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Abstract: Six Conyza bonariensis (L.) Cronquist populations were screened in a pot experiment at the
University of Pretoria’s Hatfield experimental farm to evaluate and confirm the degree of glyphosate
response. Resistance factors ranged from 2.7- to 24.8-fold compared to the most susceptible biotype.
Partial sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene found no mutation
at the Thr102, Ala103 or Pro106 positions. EPSPS mRNA expression levels in glyphosate-resistant
biotypes (Swellendam and Piketberg seed sampling sites) were comparable or lower than those in
susceptible biotypes (George and Fauresmith sites). Additionally, the highest expression level was
reported in the susceptible Fauresmith biotype. These results indicate that glyphosate resistance in
the tested resistant biotypes is not caused by target-site mutations and EPSPS gene amplification.
Leaf surface characteristics can influence the spread and subsequent absorption of glyphosate. The
study established non-significant results in the amount of leaf wax and insufficient mean separations
in cuticle thickness and trichome density data. Therefore, the observed differences in response
of biotypes to glyphosate treatment could not be attributed conclusively to differences in the leaf
morphological characteristics investigated. Results from the inheritance study were consistent with
glyphosate resistance being inherited in an incompletely dominant manner when plants were treated
with glyphosate herbicide at 900 g ae ha−1.

Keywords: herbicide resistance; C. bonariensis; dose–response; leaf morphology; EPSP synthase;
heredity of resistance

1. Introduction

Glyphosate, whose mechanism of action is the exclusive inhibition of 5-enolpyruvylshi-
kimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), is a highly effective herbicide with a
relatively small economic and environmental footprint globally [1,2]. Glyphosate has high
water solubility, penetrates the leaf cuticle relatively easily and is translocated symplasti-
cally in the phloem from assimilate sources to sinks such as apical meristems [3]. Globally,
the high use frequency of glyphosate in cropping systems has given rise to glyphosate-
resistant weeds [2,4]. Hairy fleabane (C. bonariensis) is one of the most difficult-to-control
and glyphosate-resistant weed species, particularly in conservation tillage cropping systems
in both the summer and winter rainfall regions of South Africa.

Herbicide resistance in weed species has been categorized into target- and nontarget-
site mechanisms [4,5]. Target-site herbicide resistance in glyphosate-resistant weeds is a
result of mutations in EPSPS gene leading to changes at the following amino acid positions,
threonine (Thr102), alanine (Ala103) and proline (Pro106) [6]. These mutations prevent
the herbicide from binding to the target site, thereby reducing the efficacy of glyphosate’s
action on the EPSPS enzyme [6,7]. Enrichment of these mutations in weed populations
gives rise to the development of glyphosate resistance [8]. EPSPS gene mutations have been
reported in a number of weeds, including horseweed (Conyza canadensis L.) [9], goosegrass
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(Eleusine indica L.) [10–12], junglerice (Echinochloa colona L.) [13], tall waterhemp (Amaran-
thus tuberculatus Moq. Sauer) [14], and hairy beggarticks (Bidens pilosa L.) [15], among
others [16]. Similarly, mutations can occur in the DNA sequence of EPSPS gene, resulting
in an increased expression of glyphosate’s target protein [17]. EPSPS overexpression is the
result of an increase in gene transcript levels or number of gene copies [7,18]. Identified
mechanisms of glyphosate resistance in C. bonariensis include impaired translocation, most
likely due to vacuolar sequestration and increased production of EPSPS transcripts [19,20].

In the non-target-site resistance mechanism(s), there is a reduction in the amount and
rate of herbicide accumulation at the target site [5]. Non-target site resistance can be due
to decreased herbicide penetration into the plant, differential or reduced uptake and/or
translocation, increased rate of sequestration or metabolism of the herbicide molecule.

Vacuolar sequestration has been linked to ABC transporters, with an overexpression
of, in particular the M10 and M11 genes increasing the survival of weeds after glyphosate
treatment [21]. Differential herbicide uptake could be due to morphological characteristics
of the plant, for example, hairiness or over-production of epicuticular waxes [22].

Leaf morphological characteristics including the cuticle, epicuticular waxes and tri-
chomes influence surface tension and penetration of the herbicide [22]. The penetration
and subsequent absorption of foliar-applied herbicides is influenced by the thickness of the
cuticle, with thicker cuticles presenting more resistance compared to thinner cuticles [23].
Reduced foliar uptake and spray retention was found in resistant compared to susceptible
plants in Italian ryegrass (Lolium multiflorum Lam.) and perennial ryegrass (Lolium perenne
L.) [24,25]. These observations were attributed to variability in cuticular properties, with
the resistant biotype having thicker cuticles [24].

The trichome density affects the coverage of foliar-applied herbicides in that spray
droplets falling on large trichomes may break or bounce off the surface of the leaf [26].
Additionally, small-sized spray droplets lodge between the hairs (trichomes), thus reducing
the volume reaching the epidermal surface [27]. The hydrophobic nature of plant waxes
decreases wettability of leaf surfaces, and therefore act as barriers to water-soluble foliar-
applied herbicides [28].

The herbicide resistance inheritance pattern has been reported to determine the rate
at which selection within a population will increase the enrichment of the resistance gene.
Glyphosate resistance has been determined to be inherited as an incompletely dominant
trait in C. canadensis [29,30], rigid ryegrass (Lolium rigidum Gaud.) [31,32] and E. indica [33].
In C. bonariensis, Okada and Jasieniuk [34] reported both single-locus and additive two-loci
inheritance patterns in the populations they studied.

Previous studies on C. bonariensis whose seeds were sampled from western and south-
ern Cape regions of South Africa showed glyphosate resistance factors (RF) of up to
26.9-fold in the most resistant biotype compared to the susceptible biotype [35]. Mecha-
nisms of glyphosate resistance in South African biotypes of C. bonariensis have not been
reported. This study extends previous work by investigating the molecular and morpho-
logical aspects of glyphosate resistance, as well as the mode of inheritance.

