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Abstract: The search for soybean genotypes more adapted to abiotic stress conditions is essential to
boost the development and yield of the crop in Brazil and worldwide. In this research, we propose
a new approach using the concept of distance (or similarity) in a vector space that can quantify
changes in the morphological traits of soybean seedlings exposed to stressful environments. Thus,
this study was conducted to select soybean genotypes exposed to stressful environments (saline
or drought) using similarity based on Manhattan distance and the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) method. TOPSIS is a multi-criteria decision method for
selecting the best alternative using the concept of distance. The use of TOPSIS is essential because
the genotypes are not absolutely similar in both treatments. That is, just the distance measure is not
enough to select the best genotype simultaneously in the two stress environments. Drought and saline
stresses were induced by exposing seeds of 70 soybean genotypes to −0.20 MPa iso-osmotic solutions
with polyethylene glycol–PEG 6000 (119.6 g L−1) or NaCl (2.36 g L−1) for 14 days at 25 ◦C. The
germination rate, seedling length, and seedling dry matter were measured. We showed here how the
genotypic stability of soybean plants could be quantified by TOPSIS when comparing drought and
salinity conditions to a non-stressful environment (control) and how this method can be employed
under different conditions. Based on the TOPSIS method, we can select the best soybean genotypes
for environments with multiple abiotic stresses. Among the 70 tested soybean genotypes, RK 6813
RR, ST 777 IPRO, RK 7214 IPRO, TMG 2165 IPRO, 5G 830 RR, 98R35 IPRO, 98R31 IPRO, RK 8317
IPRO, CG 7464 RR, and LG 60177 IPRO are the 10 most stable genotypes under drought and saline
stress conditions. Owing to high stability and gains with selection verified for these genotypes under
salinity and drought conditions, they can be used as genitors in breeding programs to obtain offspring
with higher resistance to antibiotic stresses.

Keywords: distance measure; vector space model; abiotic stress; multi-environment; osmotic potential

1. Introduction

Soybean (Glycine max (L.) Merrill.) is among the most important crops in the world,
constituting one of the largest sources of vegetable oil and animal protein [1,2]. The main
producing countries are Brazil, the USA, Argentina, China, and India [3]. Abiotic stresses
such as drought and salinity negatively affect world soybean production, constituting
limiting factors for soybean cultivation, especially in tropical and semi-arid regions [4,5].
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In many situations, crop sowing is performed under inappropriate soil moisture
conditions to support seed germination, or in areas with excess salts in the soil or irrigation
water [4]. Currently, one-third of the world’s cultivated land, 7% of the total world land,
and 50% of the irrigated land are affected by salinity [6]. Therefore, the sustainability of
agriculture production in many areas of the world is at risk due to soil salinization and
water scarcity during the crop growing season.

Low water content and salt excess in the soil at sowing time cause delayed and reduced
seed germination, unequal seedling emergence, and unsatisfactory stand establishment,
which results in crop yield reductions [7,8]. Drought and salinity affect seed germination
and seedling growth by creating highly negative water potentials, thus preventing water
uptake by the seeds and plants [8–11]. Salinity may also cause direct phytotoxic effects of
Na+ and Cl− ions [9]. Therefore, drought and salt tolerance testing in the initial stages of
plant growth is important because a seed with more rapid germination under water or salt
stress conditions may be expected to achieve rapid seedling establishment, resulting in
higher yields.

Many factors affect plant responses to drought or salt stress, such as plant genetics,
timing, the intensity and duration of applied stress, and environmental factors that deter-
mine the genotype versus environment interaction [11–14]. Genetic differences in tolerance
to abiotic stresses in soybean genotypes have been reported in other studies [4,15–17],
which may be useful in identifying genotypes more adapted to sowing under abiotic stress
conditions. In the research by Zuffo et al. [4], the authors proposed a multitrait tool to select
the best soybean genotypes exposed to drought and saline stresses. They investigated the
stability of 46 soybean genotypes using the stability index. Among the results presented,
they mention that this index can be used under different stressful environmental conditions
to quantify the genotypic stability of soybean genotypes.

In this research, we discussed how the concept of distance (or similarity) in a vector
space could be used to evaluate changes in the characteristics of soybean genotypes when
subjected to stressed environments.

