 µM) increased ·NO; ·NO, in turn, stimulated the activity of catalase,
ascorbate peroxidase, and glutathione reductase that eliminated excess H2O2, reducing
the risk of oxidative damage [92]; ·NO also favors the expression of the mitochondrial
alternative oxidase under salt stress [93].

Similarly, the increase in endogenous H2S by the application of NaHS increased the
activity and gene expression associated with catalase, superoxide dismutase, and peroxi-
dase, reducing the oxidative damage induced by osmotic stress with 0.3 M mannitol [94],
Cd toxicity [95], or Cr stress [96]. An analogous impact of the H2S donor GYY4137 by
reducing ·NO accumulation on stomata has been described [97]. Similarly, in tomato plants
subjected to salinity, ·NO functioned as an inducer of H2S synthesis, but not vice versa [98].
Otherwise, a study with barley seedlings subjected to salinity determined that the biostimu-
lant impact of H2S depends on the endogenous synthesis of ·NO [99]. However, the effects
of H2S on ROS metabolism do not always occur through the promotion of antioxidant



Plants 2022, 11, 3203 12 of 27

enzyme activity, as was demonstrated in peroxisomes, in which H2S is associated with
catalase inhibition [100].

Subsequently, hormones such as auxin [101], melatonin [102], and salicylic acid [103]
can function as downstream signaling in the biostimulation process and improve stress
tolerance. It has also been found that the reverse is true and that applying gibberellic
acid induces the endogenous synthesis of H2S, reducing oxidative damage by boron
toxicity [104]. ·NO has also been associated with plant responses to nanomaterials (NMs),
either in the induction of tolerance to stress by NMs or in the plant response to stress caused
by NMs [105].

RONSS crosstalk also occurs with other gasotransmitters. For example, it was reported
that the favorable impact of H2 on cut flowers seems to be mediated by H2S, which
decreases the expression of genes associated with senescence [106]. Similarly, the CO-
dependent root architecture and the organogenesis of adventitious roots induced by CH4
depends on the induction of the synthesis of ·NO and H2S [107,108]; the greater tolerance
to stress caused by CH4 relies on the synthesis of ·NO [109]. The crosstalk between RSS,
RNS, and ROS and their subsequent impact on signaling molecules and growth regulators
promote cell redoxtasis and could cause different molar ratios between the reactive species
depending on the environmental factors and the cellular development context.

RONSS crosstalk also occurs with Se. Se is an element located in the same group as S,
and like the latter, it also fulfills functions associated with redox homeostasis. Selenium is
an essential element in mammals and macroalgae, with a broad spectrum of functions. One
of the most studied functions is participating in antioxidant selenoproteins, which protect
against oxidative stress and neutralize ROS and RNS. Selenoproteins contain selenocys-
teine and selenomethionine, and to date, the best-identified are those of the glutathione
peroxidase (GPx), iodothyronine deiodinase, thioredoxin reductase, and selenophosphate
synthetase families, which contribute to the maintenance of redoxtasis [110]. Furthermore,
it has been established that the application of Se at low concentrations promotes stress
tolerance, growth, and nutraceutical value [111] due to its impact on antioxidant enzymatic
activity and the synthesis of redox-active metabolites.

It has been shown that the activity of glutathione peroxidase, ascorbate peroxidase,
superoxide dismutase, dehydroascorbate reductase, and monodehydroascorbate reductase
is increased [112,113]. These antioxidant enzymes directly impact ROS, and their effect on
RNS and RSS is indirect, considering what has been exposed about the association between
reactive species (Figure 5). Se has also been related to the increase in the activity of other
non-catalytic proteins, such as thioredoxin (TrxR) and protein P [114]. The impact of Se
on antioxidant metabolites is associated with sulfur metabolism since both elements share
uptake and assimilation pathways; the effects on the concentration of GSH and GSSH have
been described in Allium [115] and Prunus domestica [116]. In species that can reach high
concentrations of S, such as broccoli, the accumulation of glucosinolates is increased [117].

Additionally, it has been shown that the presence of selenium increases the activity of
phenylalanine ammonium lyase (PAL) and the accumulation of phenolic compounds, which
due to their reducing capacity can modify the balance of RONSS [118]. The direct action
of Se on redox homeostasis has also been proposed through the induction of antioxidant
activity by spontaneous reduction of O2

− by GPx or by promoting the synthesis of ascorbic
acid [119]. Another form of the direct action of Se is as a pro-oxidant, causing moderate
oxidative stress with the formation of ROS that triggers the synthesis of enzymatic and
non-enzymatic antioxidants [120].