Shikimate acid levels in the shikimate assay in a preliminary study showed signifi-
cantly lower levels in glyphosate-resistant (GR) compared to glyphosate-susceptible (GS)
biotypes [35]. This means that the shikimate pathway is inhibited and required a molecular
investigation on EPSPS gene by exploring the target-site mechanisms of resistance. The
hypothesis tested was that a target mechanism of resistance; either a point mutation(s) or
overexpression of the target site is responsible for the previously observed differences in
the response of the biotypes to glyphosate treatment. It was hypothesized that differences
in response to glyphosate treatment among the biotypes are attributed to differences in
leaf morphological characteristics (cuticle thickness, amount of wax and trichome density).
The present study used transmission electron microscopy (TEM) to determine the cuticle
thickness. To our knowledge, no research on cuticle thickness has been carried out on
C. bonariensis using this technique. It was therefore considered important to carry out a
study to examine the morphological characteristics as a possible explanation for differential
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response of C. bonariensis biotypes to glyphosate treatment. Based on previous studies on
inheritance of glyphosate resistance in various weed species, including C. bonariensis, we
hypothesize an incompletely dominant inheritance pattern.

The aims of this study were to: (i) confirm the glyphosate-response status of six
C. bonariensis populations by use of a dose–response approach, (ii) elucidate the molecular
mechanism(s) of glyphosate resistance by using EPSPS gene sequencing and expression
analyses, (iii) describe the morphological characterization of highly resistant and susceptible
populations, and (iv) identify the mode of inheritance of the glyphosate resistance traits in
C. bonariensis biotypes from South Africa.

2. Results
2.1. Dose–Response Experiment of 6 Biotypes

Phytotoxic effects were observed on the leaves of all biotypes five to seven days after
treatment (DAT) with the young developing leaves turning yellow (chlorotic). In susceptible
biotypes (George and Fauresmith), there was wilting, and the mild chlorosis advanced into
necrotic lesions that spread on all leaves, followed by browning and death by 21 days after
treatment (DAT). In the resistant biotypes, the mild chlorosis was replaced with green new
growth at the center of the rosettes. The glyphosate-resistant plants recovered from the
herbicidal effect and showed robust growth.

Resistance factors or RF were calculated by obtaining the ratio between the GR50 of
resistant (GR) biotype and the GR50 of the most susceptible (GS) biotype from George.
The GS biotype from Fauresmith showed a resistance factor of 2.7-fold and only required
half the normal-use rate for 50% reduction in fresh weight (Table 1). The GR biotypes
displayed resistance factors ranging from 4.7- to 24.8-fold with GR50 values varying from
768.82 to 4014.79 g ae ha−1. The GR biotype from Piketberg demonstrated a high resistance
factor of 24.8-fold compared to the GS biotype from George and needed approximately
4.5 times the normal-use rate for reduction of half its fresh weight. The GS biotypes were
collected from a hops (Humulus lupulus L.) orchard (George) and alfalfa (Medicago sativa L.)
field (Fauresmith), which both have no history of glyphosate use, while the GR biotypes
were from vineyards (Vitis vinifera L.) (Durbanville, Piketberg and Worcester) and a wheat
(Triticum aestivum L.) field (Swellendam) with a history of regular glyphosate use. Using
the estimated GR50 values, dose–response curves were plotted to graphically display the
response of biotypes to glyphosate (Figure 1).

Table 1. GR50 estimates from the dose–response regression analysis for C. bonariensis biotypes
whose seeds were collected from five locations in the western and southern Cape regions, and one
(Fauresmith) in the Free State province of South Africa.

Population Code Location Habitat GR50
a (g ae ha−1) RF b

WP 19 George Orchard 161.99 (65.19) 1.0

WP 42 Fauresmith Pasture 437.31 (81.39) 2.7

WP 33 Durbanville Vineyard 768.82 (170.86) 4.7

WP 28 Worcester Vineyard 1314.80 (222.64) 8.1

WP 22 Swellendam Wheat 2203.31 (646.58) 13.6

WP 38 Piketberg Vineyard 4014.79 (1710.32) 24.8
a Abbreviations: GR50—glyphosate dose required to result in 50% decrease in aboveground shoot fresh weight
in C. bonariensis, 21 days after treatment (DAT). b Resistance factor calculated by the ratio of GR50 value of an
individual C. bonariensis biotype to the GR50 value of the most susceptible biotype (George).
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berg) and glyphosate-susceptible (George and Fauresmith) C. bonariensis biotypes to a range of 

glyphosate doses. The predicted curves are described by a three-parameter equation. (*) represents 

zero biomass accumulation.  

2.2. Molecular Characterization of EPSPS Gene 

2.2.1. Partial Sequencing of EPSPS cDNA  

A 492 bp region of the EPSP synthase gene coding the region of proline 106, where 

mutations conferring glyphosate resistance have previously been reported was sequenced 

from cDNA. Alignment of the sequences from the five C. bonariensis biotypes did not show 

any point mutations coding residues of amino acids threonine 102, alanine 103 or proline 

106, nor any amino acid changes that were unique to resistant biotypes (Figure 2).  

 

Figure 2. Amino acid sequence alignment of EPSPS cDNA isolated from GR (Swellendam, Piketberg 

and Worcester) and GS (Fauresmith and George) C. bonariensis plants. The boxed codons indicate a 

lack of mutations at the EPSPS Thr102, Ala103 and Pro106 positions. 

Figure 1. Growth responses of glyphosate-resistant (Swellendam, Worcester, Durbanville and Piket-
berg) and glyphosate-susceptible (George and Fauresmith) C. bonariensis biotypes to a range of
glyphosate doses. The predicted curves are described by a three-parameter equation. (*) represents
zero biomass accumulation.

2.2. Molecular Characterization of EPSPS Gene
2.2.1. Partial Sequencing of EPSPS cDNA

A 492 bp region of the EPSP synthase gene coding the region of proline 106, where
mutations conferring glyphosate resistance have previously been reported was sequenced
from cDNA. Alignment of the sequences from the five C. bonariensis biotypes did not show
any point mutations coding residues of amino acids threonine 102, alanine 103 or proline
106, nor any amino acid changes that were unique to resistant biotypes (Figure 2).
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and Worcester) and GS (Fauresmith and George) C. bonariensis plants. The boxed codons indicate a
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2.2.2. EPSPS cDNA Expression Level

To determine the possibility of the mechanism of glyphosate resistance in the tested
biotypes being an overexpression of EPSPS gene, quantitative RT-PCR was carried out
on the cDNA, relative to Actin gene. EPSPS mRNA expression levels were determined
two times after glyphosate treatment (4 DAT and 6 DAT). The level of expression was
up-regulated at 6 DAT in George (GS), Fauresmith (GS) and Swellendam (GR) biotypes.
Expression levels were 1.24-, 2.24- and 1.19-fold compared to the untreated control, respec-
tively (Figure 3). Although Piketberg was considered resistant according to the glyphosate
screening study, the expression level was 0.85-fold, which was significantly lower than
susceptible biotypes. The expression level in the susceptible Fauresmith biotype gradually
increased over time, with the highest expression of 2.24-fold being recorded at 6 DAT
compared to the untreated control.
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2.3. Leaf Morphological Characterization
2.3.1. Cuticle Thickness Examination