Two objects are similar if they have characteristics in common. These objects are
represented as vectors in a vector space model (V.S.M.) [18]. Each component is a feature
or a characteristic of the object and represents a dimension in the vector space. A real
n-dimensional vector x (i.e., x ∈ Rn) is expressed to its components as x =

(
x1, x2, . . . , xn),

where the symbol R represents the real number set. In this text, the features of soybean
genotypes are the following variables: germination (GERM), shoot length (SL), root length
(RL), total length (TL), shoot dry mass (SDM), root dry mass (RDM) and total dry mass
(TDM). Thus, each sample of the dataset is represented as x ∈ R7, that belongs to a
7-dimensional vector space.

In the VSM, the similarity is related to the distance between vectors [19]. In other
words, the closer two objects are, the more similar they are. Classic machine learning
algorithms, such as a k-nearest neighbor, k-means, support vector machine, and others, use
distance metrics to measure similarity [20,21]. There are several ways to calculate the dis-
tances between vectors. Some of them are Euclidean, Manhattan, Chebyshev, Mahalanobis,
Cosine, Hamming, Jaccard, and Spearman [22].

In this research, the soybean genotype samples are drawn in the VSM. The Manhattan
distance is used for compute similarity, as it is more suitable in higher dimensions. It is
calculated for different stressful environments. To combine the distance measures and
choose which genotype has the shortest distance (higher similarity with the control sample)
in both stressed environments, we propose using the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS). This method is a multi-criteria decision-making
approach used in several areas [23]. It is preferable to other decision-making approaches
because (i) it is suited to a large number of attributes and alternatives; (ii) it requires little
subjectivity in the definition of input values; and (iii) it has consistency in the comparison
of the alternative ranking [24].
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The main objective of this research is to select soybean genotypes exposed to stressful
environments (saline or drought) using similarity based on Manhattan distance and the
TOPSIS method.

2. Results

To illustrate the proposed approach, Figure 1 shows a further example considering only
two normalized variables, i.e., TDM and TL in Figure 1a, “97R73 RR” and “HO Paranaiba
IPRO” are the genotypes with the shortest and greatest distances in the Control/Saline
comparison, respectively. In Figure 1b, “AS 3575 IPRO” and “CG 8166 RR” are related to
the shortest and greatest distances in the Control/Drought comparison, respectively.
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Figure 1. Shows four vectors for only two variables, i.e., TDM (total seedling dry matter) and TL
(shoot length). These vectors are related to the most similar (shortest distance) and least similar
(greater distance) genotypes regarding the comparison: (a) Control/Saline, and (b) Control/Drought.

Calculations of Manhattan distances are performed according to Equation (1). Dis-
tances were calculated for the Control/Saline and Control/Drought comparison. The es-
timates are made considering the mean values of four samples of each genotype for the
variables GERM, SL, RL, TL, SDM, RDM, and TDM, after the normalization procedure for
each variable.

Figure 2 shows the values of the Manhattan distances obtained in comparing normal-
ized variables between control and abiotic stress environments and the score obtained by
the TOPSIS method. For this experiment, the criteria weights (distances) were equal to 0.5.
It is noteworthy that the TOPSIS method was employed for the Manhattan distances and
not for the variables.
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Figure 2. Manhattan distances and Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) score for each soybean genotype.

Table 1 shows the ten best soybean genotypes (cultivars) in ascending order, con-
sidering the Manhattan distances obtained in the Control/Saline and Control/Drought
comparison. The presented results make it clear that no genotype is better than another.
Only the genotype ST 777 IPRO appeared on both lists. This trade-off makes the process
of choosing the best genotype a difficult task. Therefore, it is necessary to use the TOPSIS
method, which has the power to join these distances to decide which genotype performs
better in both environments of abiotic stress.
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Table 1. Top ten genotypes to Control/Saline, and Control/Drought distances in ascending order.