Despite the close physiological and nutritional relationship between S and Se [121], the
interaction between these elements in their impact on redoxtasis is poorly understood [122].

The adjustments in the molar balances between the different RSS, RNS, and ROS
(Figure 6), as a result of various environmental stimuli and different physiological con-
ditions, give rise, on the one hand, to the diversity of ratios between reactive species,
metabolites, and enzymatic activities that define the cellular redoxtasis [123] and, on the
other hand, to the presence of multiple proteomic [124] and metabolomic landscapes. The
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proteomic differences between individuals at different stages of development and/or in
different environments or growth conditions are a consequence of the interaction of RSS,
RNS, and ROS with cysteine residues or other amino acids such as tyrosine, which can
be subjected to peroxidation, carbonylation, nitrosation, glutathionylation, persulfidation,
sulfenylation, and sulfonylation [66,125].
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Figure 6. The dynamic balance in the relative amount of RSS, RNS, and ROS molecules is represented.
In addition to the modifications of the RSS, RNS, and ROS species profiles, each change in the
balance between the relative quantities (redoxtasis) would imply adjustments in the phenotype
(transcriptome, proteome, metabolome, etc.) of the plant. The changes would be responses to
external environmental signals, such as temperature and irradiance, and endogenous signals from
the organism itself.

3. RONSS as Biostimulants

From the point of view of biostimulation or priming with RONSS, the application
of ROS, RNS, or RSS, or the use in pairs ROS–RNS, ROS–RSS, RNS–RSS constitutes a
relevant and dynamic topic in plant science [50,57,60,61] (Table 4). In the same way, it is
known that the mechanism of action of seed magnetopriming and some biostimulants,
such as melatonin, salicylic acid, and silicon, includes the action of RONSS as signaling
agents [102,103,126–128]. Although many examples are known where the application of
RONSS induces favorable responses to stress, an increase in productivity or yield, or an
improvement in nutritional composition in plants, there are still many gaps in knowledge
about the molecular mechanisms involved in cellular responses [34,60,61]. The explanation
of the above gaps lies in the great complexity of the interactions of the RONSS with the
different cellular components [57,60].
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Table 4. Some examples of studies where the favorable impact of applying at least two of the reactive
species: ROS, RNS, and RSS or their precursors in plants has been demonstrated.

Impact on the Plant Reactive Species Plant Species Reference

Decreased absorption and/or
toxicity of heavy metals

H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO

Medicago sativa
Sesamum indicum
Triticum aestivum
Triticum aestivum

[129]
[130]
[131]
[51]

Increase in the concentration of
essential elements

H2S, ·NO
H2S, ·NO

Triticum aestivum
Sesamum indicum

[131]
[130]

Increase in Relative Growth Rate
(RGR) and/or biomass

H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2O2, ·NO
H2O2, ·NO
H2O2, ·NO

Cynodon dactylon
Medicago sativa
Sesamum indicum
Solanum lycopersicum
Triticum aestivum
Triticum aestivum
Ocimum basilicum
Oriza sativa
Triticum aestivum

[129]
[132]
[130]
[133]
[51]
[131]
[134]
[135]
[136]

Improved crop yield and/or
quality H2O2, ·NO Ocimum basilicum [134]

Increase in Relative Water
Content (RWC)

H2S, ·NO
H2O2, ·NO

Triticum aestivum
Fragaria × ananassa

[51]
[137]

Increment in stomatal
conductance (gs)

H2S, ·NO
H2S, ·NO

Medicago sativa
Triticum aestivum

[50]
[51]

Increase in the quantum efficiency
of PSII (Fv/Fm)

H2S, ·NO
H2S, ·NO
H2O2, ·NO
H2O2, ·NO

Medicago sativa
Triticum aestivum
Citrus aurantium
Fragaria × ananassa

[50]
[51]
[125]
[137]

Increase in CO2 assimilation (A) H2O2, ·NO Citrus aurantium [125]

Increment in the concentration of
photosynthetic pigments

H2S, ·NO
H2S, ·NO
H2O2, ·NO
H2O2, ·NO
H2O2, ·NO

Sesamum indicum
Triticum aestivum
Citrus aurantium
Fragaria × ananassa
Ocimum basilicum