The cuticle thickness was significantly greater in GR Swellendam biotype compared
to both the GS Fauresmith and GS George biotypes, but not significantly different from the
GR Piketberg biotype. However, the cuticle thickness tended to be higher in both the GR as
compared to both the GS biotypes (Table 2 and Figure S1). The average cuticular membrane
thickness ranged between 0.11 µm in Swellendam (GR) and 0.07 µm in George (GS) biotypes
(Table 2). Ultrastructure images of cuticles of all biotypes were highly corrugated or folded
(Figure S2).

Table 2. Cuticle thickness and trichome density of four biotypes of C. bonariensis plants established in
the glasshouse.

Leaf Morphological Measurements

Biotype Code Location Cuticular Membrane Thickness in µm a Trichome Density on Adaxial Leaf
Surface per mm2 a

WP 22 Swellendam 0.11 (0.004) a 6.68 (0.51) ab

WP 38 Piketberg 0.09 (0.005) ab 7.66 (0.38) a

WP 42 Fauresmith 0.08 (0.005) bc 5.06 (0.44) b

WP 19 George 0.07 (0.006) c 6.41 (0.37) ab

Mean cuticular membrane thickness and trichome density measurements ± standard error. a Means within a
column followed by the same letter are not significantly different according to Tukey’s test, p ≤ 0.05.
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2.3.2. Trichome Density Determination using Light Microscopy and Scanning
Electron Microscopy

C. bonariensis trichomes are simple, non-glandular trichomes with micropapillate
surface sculpturing (Figure S3). Adaxial and abaxial leaf surfaces of C. bonariensis were
examined by light microscopy and the number of trichomes per mm2 counted. The results
from analysis of variance showed significant differences in the leaf surface (p < 0.0001), with
more trichomes being found on the adaxial than on the abaxial leaf surfaces (Table 3 and
Figure S4). The mean number of trichomes on the adaxial leaf surface was 6.52 per mm2,
compared to 5.79 per mm2 on abaxial surface (Table 3). Trichome density on the adaxial
leaf surface of the GR Piketberg biotype was significantly higher compared to the GS
Fauresmith biotype but did not significantly differ between the GR Swellendam and the
GS George biotype (Table 2). The trichome densities on the adaxial surface were highest
in the glyphosate-resistant Piketberg biotype, at 7.66 trichomes per mm2, followed by the
glyphosate-resistant Swellendam biotype—6.68 trichomes per mm2, glyphosate-susceptible
George biotype—6.41 trichomes per mm2, and glyphosate-susceptible Fauresmith biotype—
5.06 trichomes per mm2 (Table 2).

Table 3. Mean trichome density (average of 10 replicates) of adaxial and abaxial leaf surfaces of four
biotypes of C. bonariensis plants.

Surface Trichome Density on Leaf Surface per mm2 a

Adaxial 6.52 (0.42) a

Abaxial 5.79 (0.51) b

Trichome density ± standard error. a Means within a column followed by the same letter are not significantly
different according to Tukey’s test, p ≤ 0.05.

2.3.3. Quantification of Leaf Wax Mass by Extraction in Chloroform

Data analysis showed non-significant differences in the amount of wax per unit leaf
fresh weight extracted from leaf surfaces (p = 0.3533) (Table 4). The mean wax mass
represents total waxes extracted from adaxial and abaxial leaf surfaces.

Table 4. Mean leaf wax mass per unit fresh weight of four biotypes of C. bonariensis plants.

Biotype Code Location Wax Mass per Unit Leaf Fresh Weight (µg g−1) a

WP 38 Piketberg 2984.7 (157.6) a

WP 42 Fauresmith 2396.2 (191.9) a

WP 22 Swellendam 2370.8 (472.0) a

WP 19 George 2107.7 (416.3) a

Estimates represent mean leaf wax ± standard error. a Means within a column followed by the same letter are not
significantly different according to Tukey’s test, p ≤ 0.05.

2.4. Inheritance Studies
2.4.1. Whole Plant Glyphosate Dose–Response

A dose–response study was carried out on the parental lines and F2 generation. There
was progressive chlorosis and eventual death in GS plants while GR plants produced new
leaves and the pigmentation changed from yellow to green (Figure 4). The GR50 of the
resistant Swellendam parental line was found to be 121.2-fold more resistant than the
susceptible George parental line, whose GR50 value was 7.81 g ae ha−1 (Table 5).
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‘R’ and ‘S’ represent the resistant (Swellendam) and susceptible (George) parental lines, respectively.
S/R refers to female S ×male R cross and R/S denotes female R ×male S cross.

Table 5. Estimates of dose–response analysis as calculated from 3-parameter log-logistic nonlinear
regression model of glyphosate dose–response resulting in 50% growth reduction (GR50).

Population GR50 (g ae ha−1) a RF b

George (S) 7.81 (2.33) 1

Swellendam (R) 946.47 (226.99) 121.20

F2 (S × R) 359.25 (82.68) 46.0

F2 (R × S) 687.64 (164.89) 88.0
a Abbreviations: GR50—glyphosate dose required to reduce aboveground shoot fresh weight by 50% in C.
bonariensis, 21 days after treatment (DAT). b Resistance factor calculated by the ratio of GR50 value of respective C.
bonariensis population/generation to the GR50 value of susceptible parent, George.

2.4.2. Segregation in F2 Generation

Second-generation (F2) plants were sprayed with glyphosate at the recommended
label rate of 900 g ae ha−1 to discriminate between susceptible and resistant phenotypes. In
response to glyphosate application, the chi-square tests for goodness of fit showed that the
observed segregation ratios were in accordance with the expected frequencies for a 3:1 (R:S)
single model (χ2 = 3.841, p < 0.05) (Table 6). The GR50 values for the F2 generation were
intermediate to those of the R and S parents (Table 5) but closer to the resistant parent than
susceptible parent. The S/R and R/S F2 generations were 46- and 88-fold more resistant
than the susceptible parent, respectively (Table 5).