Genotype Control/Saline
Distance Genotype Control/Drought

Distance

97R73 RR 0.3132 AS 3575 IPRO 0.4034
TMG 2165 IPRO 0.3329 BMX Ponta IPRO 0.4578
RK 8317 IPRO 0.3367 BMX Foco IPRO 0.5371

TMG 2378 IPRO 0.3482 RK 6813 RR 0.5733
98R31 IPRO 0.3670 TMG 716 RR 0.6079
98R35 IPRO 0.3720 5D 6215 IPRO 0.6550

NS 5151 IPRO 0.3730 FPS solar IPRO 0.6645
5G 770 RR 0.3787 ST 777 IPRO 0.6649

ST 797 IPRO 0.3800 RK 7214 IPRO 0.6805
ST 777 IPRO 0.3926 5G 830 RR 0.7158

Table 2 shows the ten best genotypes selected according to the TOPSIS score in de-
scending order. In addition, the Manhattan distances of each genotype in each stressed
environment are shown, as well as the rank position according to the distances shown in
Figure 3.

Table 2. Top ten genotypes to TOPSIS score in descending order.

Genotype
Rank Manhattan Distances

TOPSIS Score
C/S * C/D ** C/S C/D

RK 6813 RR 12th 4th 0.4461 0.5733 0.9380
ST 777 IPRO 10th 8th 0.3926 0.6649 0.9230

RK 7214 IPRO 14th 9th 0.4772 0.6805 0.9081
TMG 2165 IPRO 2nd 11th 0.3329 0.7385 0.9073

5G 830 RR 16th 10th 0.5298 0.7158 0.8911
98R35 IPRO. 6th 18th 0.3720 0.8048 0.8878
98R31 IPRO. 5th 23th 0.3670 0.8342 0.8805

RK 8317 IPRO 3rd 24th 0.3367 0.8696 0.8728
CG 7464 RR 21th 14th 0.6055 0.7714 0.8650

LG 60,177 IPRO 17th 20th 0.5593 0.8136 0.8637

* C/S and ** C/D mean Control/Saline and Control/Draught, respectively.

Plants 2022, 11, x FOR PEER REVIEW 7 of 16 
 

 

  

  

Figure 3. Values of the original variables in the control and abiotic stress environment for the four 
best soybean genotypes. (a–d) are the values of genotypes RK 6813 RR, ST 777 IPRO, RK 7214 IPRO, 
and TMG 2165 IPRO, respectively. 

  

  

Figure 4. Values of the original variables in the control and abiotic stress environment for the four 
worst soybean genotypes. (a–d) are the values of genotypes CG 8166 RR, HO Paranaiba IPRO, 
M7110 IPRO, and NS 8399 IPRO, respectively. 

Figure 3. Values of the original variables in the control and abiotic stress environment for the four
best soybean genotypes. (a–d) are the values of genotypes RK 6813 RR, ST 777 IPRO, RK 7214 IPRO,
and TMG 2165 IPRO, respectively.



Plants 2022, 11, 2827 6 of 15

The genotypes respond differently in each environment of abiotic stress (Tables 1
and 2). The results shown in Figure 2 assumed the same weight in the TOPSIS method
for both Control/Saline and Control/Drought comparisons. To verify how this weighting
affects the selection of the genotypes provided by the TOPSIS, the weights of the distances
(criteria) are varied from 0.1 to 1, remembering that the sum of the weights is equal to 1,
according to Section 4.3. Some results obtained with this experiment are shown in Table 3.

Table 3. Genotypes selected by the TOPSIS when criteria weights (Control/Saline and Control/
Drought distances) vary.