[130]
[131]
[125]
[137]
[134]

Increased activity of antioxidant
enzymes (e.g., SOD and CAT) and
the ascorbate–glutathione
(AsA–GSH) cycle

H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2O2, ·NO

Cynodon dactylon
Medicago sativa
Medicago sativa
Medicago sativa
Solanum lycopersicum
Triticum aestivum
Triticum aestivum
Ocimum basilicum

[132]
[138]
[129]
[50]
[133]
[131]
[51]
[134]

Proteome reprogramming through
reversible or irreversible
posttranslational modifications
(PTM) and changes in
gene expression

H2S, ·NO
H2S, ·NO
H2O2, ·NO

Citrus aurantium
Citrus aurantium
Citrus aurantium

[139]
[140]
[124]

Mitigation of the relative
electrolyte leakage under stress

H2S, ·NO
H2O2, ·NO
H2O2, ·NO
H2O2, ·NO

Cynodon dactylon
Citrus aurantium
Citrus aurantium
Fragaria × ananassa

[132]
[124]
[125]
[137]

Mitigation of lipid peroxidation
under stress

H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2S, ·NO
H2O2, ·NO

Cynodon dactylon
Medicago sativa
Medicago sativa
Solanum lycopersicum
Triticum aestivum
Fragaria × ananassa

[132]
[50]
[129]
[133]
[131]
[137]

Increased accumulation of proline
and other osmolytes

H2S, ·NO
H2O2, ·NO

Medicago sativa
Triticum aestivum

[50]
[136]

Table 4 shows that coincidences occur in the proposed functions or impact on plants
for the different reactive species. For example, the mitigation of electrolyte leakage and
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the decrease in lipid peroxidation can be achieved with the combination of ROS–RNS
and RSS–RNS. Therefore, as confirmed by the studies cited in Table 4, the RONSS seems
to function non-independently through crosstalk between the different signaling path-
ways [13,34,57,108], as depicted in Figures 5 and 6. The mechanism that enables the RONSS
to exert their effects in a coordinated way, as explained in the first section, is thought to have
been the result of prebiotic evolution that had the goal of developing processes coordinated
to obtain the maximum capacity for free energy processing and entropy production [8].
The biochemical descendants of that primordial processes are still active in cells. Through
billions of years of biological evolution, natural selection adjusted and adapted them to
permit the maximum capacity of the cells and multicellular organisms to process free
energy and transform it into entropy [10].

The purpose of maximum entropy requires that organisms have a process for obtain-
ing information that allows them to adjust to environmental changes, which is achieved
by determining the energy condition through the evaluation of the redox status of the
system [141], which can be equivalent to the variations in the molar ratios of the different
reactive species (Figure 6). Information on redox status causes changes in gene expression
and phenotype adjustments and proteomic and metabolomic responses that modulate the
metabolism according to the organism’s needs in a particular environment. The RONSS
are relevant messengers of the above metabolic adjustments [34].

The number of known chemical agents involved in cell signaling and biostimulation
will likely grow as new information about other signaling molecules that work in coor-
dination with RONSS is acquired. H2 and CO can be examples [108,142]. RONSS work
in coordination with many other biomolecules, forming an intricate network of cellular
information about energy status and responses to environmental stimuli [143,144]. The
preceding points to the joint use of RONSS with biostimulants such as silicon, selenium,
or iodine, plant and seaweed extracts, chitosan and other biopolymers, humic substances,
and metabolites such as melatonin and salicylic acid [50,102,145–149].