Table 6. Segregation of glyphosate resistance phenotype in F2 generation of C. bonariensis 21 DAT
with glyphosate at 900 g ae ha−1.

Population
Phenotype

Total df χ2 (3:1) b
Alive (R) a Dead (S) a

F2 (S × R) 105 37 142 1 0.09

F2 (R × S) 113 38 151 1 0.02

Pooled second generation (F2) plants 218 75 293 1 0.06
a Phenotypes were visually scored for survival and classified as either Alive (R) or Dead (S). b Critical value (χ2)
values were obtained from results of chi square tests for goodness of fit (α < 0.05) to a 3:1 (R:S) segregation model
with χ2 = 3.841.

3. Discussion

Glyphosate-susceptible (GS) biotypes showed more herbicidal phytotoxic effects than
glyphosate-resistant (GR) biotypes in dose–response experiments. In all biotypes, young
developing leaves at the shoot apexes became chlorotic, and in GS biotypes, the chlorosis
progressed into necrotic lesions on older leaves, with plants eventually dying at 21 days
after spraying. In GR plants that survived, even at the highest glyphosate dose, there
was regeneration of new leaves at the center of rosettes. This observation was similar to
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that reported in other studies on the response of C. bonariensis to glyphosate [35,36] and
C. canadensis [37].

Resistance factors of biotypes ranged from 2.7- to 24.8-fold compared to the most
susceptible biotype, with the highest resistance factors being from biotypes whose seed
was collected from vineyards which had a long history of regular glyphosate use. Similar
resistance factors have been documented by Travlos and Chachalis [38], who showed
resistance factors ranging from four- to seven-fold in C. bonariensis growing in an or-
chard and vineyards, while Urbano et al. [39] registered 7- to 10-fold resistance factors in
C. bonariensis from olive groves. Comparable resistance factors have been reported in other
glyphosate-resistant weeds including C. canadensis [40], ryegrass [41], Palmer amaranth
(Amaranthus palmeri S. Wats.) [42] and E. colona [43]. In the present study, the varying
resistance factors in biotypes is an indication that C. bonariensis may still be segregating
into populations that are either glyphosate-resistant or -susceptible, depending on the level
of selection pressure. In general, higher resistance factors were demonstrated in biotypes
collected from vineyards, where the cropping system involves repeated use of glyphosate,
and in the case of conservation tillage systems that are dependent on glyphosate use, as
well as in systems lacking crop and/or herbicide rotation.

While target-site mutations that have been associated with two- to five-fold glyphosate
resistance have been reported in other weed species [16], these mutations were not detected
in the glyphosate-resistant biotypes examined. No mutations coding for amino acid posi-
tions Pro106, Thr102 and Ala103 were found in the EPSPS gene sequence. This indicates
that a glyphosate resistance mechanism based on a target-site mutation in the C. bonariensis
biotypes tested is unlikely. Similar observations were reported in C. bonariensis [44–46],
C. canadensis [47,48], giant ragweed (Ambrosia trifida L.) [49], annual bluegrass (Poa annua
L.) [50], windmill grass (Chloris truncata R. Br.) [51] and A. palmeri [52].

Results from the quantitative RT-PCR on cDNA showed up to two-fold higher EPSPS
mRNA levels compared to the untreated control in the susceptible Fauresmith biotype
(Figure 3). The transcript levels in glyphosate-resistant biotypes were comparable or lower
than those recorded for glyphosate-susceptible Fauresmith and George biotypes. It is inter-
esting to note that the highest expression level was registered in the susceptible biotype
from Fauresmith. These results clearly indicate that the response of the resistant biotypes
tested in this study is not due to EPSPS overexpression. Similar findings were reported
in C. bonariensis [49], C. canadensis [47], A. tuberculatus [14], E. colona [7], L. multiflorum [53],
A. palmeri [54], E. indica [12] and greater beggarticks (Bidens subalternans DC.) [55]. These re-
sults differ from previous reports of EPSPS overexpression as the mechanism of glyphosate
resistance in C. bonariensis from Spain [19], C. canadensis [37], A. palmeri [52], ripgut brome
(Bromus diandrus Roth) [56], E. indica [57] and C. truncata [51]. If we assume that the high
resistance factors reported in the tested GR biotypes are attributed to a highly effective
mechanism of resistance, then a non-target-site mechanism is most likely to provide the
enhanced levels of glyphosate resistance in the studied accessions [15,41,58].

The cuticle thickness was not significantly different in biotypes from Piketberg (GR)
and Fauresmith (GS), although in the GR Swellendam biotype, the cuticle was significantly
thicker than in both the GS Fauresmith and GS George biotypes. The average cuticular
membrane thickness ranged between 0.11 µm in Swellendam (GR) and 0.07 µm in George
(GS) biotypes. Cuticle thickness has been documented to vary between 0.1 and 10 µm [59].
Heredia [60] reported cuticle thickness of 0.35 µm in a grape vine. The cuticle thickness
reported in this study is close to the documented cuticle thickness, though slight differences
could be due to variability in plant species. Given that there were insufficient mean separa-
tions in cuticle thickness between the GR and GS biotypes, the differences in glyphosate
response in biotypes is unlikely to be related to the cuticle thickness. Ultrastructural im-
ages of cuticles of all investigated biotypes were highly corrugated or folded (Figure S2).
Cuticular folding is a feature common in many plants and has been reported in ivyleaf
morningglory (Ipomoea hederacea L.), pitted morningglory (Ipomoea lacunose L.) and palm-
leaf morningglory (Ipomoea wrightii Gray) [61] and false turkey-berry (Plectroniella armata
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K.Schum.) [62]. According to Koch et al. [63], cuticular folding, which forms part of the
cell surface structuring, could result from subcuticular inserts of mineral crystals such as
silicon oxide or natural folding of the cuticle itself. The function of cuticular folds has been
linked to an increased surface area for the facilitation of the active exchange of substances
or metabolites [62].

Conyza bonariensis is also called ‘hairy fleabane’ because of the presence of dense tri-
chomes on the leaf surfaces, a phenomenon believed to contribute to unsatisfactory control
of the weed by foliar-applied herbicides [64]. More trichomes were found on the adaxial
as opposed to abaxial surfaces. Comparable results were reported by Wu and Zhu [64]
and Procopio et al. [65] in C. bonariensis and in wild Indian mustard (Brassica juncea L.) [66].
However, Burrows et al. [67] reported contrary results, with the trichome numbers being
higher on the abaxial than adaxial leaf surfaces in silverleaf nightshade (Solanum elaeagni-
folium Cav.).