Weights
Genotypes TOPSIS Score

Control/Saline Control/Drought

0.1 0.9

BMX Ponta IPRO
BMX Foco IPRO
AS 3575 IPRO

RK 6813 RR
TMG 716 RR
5D 6215 IPRO
ST 777 IPRO

FPS solar IPRO
RK 7214 IPRO

5G 830 RR

0.9581
0.9340
0.9315
0.9284
0.9100
0.8925
0.8903
0.8889
0.8836
0.8687

0.3 0.7

RK 6813 RR
ST 777 IPRO

RK 7214 IPRO
FPS solar IPRO
5D 6215 IPRO

BMX Ponta IPRO
TMG 716 RR

5G 830 RR
TMG 2165 IPRO
BMX Foco IPRO

0.9313
0.8997
0.8908
0.8802
0.8798
0.8794
0.8768
0.8754
0.8735
0.8700

0.7 0.3

ST 777 IPRO
TMG 2165 IPRO

RK 6813 RR
98R35 IPRO
98R31 IPRO

RK 8317 IPRO
RK 7214 IPRO

97R73 RR
ST 797 IPRO
5G 770 RR

0.9507
0.9495
0.9444
0.9362
0.9329
0.9307
0.9262
0.9260
0.9125
0.9119

0.9 0.1

TMG 2165 IPRO
97R73 RR

RK 8317 IPRO
98R31 IPRO
98R35 IPRO

TMG 2378 IPRO
ST 777 IPRO
5G 770 RR

ST 797 IPRO
RK 6719 IPRO

0.9839
0.9788
0.9783
0.9721
0.9713
0.9669
0.9668
0.9647
0.9645
0.9473

Finally, Figures 3 and 4 show the original values (without normalization) of the vari-
ables GERM, SL, RL, TL, SDM, RDM, and TDM for the four best and worst genotypes,
respectively, selected by TOPSIS, considering the same weight for both criteria. This com-
parison is important to determine if the Manhattan distance and the TOPSIS method are
selecting those genotypes that suffer fewer changes in abiotic stress environments.
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Table 4 shows the percentage changes (increase or decrease) considering the control
and abiotic stress environments. Values are displayed only for the best and worst genotypes
according to the TOPSIS selection. The negative sign indicates an increase in the value of
the variable.

Table 4. Percentage change of the original variables for the best (RK 6813 RR) and the worst (CG 8166
RR) genotype.

Genotype Comparison
Percentage Increase/Decrease in Variables

GERM SL RL TL SMD RDM TDM

RK 6813 RR
Control/Saline 3.03 40.96 30.69 36.34 25.78 28.72 26.54

Control/Drought 5.55 71.68 −10.29 34.76 86.30 −0.31 64.90

CG 8166 RR
Control/Saline 23.00 64.84 71.37 67.99 57.50 47.08 54.76

Control/Drought 14.00 84.14 40.37 64.09 92.31 46.02 80.20

GERM: germination; SL: shoot length; RL: root length; TL: total length; SDM: shoot dry mass; RDM: root dry mass
and TDM: total dry mass.

3. Discussion

Our experience reveals that objects with close features are more similar. Distance
metrics mathematically verify this notion [19,25]. In this work, it is being investigated
whether these metrics can be used to measure the similarity between soybean genotypes
in the control environment and abiotic stress environments. For this, it was necessary
to model the obtained data in a 7-dimensional vector. We chose the Manhattan distance
to calculate the similarity between the samples because it presents better results in high-
dimensional vector spaces [18,20–22,25]. Since the genotypes show different responses in
saline and drought-stressed environments, we also included the TOPSIS method to select
the one with the greatest similarity in both environments. Yao et al. [26], using the TOPSIS
approach, compared seeds of Bupleurum chinense and found that the green ones had a
good germination characteristic and were recognized as the superior group, followed by
the yellow, brown, and black ones. Successful application of the TOPSIS in dealing with
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complicated issues in managing crop priority planning has been employed in the soybean
crop [27].

As a result of using the Manhattan and TOPSIS distance, Figure 1 illustrates well
how distance is related to similarity. The genotype “97R73 RR” (Figure 1a) has the short-
est distance in the saline stress environment; therefore, it has greater similarity with the
average sample of the control environment. The values of the TDM and TL variables
are very close for the samples in the control and saline stress environment. On the other
hand, the genotype “HO Paranaiba IPRO” has the greatest distance in the saline stress
environment. Therefore, it was observed that, in the stress environment, the values of the
TDM and TL variables are very different from those in the control environment. The analo-
gous conclusion can be observed in Figure 1b in the drought-stress environment. In this
case, it is important to note that, although the distance was shown only for two variables,
the distance metric is generalizable for vector spaces of any dimension [19,25]. The diffi-
culty of selecting genotypes through adaptability studies under abiotic stress conditions
such as drought, salinity, and aluminum toxicity has been shown in soybean [3–5,14,16],
sorghum [6], wheat [7], and corn [11]. Several methods are available to evaluate groups of
genotypes in different environments. However, it is still difficult to select the best genotypes
because the responses are very variable, so new approaches, such as those described in our
work, are important.