As mentioned in Table 4, the application of RONSS for signaling and as a biostimulant
has been evaluated in several plants with economic purposes, such as Triticum aestivum,
Solanum tuberosum, Citrus aurantium, among others, which have shown promissory results.
In this regard, early studies with exogenous application of sodium hydrosulphide (SHS)
as a donor of H2S on T. aestivum seedlings under Cu stress showed an improvement in
the activity of glutathione reductase, dehydroascorbate reductase, L-galactono-1,4-lactone
dehydrogenase and gamma-glutamyleysteine synthetase. Moreover, the levels of ascor-
bic acid, glutathione, and total ascorbate increased, alleviating the damage produced by
Cu [150]. Reduced damage of plasma membrane integrity in T. aestivum seeds exposed
to Cu, promotion of amylase and esterase activities and lower levels of malondialdehyde,
and H2O2 in germinating seeds treated with H2S donors have also been reported [151].
Tolerance against Cd stress in T. aestivum through the application of NO and H2S using
sodium nitroprusside (SNP) and SHS as donors, respectively, showed an increase in dry
matter, chlorophyll a and b, and Fv/Fm ratio between 39.1–47.8, 61.5–92.3, and 27.2–29.1,
respectively, related to the control [152]. Under cobalt (Co) stress, T. aestivum exposed to Co
concentrations of 150–300 µM and treated with NO and H2S donors showed an increase of
glutathione (GSH), superoxide dismutase (SOD), peroxidase (POX), monodehydroascor-
bate reductase (MDHAR), APX, glutathione reductase (GR), dehydroascorbate reductase
(DHAR), ascorbate (tAsA), and counteracted the negative effect caused by Co on growth,
water relations, redox, and antioxidant capacity in chloroplasts [51]. The addition of SNP
(100 µM) as a donor of NO in T. aestivum has also been demonstrated to counteract the
negatives effects of 400 µM Fe, enhanced seed germination, decreasing Fe accumulation,
and proline and malondialdehyde (MDA) content [153]. Under water deficit conditions,
RONSS application has also demonstrated that T. aestivum seeds can mitigate the damage
produced by water scarcity. The seeds soaked with SNP (0.1 mM) or H2O2 (1 mM) or a
combination of both improved Ψw, Ψs, Ψp, photosynthetic pigment content, osmolytes
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accumulation (GB and Pro), TSP, and the antioxidative defense mechanism. Moreover, it
also reduced MDA accumulation [154].

Other species with commercial importance, such as Citrus aurantium or Solanum
lycopersicum have also been evaluated. In this regard, adverse effects caused by salinity
stress (120 mM NaCl) on S. lycopersicum (47% of decrease in dry leaf mass and root length)
were alleviated by exogenous application of SNP (100 µM) enhanced the leaf dry mass (30%)
and root length (23%) compared with the non-treated plants [155]. NO has been associated
with root development in S. lycopersicum growing under elevated CO2 concentration,
especially in lateral roots, and increasing nitric oxide synthase activity [156]. SNP applied
as NO donor at 100 µM in S. lycopersicum showed a good capacity to immobilize As in the
root but also its translocation in the shoots by upregulation of γ-glutamylcysteine synthetase
(GSH1), glutathione synthetase (GSH2), phytochelatin synthase (PCS), metallothionein
(MT), and ABC transporter (ABC1). Interestingly, the authors reported that the plants
subjected to As stress (10 mg/L) and treated with SNP were able to restore the growth
retardation through modulating the chlorophyll and proline metabolism, with an increase
of stomatal conductance and NO accumulation [157]. Studies carried out with Citrus
aurantium have also demonstrated how nitrosative and oxidative signals play an important
role in regulating cellular adjustments to environmental conditions. In this regard, plants
subjected to salinity stress (150 mM NaCl) and pre-treated with H2O2 (10 mM for 8 h)
and SNP (100 µM for 48 h) showed a strong reduction of phenotypical and physiological
effects, as well as a higher net photosynthetic rate compared with the non-treated plants
that showed clear foliar injury (necrosis) and low net photosynthetic rates [140]. Moreover,
these same authors reported that proteomics analysis reveals quantitative variations in
85 leaf proteins in plants subjected to salinity. Many of these were not present in H2O2
or SNP pre-treated plants. Histochemical and fluorescent probes in C. aurantium plants
pre-treated with H2O2 and SNP showed ROS movement by vascular tissues over long
distances and NO signaling pathways [125].

In other species, such as Solanum tuberosum, the use of NO donors (SNP, S-nitroso-N-
acetylpenicillamine or a mixture of ascorbic acid and NaNO2) demonstrated that NO could
protect plants from methylviologen damage produced by herbicides [158], but could also
stimulate phytoalexin accumulation, which can be used as a mechanism of induction of
defense against pathogens in plants [159] or to participate in the wound–healing response
of potato leaves by the induction of cell wall glucan callose production [160]. On the other
hand, since H2O2 is relatively stable compared to other ROS molecules such as NO, a recent
study demonstrated that foliar spraying of H2O2 at 1% consecutively (7 days) on S. tubero-
sum caused an increase in the photosynthetic apparatus and antioxidant capacity [161].