Trichome density on the adaxial leaf surface was significantly higher in the GR Piket-
berg biotype compared to the GS Fauresmith biotpe, but not significantly different in the
case of GR Swellendam and GS George biotypes (Table 2). Trichome densities on adax-
ial leaf surface ranged from 5.06 to 7.66 trichomes per mm2. In related investigations,
much higher trichome densities have been reported. Wu and Zhu [64] established 67.2
to 221.9 trichomes per mm2 while Procopio et al. [65] reported 35.4 trichomes per mm2

in C. bonariensis. In other weed species, Burrows et al. [67] demonstrated trichome den-
sities of 35 trichomes per mm2 in S. elaeagnifolium and Huangfu et al. [66] established up
to 49.6 trichomes per mm2 in wild B. juncea. This study has shown that the response of
biotypes to glyphosate cannot be attributed to trichome density.

Epicuticular waxes have been documented to form a primary barrier to spread, pene-
tration and absorption of water-soluble foliar-applied herbicides because of their hydropho-
bic nature [59]. In the present study, there were no significant differences in total leaf wax
among the four C. bonariensis biotypes. The wax per unit leaf fresh weight varied from
2107.7 to 2984.7 µg g−1. Similar results have been reported in other weed species. Koger
and Reddy [68] reported non-significant differences between resistant and susceptible
biotypes of C. canadensis, regardless of their origin. The amount of wax per fresh weight
ranged from 191 to 3097 µg g−1. Nandula et al. [69], working on L. multiflorum from Missis-
sippi, also reported non-significant differences among tested biotypes, with wax amount
varying from 1314 to 1413 µg g−1 fresh weight. Therefore, results from our research have
demonstrated that differences in tolerance of C. bonariensis biotypes to glyphosate doses
cannot be explained conclusively by the amount of epicuticular waxes on leaves.

The lower resistance to glyphosate in the second generation (F2) plants compared
with the GR parent (Swellendam) suggested that resistance is inherited in an incompletely
dominant manner at the glyphosate application rate of 900 g ae ha−1. The GR50 values
for the F2 generation were 359.25 g ae ha−1 (S/R) and 687.64 g ae ha−1 (R/S), implying
that the level of glyphosate resistance is intermediate between the parental individuals.
Comparable results were reported in C. canadensis [29]. According to Murray et al. [70],
had the dose–response curves resembled resistant or susceptible parental lines, then the
inheritance pattern would have been fully dominant or recessive, respectively. An incom-
pletely dominant type of glyphosate resistance inheritance has been previously reported in
C. canadensis [30], E. indica [71] and L. rigidum [31,32,72]. The practical implication of the
inheritance of glyphosate resistance established in this study is that resistance is most likely
to spread rapidly in the field with repeated applications of glyphosate herbicide. This is
attributed to the fact that 75% of the progeny from a cross of heterozygous individuals will
exhibit the glyphosate resistance phenotype [32]. In addition, the exceptionally prolific
nature of C. bonariensis in producing more than 100,000 seeds per plant [73] and dispersal
by wind over distances of 100 km [74] would increase the spread of resistant individuals to
adjacent districts.
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4. Materials and Methods
4.1. Plant Material Sources

The six C. bonariensis populations used in this study were previously described
by Okumu et al. [35]. The populations were selected based on distinctive response to
glyphosate treatment, as either being resistant (GR) or susceptible (GS), and showing high
seed viability, germination and establishment. These biotypes included: two GS biotypes
from George and Fauresmith with resistance factors of 1.0- and 1.3-fold, respectively, and
four GR biotypes from Durbanville, Worcester, Swellendam, and Piketberg, with resistance
factors (RF values) of 3.0-, 9.5-, 20.4-, and 26.9-fold, respectively [35]. Three biotypes were
collected from vineyards, one from a wheat field, one from a hops orchard and one from
a pasture field (Table 7). For the leaf morphology experiments, four biotypes were used:
George (GS), Fauresmith (GS), Swellendam (GR) and Piketberg (GR).

Table 7. Geographic location and habitat of populations from which C. bonariensis seeds were sampled
mainly in the western and southern Cape regions of South Africa.

Population Code Location Glyphosate Tolerance Status GPS Coordinates Habitat

WP 19 George Susceptible 033◦50.955′ S
022◦21.328′ E Hops Orchard

WP 42 Fauresmith * Susceptible - Pasture

WP 33 Durbanville Resistant 033◦47.646′ S
018◦40.226′ E Vineyard

WP 28 Worcester Resistant 033◦35.713′ S
019◦31.149′ E Vineyard

WP 22 Swellendam Resistant 034◦07.451′ S
020◦21.809′ E Wheat

WP 38 Piketberg Resistant 033◦08.752′ S
019◦00.341′ E Vineyard

* Sampled on a land with alfalfa in Fauresmith district, Free State province.

4.2. Glyphosate Dose–Response

This study was carried out according to the method described by Beckie et al. [75]
and Okumu et al. [35]. Seeds were grown in pots and kept in a glasshouse at Hatfield
experimental farm at the University of Pretoria. Plants were sprayed with Roundup® Turbo
herbicide (Monsanto South Africa (Pty) Ltd., Sandton, South Africa) when they were at the
rosette stage, with 4 to 6 fully unfolded leaves (6–8 cm rosette diameter). The glyphosate
herbicide rates used were: 0 (untreated control), 225, 450, 900, 1800 and 3600 g ae ha−1. The
registered label rate in South Africa is 900 g ae ha−1. All of the plants were clipped at the
soil surface 21 days following treatment. Only green foliage was harvested, weighed and
recorded as fresh weight. Zero biomass accumulation was recorded for sensitive plants that
died (no green parts visible). The trial was arranged in a completely randomized design
with five replicates per herbicide dose per biotype (6 biotypes × 6 doses × 5 replicates).
Each pot represented a replicate. A three-parameter non-linear regression model, described
by Seefeldt et al. [76], was used to generate dose–response curves in R version 3.2.3 (R
Development Core Team, Vienna, Austria) using the ‘drc’ package [77]. Dose–response
curves were used to ascertain the herbicide dose that causes a mean fresh weight reduction
or injury of 50% (GR50) in C. bonariensis. The above-ground fresh weight was expressed as
a percentage of the mean untreated control. The resistance factor (RF) was determined by
dividing the GR50 of a population by the GR50 of the most sensitive population (George).
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4.3. Molecular Characterization of EPSPS Gene
4.3.1. Partial Sequencing of EPSPS cDNA
Plant Material, RNA Extraction and cDNA Synthesis