The results presented in Figure 2 and Tables 1 and 2, make it clear that no genotype is
absolutely better than another. Some genotypes are more similar to the control samples in the
saline stress environment, while others are more similar to the control samples in the drought
environment. This is because genotypes respond differently to abiotic stress [3–5,14,16]. The
genotypes “97R73 RR” and “AS 3575 IPRO” are the most similar in saline and drought stress
environments, respectively. However, the genotype “AS 3575 IPRO” occupies the 65th
position when considering distance in the Control/Saline comparison. On the other hand,
the genotype “97R73 RR” occupies the 28th position in the Control/Drought comparison.
The response to different stresses is always variable, as verified in the present work, hence
the difficulty in selecting most crops.

Analyzing the results in Table 2, we noticed that none of these genotypes was selected
by the TOPSIS method. Moreover, the first genotype selected, i.e., “RK 6813 RR”, occupies
the 12th and 4th position concerning the Control/Saline and Control/Drought comparisons,
respectively. From the Rank column of Table 2, we conclude that TOPSIS makes a balanced
selection of genotypes. If we add the Manhattan distances (4th and 5th columns), we notice
that the sum values increase, although the individual values of the distances do not show a
different order.

Considering the results in Table 3, which show the selection by TOPSIS when varying
the criteria weights (distances), we observed that the genotype “ST 777 IPRO” was selected
in all cases. On the other hand, the best genotype, “RK 6813 RR”, was not selected in
the last case, when the weights were 0.1 and 0.9 for the saline and drought environments,
respectively. These genotypes are less dependent on the weights assigned to distances. In
other words, these genotypes present more stability relative to abiotic stress environments
and reduced distance values. However, the genotype that presents greater stability, and
close similarities to both stress environments, is the genotype “AS 3610 IPRO” (see Figure 2).
However, their distances for stress environments are greater than those of the genotypes
“RK 6813 RR” and “ST 777 IPRO”. The genotype “AS 3610 IPRO” occupies the 24th position,
considering the TOPSIS score. It was shown that the TOPSIS method had practical meaning,
confirming the applications made by Li et al. [28].

From the original values (without normalization) of the variables GERM, SL, RL, TL,
SDM, RDM, and TDM, it can be seen from the results shown in Figures 3 and 4 that the
TOPSIS method made an appropriate selection. The values of these variables for the best (RK
6813 RR) and worst (CG 8166 RR) genotypes, respectively, are shown in Figures 3a and 4a. We
noticed that the changes in the values of the variables are much more pronounced for the worst
genotype than for the best. In other words, the worst genotype, according to the TOPSIS
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method, is the one that suffered the most modification in abiotic stress environments.
Xue et al. [29] demonstrated that the TOPSIS method could be used efficiently to evaluate
the total content of bioactive compounds of different grains, thus providing a database for
manufacturing companies to optimally select the germination period.

In Table 4, for example, we note that the variable GERM suffered a decrease of 3.03%
and 5.55% in the saline and drought environment, respectively, for the best genotype. On
the other hand, for the worst genotype, this decrease was 23% and 14%, respectively. Even
more drastic was the change concerning the RL variable. For the best genotype, there
was an increase of 10.29%, while for the worst, there was a decrease of over 40%. Similar
changes are observed for all other variables, showing that the selection provided by the
Manhattan distance combined with the TOPSIS method is correct.

By analyzing the most important strengths and weaknesses of the TOPSIS method,
we can say that the method shows the accuracy of results when evaluating a large number
of alternatives. Expert knowledge is a basic source of information for making effective
managerial decisions in the selection process of plants subjected to abiotic stress.

In addition, a wide variety of techniques have been used to introduce effective factors
in the selection of superior genotypes. However, the best or most suitable method is not
clearly defined, so various methods are used to ensure the correct decision. The constant
evaluation in stress environments combined with selection strategies is constantly sought
among soybean breeders to promote the selection of genotypes with the best performance.
Therefore, the simultaneous use of methods and the presentation of their most important
criteria is the only solution to identifying the best genotypes.