Strawberries are a highly demanded fruit consumed globally, known for their biologi-
cal properties such as antioxidant, antimicrobial, or anti-inflammatory capacity [162]. In
early studies developed with Fragaria × ananassa it was demonstrated that fumigation for
5 h with NO at 200 µL/L NO atmospheres and maintained at 18 ◦C in air delayed the onset
of ethylene production and reduced the respiration, maintaining the fruit’s quality and
prolonging its shelf life [163]. Similar results were obtained fumigating F. × ananassa with
NO (between 1.0 to 4000 µL L−1) immediately after harvest and held at 5 ◦C and 20 ◦C in
air containing 0.1 µL L−1 [164]. At both temperatures, the postharvest life of F. × ananassa
was extended, but the optimal NO concentration was 5–10 µL L−1, causing > 50% extension
in shelf life. The application of sodium hydrosulfide (NaHS) as a donor of H2S on F. ×
ananassa under iron deficiency has also been evaluated [165]. Leaf interveinal chlorosis
caused by iron deficiency was overcome by foliar application of NaHS. Moreover, apply-
ing H2S donors enhanced chlorophyll contents and iron accumulation in young leaves.
However, the H2S enhanced not only iron deficiency but also the assimilation of other
micronutrients such as Zn, Ca, and Mg [166]. Iron deficiency in F. × ananassa concomitant
with salinity stress (50 mM NaCl) has also been overcome by the exogenous application of
NO through SNP as a donor. SNP applied at 0.1 mM showed that plants under iron defi-
ciency and salinity reduced the exacerbated electrolyte leakage, malondialdehyde levels,
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and H2O2 levels caused by the stress [165]. In recent work, [167] determined that applying
SNP as NO donor at 100 µM alleviated heat injury in F. × ananassa plants. NO controlled
the overaccumulation of H2O2, reduced lipid peroxidation, and improved the relative
water content and a higher expression of heat shock transcription factor genes involved
in thermotolerance. According to the information shown above, NO or H2S are gaseous
signaling molecules with an important role in response to diverse biotic and abiotic stresses
in plants, regulating normal plant growth and development. This evidence suggests that
RONSS are a potential tool for use in the biostimulation of crops.

The RONSS studies for their potential as signaling molecules or biostimulants have
also been evaluated in medicinal plants. Although they have been less studied, medicinal
plants have also been used as a model in some assays. In this regard, Catharanthus roseus, an
endemic medicinal plant from Madagascar, was used as a model to evaluate its tolerance
to metal stress in the presence of NO [168]. The plants were exposed to 30 mg kg−1 of Cu
(CuCl2·2H2O) alone or mixed with SNP as a donor of NO in concentrations of 0–400 µM.
The results showed that the damages produced by Cu in C. roseus (Cu+2 accumulation,
decrease in NO production, disruption in mineral equilibrium, and high ROS production)
were alleviated by SNP presence and in a more significant proportion by 50 µM of SNP.
Moreover, the treatment with SNP and Cu + SNP significantly prevented or restored the
Cu-induced depression of iron in the root. In addition, interestingly, the authors found that
the application of SNP caused an increase in leaf vincristine and vinblastine, two potential
anticancer compounds [169], which have been previously reported in C. roseus [170].

Artemisia annua is an important vegetal source against malaria [171]. Adverse effects
caused by Cu+2 (20 to 40 mg kg−1) on A. annua can be alleviated by exogenous application
of H2S (200 µM), restoring physiological and biochemical parameters, reducing lipid
peroxidation and enhancing the antioxidant activity of plants [172]. Additionally, H2S
application increased the photosynthetic efficiency and trichome density and the production
of artemisinin content [171], a well-known compound used against malaria, but also with
anti-inflammatory, antioxidant, and antimicrobial effects [173].