Glyphosate-resistant (GR) plants from Swellendam, Piketberg and Worcester and
glyphosate-susceptible (GS) plants from George and Fauresmith were used in the study.
Plants were grown in a pot experiment in the glasshouse and at the 4–6 leaf stage (rosette),
leaf samples were harvested, frozen in liquid nitrogen and stored at −80 ◦C until use. Sam-
ples were ground in liquid nitrogen using a pestle and mortar. Total RNA was extracted
from 100 mg of the sample powder using TRIzol reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s protocol. RNA purification and DNase I digestion was
carried out using Direct-zol RNA MiniPrep (Zymo Research, Irvine, CA, USA) following
the manufacturer’s instructions. The RNA quantity and purity were determined spec-
trophotometrically using a NanodropR (Thermo Scientific, Waltham, MA, USA) and by
gel electrophoresis run on a 1% (w/v) agarose gel in 1× Tris-acetate-EDTA (TAE) buffer,
stained with GelRedTM (Biotium, Freemont, CA, USA) added to 6× Loading Dye (Thermo
Scientific, Waltham, MA, USA), and the whole set up run at 100 V for 20 min.

Extracted RNA was used to synthesize single-stranded cDNA by random hexamer
priming with the GoScriptTM Reverse Transcription System kit (Promega, Madison, WI,
USA) in a 38 µL reaction mixture, according to the manufacturer’s protocol. Polymerase
chain reaction (PCR) was conducted to amplify a 492 bp section of the EPSP synthase gene
containing proline codon at position 106 where resistance-conferring point mutation(s)
have been reported. The forward (5′-CTGTCTGAGGGGACTACT-3′) and reverse (5′-
TATCTCTACGTCTCCCAG-3′) primers were designed based on the C. bonariensis EPSP
synthase mRNA sequence, GenBank accession number EF200069.1. The PCR was performed
in a 10 µL reaction mixture containing 0.5 µL of primers (10 µM), 5 µL OneTaq 2x Master Mix
with Standard Buffer (New England Biolabs, Ipswich, MA, USA), 1 µL of the synthesized
cDNA and 3 µL double-distilled water (ddH2O). The PCR reactions were performed
in a thermal cycler (Bio-Rad, Hercules, CA, USA) using the following PCR program:
initial denaturation at 94 ◦C for 5 min, 39 cycles of 94 ◦C for 30 s, annealing at 58 ◦C
for 30 s, extension at 72 ◦C for 1 min and a final elongation at 72 ◦C for 10 min. An
aliquot of the PCR product was loaded on a 2% (w/v) agarose gel in 1× Tris-acetate-EDTA
(TAE) buffer, and stained with GelRedTM (Biotium, Freemont, CA, USA) added to 6×
Loading Dye (Thermo Scientific, Waltham, MA, USA) to ensure that the correct band was
amplified. The quantity and purity of cDNA was further verified using a NanodropR

Spectrophotometer (Thermo Scientific, Waltham, MA, USA). The rest of the PCR product
was purified using ExoSAP-ITTM PCR Product Cleanup (Thermo Scientific, Waltham, MA,
USA) to remove excess primers and nucleotides, according to the manufacturer’s protocol.
The PCR products were sequenced in both directions using the BigDyeTM Terminator v3.1
Cycle Sequencing Kit (Thermo Scientific, Waltham, MA, USA) following the manufacturer’s
instructions. The sequenced products were precipitated in an ethanol and sodium acetate
wash and resuspended in 10 µL of formamide before being sent to the University of Pretoria
Sequencing Facility for sequencing. PCR products of the five C. bonariensis biotypes were
sequenced in both forward and reverse directions to minimize sequencing errors. The DNA
sequence chromatograms were visually checked for quality and consistency before they
were assembled, compared and analysed using the ContigExpress from the Vector-NTi
Advance 11.5 programs (Invitrogen, Carlsbad, CA, USA). The sequences were aligned
to the EPSP synthase sequence of C. bonariensis from the GenBank (Accession number
EF200069.1) as a reference. The aim was to determine the presence of mutation(s) as a
possible target-site mechanism of glyphosate resistance in GR biotypes.

4.3.2. RNA Expression
Plant Establishment and Glyphosate Treatment

Four biotypes, Swellendam (GR), Piketberg (GR), George (GS) and Fauresmith (GS),
were established in the glasshouse at the Hatfield experimental farm. At the 4–6 leaf
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stage (rosette), plants were treated with glyphosate, Roundup® Turbo, (Monsanto South
Africa (Pty) Ltd., Sandton, South Africa), at the registered label recommended rate of
900 g ae ha−1. Control plants were not treated with the herbicide. Aboveground plant
tissue was sampled at 0 (before treatment), 4 and 6 days after treatment (DAT). Leaf samples
were harvested, frozen in liquid nitrogen and stored at −80 ◦C until use.

RNA Extraction and cDNA Synthesis

Grinding of samples in liquid nitrogen followed by RNA extraction and cDNA synthe-
sis was carried out as described in the DNA sequencing experiment. The RNA and cDNA
quantity and purity was determined spectrophotometrically using a NanodropR (Thermo
Scientific, Waltham, MA, USA) and by gel electrophoresis, as described before.

Primer Design

Primers for EPSP synthase gene were designed based on the published sequence
of Conyza canadensis, GenBank accession number AY545667. Actin gene was used as a
reference gene, and the primers were constructed based on Chrysanthemum seticuspe f.
boreale mRNA sequence, GenBank accession number AB770470.1. Primer3 software version
2.3.7 (Primer3web, Tartu, Estonia, http://primer3.ut.ee/ (accessed on 27 October 2016))
was used in the design of all the primers. Primers were selected using the following
criteria: primer length between 18 and 25 bases, amplicon length between 80 and 150 bp
and annealing temperature (Tm) between 55 and 65 ◦C, with the difference in Tm between
respective forward and reverse primers being less than 4 ◦C (Table S1).

Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) Analysis

Primer specificities were tested by performing a standard PCR on the cDNA using the
following thermal cycler conditions: initial denaturation at 94 ◦C for 5 min, 39 cycles of
94 ◦C for 30 s, annealing at 61 ◦C for 30 s, extension at 72 ◦C for 1 min and a final elongation
at 72 ◦C for 10 min. The PCR products were run on a 2% agarose gel. Quantitative RT-PCR
was used to measure cDNA expression level of EPSP synthase gene relative to the Actin
gene. Standard curves for the primers were performed using a 2x dilution series, ranging
from 200 ng to 6.25 ng. The slope of the standard curve was used to determine amplification
efficiency (E). Quantitative RT-PCR was conducted in a 10 µL reaction containing 5 µL
iTaqTM Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), 0.5 µL of each
forward and reverse primers (10 µM), 2 µL double-distilled water (ddH2O) and 2 µL of
cDNA. All qRT-PCR reactions were performed using a CFX96TM Real-Time PCR System
(Bio-Rad, Hercules, CA, USA). The initial denaturation step was held at 95 ◦C for 5 min,
followed by 35 cycles of denaturation at 95 ◦C for 10 s, and a combined annealing/extension
step at 60 ◦C for 30 s. Melt curve analysis was performed by heating the PCR products
from 60 to 95 ◦C, in 0.5 ◦C increments for 5 s and reading the fluorescence at each step.
The melt curve analysis was carried out to verify the primer specificity and that no primer
dimers formed. Negative controls, which were carried out in triplicates, consisted of
primers with no templates. Additionally, no reverse-transcriptase controls were included
to validate the effectiveness of the DNase I digestion step. Melt curve analysis showed
an absence of primer dimer formation and amplification in either primer set (Figure S5).
Primer efficiencies were 98.98% for EPSPS and 102.97% for Actin genes (Table S1). Data
was analysed using CFX Manager Version 2.1.1022.0523 (Bio-Rad, Hercules, CA, USA).
Relative quantification of EPSPS gene for each sample was calculated using the equation
2−∆∆Ct, where ∆Ct = (Ct, EPSPS-Ct, Actin), according to a method described by [78,79].
The results obtained were expressed as the fold increase or decrease of EPSPS gene relative
to Actin gene in treated samples compared with the untreated controls. The experiment was
arranged in a completely randomized design with four biotypes, three biological replicates
and three technical replicates.

http://primer3.ut.ee/
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4.4. Leaf Morphological Characterization
4.4.1. Cuticle Thickness Examination
Preparation of Plant Materials for Transmission Electron Microscopy (TEM)

Plants were established in the glasshouse as in the dose–response experiment. At the
rosette stage (6–8 cm diameter with 4 to 6 leaves), one mature and fully expanded leaf from
each of 10 plants per population was sampled and prepared for TEM examination. Each
leaf represented a replicate, making a total of 10 replicates per biotype. Too-young and
too-old leaves were avoided. Leaf segments of 1 mm2 in size from the middle of the leaf
between the main vein and margin were excised in 2.5% glutaraldehyde. The leaf segments
were further fixed in 2.5% glutaraldehyde in 0.075 M sodium phosphate buffer (pH 7.4) for
two hours at room temperature and rinsed three times, 10 min each time in 0.075 M sodium
phosphate buffer. The segments were then fixed in 0.5% aqueous osmium tetraoxide in a
fume hood, followed by rinsing three times in distilled water and dehydrated in a series
of ethanol concentrations: 30%, 50%, 70%, 90%, 100%, 100% and 100% for 10 min in each
concentration. Infiltration of the segments was performed for one hour, sequentially in 30%
and 60% epoxy resin and a further 4 h in 100% according to protocol specifications [80].
Segments were embedded in molds and polymerized at 60 ◦C for 39 h. Ultra-thin sections
were made with a Reichert Jung Ultracut E microtone using a diamond knife, mounted
on copper grids and contrasted in 4% aqueous uranyl acetate for 10 min. The sections
were rinsed in distilled water and contrasted a second time in Reynolds’ lead citrate for
2 min. Sections were then mounted in a Phillips CM10 transmission electron microscope
(TEM) operated at 80 kV for viewing and digital photographs of the plant cuticle taken at a
magnification of x 64,000. The Olympus Soft Imaging System (SIS) iTEM software package
was used to measure the cuticle thickness. The experiment was arranged in a completely
randomized design. Data were subjected to analysis of variance using the PROC GLM
procedure in SAS software version 9.3 (SAS 2002–2010, SAS Institute Inc., Cary, NC, USA)
and mean comparison with Tukey’s test, p ≤ 0.05, to determine significant differences.

4.4.2. Trichome Density

Plants were planted in pots, and at the rosette stage, one mature and fully expanded
leaf each from 10 plants per population were sampled for examination. One leaf represented
one replicate, and a total of 10 replicates were used per biotype. For light microscopy (LM)
work, whole leaves were viewed at ×40 objective and 10× ocular using a Zeiss SteREO
Discovery.V20 microscope equipped with an AxioCam MRc5 camera. Digital photographs
were taken and trichomes counted. The number of trichomes per mm2 on the adaxial and
abaxial surfaces was recorded. The experiment was arranged in a completely randomized
design. Data were subjected to analysis of variance using PROC GLM procedure in
SAS software version 9.3 (SAS 2002–2010, SAS Institute Inc., Cary, NC, USA) and mean
comparison with Tukey’s test, p ≤ 0.05, to determine significant differences.

For scanning electron microscopy (SEM), leaf segments of 2 mm2 in size were prepared
as in the TEM experiment until the final dehydration step. The segments were critical point
dried in liquid carbon dioxide for 4 h, mounted on stubs using a two-way stick tape and
splutter-coated with gold to reduce specimen charging. Viewing was performed using an
Ultra Plus Zeiss Gemini scanning electron microscope (Carl Zeiss NTS gmbH, Oberkochen,
Germany) and digital photographs taken to describe the characteristics of trichomes.