4. Materials and Methods
4.1. Plant Material and Stress Treatments

Seeds from a total of 70 midwestern Brazilian commercial soybean genotypes [Glycine
max (L.) Merrill.] listed in Table 5 were produced under field conditions at Cassilândia,
MS, Brazil (19◦05′16” S, 51◦48′04” W, and an altitude of 480 m), during the 2019 to 2020
growing season, and used in this study. Minimum and maximum air temperatures during
the growing season were 21.7 and 35.3 ◦C, respectively, and mean air relative humidity
ranged from 51 to 83%. The harvest was manually performed at the R8 stage (full maturity),
and the plants were air-dried at room temperature for 96 h. The seeds were extracted by
hand, sieved through round hole sieves with 6.00 mm diameters, and then stored in sealed
paper bags at 13 ◦C and 35% moisture content until use. Before starting the experiment, the
water content, thousand seed weight, and germination rate were determined, as described
in the Official Rules for Seed Analysis [30]. The results obtained for the soybean genotypes
are shown in Table 5.

Table 5. Agronomic characteristics, seed water content (WC), thousand seed weight (SW), and
germination rate (GR) of 70 Brazilian soybean genotypes used in this study.

Genotype
Agronomic Characteristics

WC (%) SW (g) GR (%)
MC RMG GT

5D615 RR Early 6.1 Ind. 9.97 173 98
5D6215 IPRO. Early 6.4 Ind. 9.22 156 97

5D690 RR Early 6.9 Ind. 9.05 176 89
5G 770 RR Early 7.7 Ind. 9.01 174 100
5G 830 RR Early 8.3 Ind. 9.67 167 100

95R51 Ultraearly 7.5 Ind. 9.60 177 91
97R21 Early 7.2 Ind. 8.85 176 97

97R50 IPRO. Early 7.5 Ind. 8.15 190 100
97R73 RR Mid 7.7 Ind. 9.66 187 97

98R31 I.P.R.O. Mid 8.3 Ind. 9.89 175 97
98R35 I.P.R.O. Mid 8.3 Ind. 9.57 180 98
AS 3575 IPRO Ultraearly 5.7 Ind. 8.84 189 99
AS 3610 IPRO Ultraearly 6.1 Ind. 9.81 173 98

BMX Bônus IPRO Mid 7.9 Ind. 9.42 185 100
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Table 5. Cont.

Genotype
Agronomic Characteristics

WC (%) SW (g) GR (%)
MC RMG GT

BMX Desafio RR Early 7.4 Ind. 8.74 170 99
BMX Foco IPRO 110 7.2 Ind. 9.11 175 83

BMX Ponta IPRO. Early 6.9 Ind. 9.58 191 98
CD 238 RR Mid 7.1 Det. 9.43 165 96

CD 250 Mid 5.5 Ind. 9.09 159 100
CG 67 RR. Mid 7.4 Semi 8.78 165 98
CG 68 RR Early 6.8 Ind. 9.43 182 86

CG 7464 RR Early 7.4 Semi. 9.65 159 96
CG 7665 RR Mid 7.6 Semi. 9.84 192 97
CG 8166 RR Mid 8.1 Ind. 9.34 174 96

FPS Antares RR Mid 6.8 Ind. 9.28 194 100
F.P.S. Atalanta I.P.R.O. Early 5.8 Ind. 9.07 189 88

FPS Iguaçu RR Ultraearly 5.0 Ind. 9.43 159 100
FPS Júpiter RR Early 5.9 Ind. 8.59 130 98
FPS Netuno RR Mid 6.3 Ind. 9.19 135 98

FPS Paranapanema RR Early 5.6 Semi. 8.43 164 93
F.P.S. Solar I.P.R.O. Early 6.3 Ind. 8.48 188 99
FPS Solimões RR Early 5.7 Ind. 9.38 198 97
F.P.S. Urano RR Early 6.2 Ind. 8.74 278 96

HO Cristalino IPRO Mid 8.3 Ind. 8.93 160 100
HO Maracaí IPRO Mid 7.7 Ind. 9.60 170 87

HO Paranaíba IPRO Early 7.4 Ind. 9.75 210 93
LG 60,163 IPRO Early 6.3 Semi. 8.95 210 98
LG 60,177 IPRO Early 7.7 Ind. 9.61 199 99

M5917 IPRO Ultraearly 5.9 Ind. 9.42 170 93
M7110 IPRO Early 6.8 Ind. 9.01 195 100

NS 5106 IPRO Ultraearly 5.2 Ind. 9.11 202 96
NS 5151 IPRO Ultraearly 5.2 Ind. 9.50 173 95
NS 5909 RG Ultraearly 6.9 Ind. 9.95 177 80