H2S has also been effectively used in Carthamus tinctorius, an Asteraceae with essential
medicinal properties and a source of food-grade color in the food industry [174]. The
exogenous application of H2S (1 mM) on C. tinctorius plants subjected to drought demon-
strated that the harmful effects caused by the water scarcity were countered, increasing
the accumulation of secondary metabolites and antioxidant capacity [175]. Exogenous
application of SNP as a NO donor on Gingko biloba at different concentrations (50, 100, 250,
and 500 µM) demonstrated that the high concentrations (500 µM) favored the increase of
phenolic compounds, glycosides, tannins, and saponins. Moreover, a significant increase in
an oxidative burst of O2

− was also detected, enhanced phenylalanine ammonia-lyase (PAL)
activities and antioxidant defense enzymes such as superoxide dismutase and ascorbate
peroxidase [176]. Similar results were obtained in G. biloba by applying 250 µM L−1 of SNP
under drought stress. The authors reported that after the treatment with SNP, remarkably
soluble sugar, proline, flavonoid, and ginkgolide content was obtained in G. biloba leaves,
as well as increased PAL activity, demonstrating the capacity of NO to alleviate the adverse
effects caused by drought stress [177].

Another medicinal plant is Silybum marianum, which is used to treat liver and biliary
disorders. S. marianum contains silymarin, a mixture of flavonoid complexes with a pro-
tective component against drugs, including chemotherapy [178]. Field assays with two
genotypes of S. marianum demonstrated that applying the SNP (100 µM) as a NO donor com-
pensates for 40% of the adverse effects caused for drought stress, and all yield components
responded significantly to treatment with SNP [179]. Applying 100 µM SNP also decreased
malondialdehyde content and H2O2 in S. marianum plants submitted to water deficit and
prevented a silymarin yield reduction but increased taxifolin production, silychristin, sily-
bin, and isosilybin B [180], compounds that have been associated with the treatment of
diseases due to pharmacological properties as hepatoprotective drugs [181,182]. Under
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drought stress applying 100 µM SNP on S. marianum, the leaf photosynthesis rate increased
between 80 and 100% compared with the non-treated plants [179].

Ginsenosides are compounds associated with rhizomes and roots of Panax ginseng. It
has a therapeutic potential as an adjuvant in treating diabetes mellitus [183]. In this regard,
using SNP as a NO donor, together with methyl jasmonate and applied in adventitious
roots of P. ginseng, has shown that a high concentration of ginsenoside was obtained with
200 µM SNP. Additionally, the application of 200 µM SNP and 100 µM methyl jasmonate
caused a high induction of ginsenoside biosynthesis-related genes and detected a high
sensitivity of the superoxide dismutase 1 gene [184]. In another interesting work, [185]
reported stimulatory responses in Origanum majorana German type under drought stress
and treated with SNP at 30 and 60 µM. Its application enhanced the growth and yield of
essential oil, improved water use efficiency, and caused an upregulation in the antioxidant
system. Interestingly, the use of SNP also caused a significant increase in the production of
phytopharmaceuticals (total soluble phenol, anthocyanin, flavonoids, and ascorbic acid)
in the herbal extract. As mentioned above, most studies have been performed under
drought conditions. However, using NO has also caused stimulatory effects in medicinal
plants under salt stress. In this regard, [186] developed a study to evaluate the use of
NO and spermidine, a known polyamine protector of plants [187], as pretreatment of
Matricaria recuita plants. The results showed increased growth parameters, significant
malondialdehyde and H2O2 content reduction, and increased ascorbate peroxidase activity.

Finally, it is essential to mention that medicinal plant extract’s biological efficacy in
preventing oxidative damage is well documented [188–190]. However, their capacity as
free radical scavenging or as biostimulant agents favoring the RONSS formation or the
increase of antioxidant enzymes has been focused mainly on treating human inflammation
or wounds [189,191]. On the other hand, we cannot ignore that plant-derived extracts
can act as biostimulants in sustainable agriculture. The systematic application of plant-
based products has been shown to promote plant growth and improve damage caused by
environmental stresses, which has been associated with the presence of polysaccharides,
polyphenols, vitamins, phytohormones, etc. [192,193]. In this regard, recent excellent
reviews have focused on the role of moringa leaf as a plant biostimulant to improve the
quality of agricultural products [194,195]. Hydrolysate-based biostimulants from Medicago
sativa containing triacontanol and indole-3-acetic acid have been reported to stimulate
the growth of Zea mays under salinity stress [196]. Since this review was focused only on
RONSS species and their use as signaling molecules or biostimulant agents, this aspect will
not be addressed in detail, but for more information, see [197] and [193].