4.4.3. Quantification of Leaf Wax Mass

Plants were grown in pots, and at the rosette stage, 50 mature and fully expanded
leaves including the petiole were sampled per biotype. Of the 50 leaves sampled, one repli-
cate and five replicates were used in total per biotype. The total fresh weight was recorded
and wax extracted using a procedure previously presented by Sanyal et al. [81]. For each
biotype and replicate, 50 leaves were immersed in 100 mL (grade) chloroform in a glass
beaker for 20 s at room temperature in an ultra-sonic bath. The chloroform–wax solution
was filtered using a syringe filter fitted with Durapore membrane filters (0.22 mm GV),
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and the volume reduced to approximately 20 mL in a rotary evaporator. The reduced
chloroform–wax solution was transferred to a pre-weighed 25 mL glass scintillation vial.
Chloroform was evaporated to dryness under a fume hood and further dried in a forced-air
oven at 40 ◦C for 72 h to ensure complete dryness of the samples. The amount of wax was
expressed as the wax mass per unit leaf fresh weight. The experiment was arranged in a
completely randomized design. Data were subjected to analysis of variance using the PROC
GLM procedure in SAS software version 9.3 (SAS 2002–2010, SAS Institute Inc., Cary, NC,
USA) and mean comparison with Tukey’s test, p≤ 0.05, to determine significant differences.

4.5. Inheritance Studies
4.5.1. Glyphosate Dose–Response for Identification of Parental Lines

Glyphosate-resistant (GR) and -susceptible (GS) parental lines used were derived
from seeds collected from Swellendam and George localities in South Africa, respectively.
Previous screening studies established GR50 values of 2958.62 g ae ha−1 for the resistant
Swellendam biotype and 145.36 g ae ha−1 for the susceptible George biotype [35]. The GR
and GS populations were established in pots in a glasshouse and selfed for two generations
by placing clear plastic pollination bags over the capitula before anthesis. Clear pollination
bags were used because they allow light and air to reach the plants whilst preventing
insects from pollinating the flowers, thus enabling self-pollination to take place. Bags were
left on until seed set, and seeds were harvested and bulked separately for each biotype. In
each cycle of selfing, the resistant parent was treated with the label recommended rate of
900 g ae ha−1 glyphosate Roundup® Turbo (Monsanto South Africa (Pty) Ltd., Sandton,
South Africa) at the rosette stage. The susceptible parent was not sprayed due to its high
sensitivity to glyphosate treatment. Although all efforts were made to ensure that the
resistant parent was homozygous for glyphosate resistance by conducting two rounds of
selection, the possibility that there were some heterozygous individuals in the subsequent
crosses cannot be ruled out.

4.5.2. Controlled Reciprocal Crosses and Generation of F2 Progeny

The inflorescence of C. bonariensis consists of white pistillate ray florets (female) on
the periphery and yellow hermaphrodite disk florets in the capitulum center [82]. Before
anthesis, capitula of plants serving as female parents were emasculated by removing disk
florets using forceps under a magnifying lens. To restrict self-pollination, the remaining
non-emasculated capitula were removed from plants. Emasculated capitula and capitula of
plants acting as male parents were covered with clear pollination bags. The female flowers
were pollinated two to three days after emasculation by rubbing them with pollen from the
male parent. Pollination bags were immediately put back after pollination and the plants
allowed to set seed. Male capitula were disposed of and seeds harvested when the pappus
became visible. Reciprocal crosses were made in both directions to obtain F1 generation. In
the reciprocal crosses, the first letter denotes the female parent, that is, female S x male R
(S/R) and female R x male S (R/S). Sixty F1 seeds from each of the reciprocal crosses were
grown in the glasshouse under the same conditions as the parents and selfed to produce F2
seeds; these seeds were used for the inheritance studies.

4.5.3. Parents and F2 Dose–Response Experiments

A whole plant dose–response experiment was carried out using glyphosate rates of
0 (untreated control), 225, 450, 900, 1800 and 3600 g ae ha−1 as described previously in
the dose–response experiment. Twenty-one days after treatment (DAT), all the plants
were clipped at the soil surface and only green shoot tissue was weighed and fresh weight
recorded. A plant count was performed at 21 days after treatment (DAT). Typical glyphosate
toxicity symptoms on C. bonariensis include yellowing of growth points that progress into
necrotic lesions on leaves, wilting, and plant death. Visual examination was performed
and plants that showed these symptoms were scored ‘dead’ while those that maintained
the green pigmentation and regeneration of new shoots were scored ‘alive’. The observed
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segregation data in F2 generation were tested for goodness of fit to expected segregation
ratios (3:1) using a chi-square test (α = 0.01) [83]. GR50 values were estimated from a three-
parameter non-linear regression model applied to the mean above-ground fresh weight, as
previously described in the dose–response experiment.

5. Conclusions

The C. bonariensis biotypes tested in this study varied in response to glyphosate, with
a wide range of response levels between glyphosate-susceptible (WP 19-George and WP
42-Fauresmith) and glyphosate-resistant biotypes (WP 22-Swellendam, WP 28-Worcester,
WP 33-Durbanville and WP 38-Piketberg). The resistance factors (RF) for the biotypes were
1.0-fold for George, 2.7-fold for Fauresmith, 4.7-fold for Durbanville, 8.1-fold for Worcester,
13.6-fold for Swellendam, and 24.8-fold for Piketberg.

The present study used molecular approaches to establish the mechanism(s) of glyphosate
resistance in C. bonariensis, and the mode of glyphosate resistance inheritance. Although
glyphosate resistance is inherited in an incompletely dominant manner, target-site mutations
and EPSPS mRNA overexpression are unlikely to be the mechanisms of glyphosate resistance
in the tested biotypes. Impaired translocation was indicated as one of the mechanisms of
glyphosate resistance in C. bonariensis from Spain [19]. Given the high glyphosate resistance
factors established in the resistant biotypes, it is feasible that non-target mechanisms of
resistance, including impaired translocation and vacuolar sequestration, could be responsible.
Our previous study showed that glyphosate resistance in C. bonariensis is influenced by
temperature [35]. Past investigations have determined that vacuolar sequestration and the
overexpression of ABC-transporter genes (M10 and M11) are temperature dependent [21,84].
We recommend further research in these areas as possible mechanisms of glyphosate resistance
in C. bonariensis in South African biotypes.

The influence of leaf morphological characteristics of C. bonariensis on plant growth
responses to glyphosate did not produce conclusive results. Differences in the response of
biotypes to glyphosate treatment cannot be explained by differences in the leaf morpho-
logical characteristics investigated because of non-significant results in the amount of leaf
wax and insufficient mean separations in cuticle thickness and trichome density data. The
hypothesis that differences in response to glyphosate treatment could be attributed to leaf
morphological characteristics was rejected.
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and fewer trichomes on the abaxial (‘B’) leaf surfaces. Figure S5. Melting curves for the EPSPS and
Actin genes of C. bonariensis. Table S1. qRT-PCR primer sets used in the study.
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