NO is a labile molecule and challenging to apply in an exogenous way due to its
gaseous nature and short in vivo half-life (between 1 and 5 s). NO has been successfully
applied in maize to alleviate the damage produced by saline stress [198]. The authors
used chitosan nanoparticles containing the NO donor S-nitroso-mercaptosuccinic acid
as a carrier. As a result, a sustained NO release was reported, and amelioration of the
harmful effects of salinity on the photosystem II activity, chlorophyll content, and growth of
maize plants was observed [198]. In this same way, NO release from chitosan nanoparticles
containing S-nitrosoglutathione (GSNO) as an NO donor was demonstrated to attenuate
the effects of water deficit on sugarcane plants [199]. Furthermore, encapsulating GSNO
into chitosan nanoparticles was shown to cause higher photosynthetic rates under water
deficit, and increased the root/shoot ratio.

From a practical point of view, it can be thought that considering the great availability
in the atmosphere and the ease of absorption of O2 by plants through stomata and lenticels,
the presence of ROS in plant cells will always be ensured at the necessary quantities. The
above considers the many mechanisms and environmental factors associated with ROS
synthesis (Figure 3). However, despite the potential abundance of ROS in plant cells,
different studies show that priming with ROS yields favorable results in different plant
species [53,57,136].
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On the other hand, unlike ROS, RNS and RSS are not obtained from a resource as
abundant as O2. Instead, both RNS and RSS are synthesized from plant nutrients whose
greater volume is assimilated by the root in the form of NO3

−, NH4
+, SO4

2+, and amino
acids. In addition to being much smaller than those of O2 in volume, these nutrients require
a previous absorption, transport, and assimilation process to produce the necessary RNS
and RSS. The above implies the possibility that to obtain biostimulation with RONSS, only
the exogenous application of RNS and RSS or the precursors of ·NO and H2S is necessary.
It is even considered that the proper use of fertilizers with N and S can provide the amounts
of RNS and RSS essential to achieving improvement in signaling and stress tolerance in
plants or obtaining a more significant impact with the use of biostimulants, such as the use
of elemental sulfur (S0) or organic fertilizers with S2− [79,200]. In the case of S, a regular
supply of fertilizers is necessary, since repeated crop extractions and continuous land tillage
that oxidizes soil organic matter cause a decrease in soil S stores [201].

A scheme similar to the one previously mentioned was presented in the study by [202],
who used 100 µM ·NO (as donor sodium nitroprusside) in combination with split applica-
tions of N and S fertilizers (50 + 50 mg kg−1, two times) in plants of Brassica juncea. The
results showed that the combination ·NO+N+S significantly promoted photosynthesis,
stomatal performance, and growth in the absence of salt stress and meaningfully alleviated
the impact of salt stress through increased proline, N- and S-use efficiency, and antioxidant
system. Presumably, using ·NO in combination with the N and S fertilizer sources allowed
an adequate balance of RNS and RSS.

4. Conclusions

RONSS exert their functions by interacting with many biomolecules forming a complex
cellular information network that indicates the energy status of the system and regulates
responses to environmental stimuli.

The use of RONSS as biostimulants in plants is feasible and practical, using techniques
such as adequate fertilization with N and S and the use of tolerance-inducing biostimulants
such as silicon, organic acids, or chitosan or with the application of precursors of RNS and
RSS combined with direct application of ROS, e.g., H2O2. In this sense, applying exogenous
NO incorporated in chitosan nanoparticles has proven to be a feasible alternative for
alleviating the adverse effects in plants caused by abiotic stress. However, few works have
been developed, and more in-depth studies are necessary.

The use of RONSS as biostimulants significantly modifies the phenotype and metabolic
activity of plants since RONSS has impacts on and interactions with the main metabolic
pathways such as photosynthesis, respiration, the flow of water, and nutrients, as well as
with other signaling molecules, such as hormones.

Knowledge about the integration of interactive networks between ROS, RNS, and RSS
and between RONSS and other signaling biomolecules is still incomplete. The enormous
complexity of the processes, the mutual interactions between the system’s components,
and the emergent properties that result from the system’s components’ interactions do not
allow a simple approach to the functional scheme in which the RONSS are incorporated.
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104. Kaya, C.; Sarıoğlu, A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Gibberellic Acid-Induced Generation of Hydrogen Sulfide
Alleviates Boron Toxicity in Tomato (Solanum lycopersicum L.) Plants. Plant Physiol. Biochem. 2020, 153, 53–63. [CrossRef]
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