NS 5959 IPRO Early 5.9 Ind. 9.18 176 95
NS 6909 IPRO Ultraearly 6.3 Ind. 8.34 165 92
NS 7000 IPRO Early 7.0 Ind. 9.40 201 88
NS 7007 IPRO Early 7.1 Ind. 9.77 210 99
NS 7209 IPRO Mid 7.3 Ind. 9.34 272 97
NS 7300 IPRO Early 7.3 Ind. 9.72 190 100
NS 7338 IPRO Early 7.3 Ind. 9.30 197 94
NS 7505 IPRO Early 7.5 Ind. 8.97 200 84
NS 8399 IPRO Mid 8.3 Ind. 9.02 185 89

RK 5813 RR Ultraearly 5.8 Ind. 8.76 202 98
RK 6316 IPRO Early 6.3 Ind. 9.51 194 91
RK 6719 IPRO Early 6.7 Ind. 9.57 190 100

RK 6813 RR Early 6.8 Ind. 8.30 168 99
RK 7214 IPRO Early 7.2 Ind. 8.60 178 96
RK 7518 IPRO Early 7.5 Ind. 10.08 180 100
RK 8115 IPRO Mid 8.1 Ind. 9.02 200 96
RK 8317 IPRO Mid 8.3 Ind. 10.46 185 88
ST 777 IPRO Early 7.7 Ind. 9.41 155 100
ST 797 IPRO Early 7.9 Ind. 9.45 150 100

SYN 13,610 IPRO Early 6.1 Ind. 8.53 167 96
TMG 2165 IPRO Early 6.5 Ind. 9.14 180 98
TMG 2378 IPRO Mid 7.8 Semi. 8.96 165 96
TMG 2381 IPRO Mid 8.1 Ind. 9.77 160 100
TMG 7061 IPRO Early 6.1 Ind. 10.17 185 98
TMG 7063 IPRO Early 7.0 Ind. 9.75 175 86
TMG 7067 IPRO Early 7.2 Semi. 9.87 170 100

TMG 716 RR Early 5.9 Ind. 9.51 167 100

MC: soybean maturity cycle. RMG: relative maturity group. GT: Growth type. Ind.: Indeterminate growing habit.
Det.: Determinate growing habit. Semi.: Semideterminate growing habit.

The seeds were previously disinfected by immersion for 10 min in 1% sodium hypochlo-
rite solution (v/v), washed in running water, and placed to germinate under stressful
(drought and saline stress) and non-stressful (control) conditions. The drought and saline
stresses were induced by exposing seeds from each soybean genotype to solutions with an
osmotic potential of −0.20 MPa prepared with polyethylene glycol (PEG-6000) and sodium
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chloride (NaCl), respectively. The amount of PEG-6000 (119.57 g L−1) added to obtain the
solution with an osmotic pressure of –0.20 MPa was determined by the equation of Michel
and Kaufmann [31]: Ψs = [−(1.18 × 10−2) × C − (1.18 × 10−4) × C2 + (2.67 × 10−4) ×
C × T + (8.39 × 10−7) × C2 × T]/10, where Ψs is the osmotic potential (MPa), C is the
concentration (g L−1 of PEG-6000), and T is the temperature (◦C). The amount of NaCl
(2.357 g L−1) added to obtain the osmotic pressure of –0.20 MPa was calculated by the
van’t Hoff equation [32]: Ψs = −R × T × C × i, where R is the universal constant of noble
gas (0.008314 MPa mol−1 K−1), T is the absolute temperature (273.15 + ◦C), C is the molar
concentration of the solute (mol L−1), and i is the van’t Hoff factor, that is the number of
ions released when the solute is dissolved in water (i.e., for NaCl this value is 2.0 (Na+ and
Cl−)). Distilled water with an osmotic potential of 0.00 MPa was used as a control. Using
an osmotic solution at –0.20 MPa efficiently discriminates the tolerance differences between
soybean genotypes [4].

4.2. Germination Conditions and Measured Variables

Four replicates of 50 seeds from each soybean genotype were placed to germinate on
three sheets of germination test paper towels, previously moistened with distilled water
(control), PEG or NaCl solutions of –0.2 MPa, in the proportion of three times the mass
of the dry substrate. The paper towel sheets were then turned into rolls and packaged
into plastic bags to prevent evaporation and to maintain the relative humidity close to
100%. Germination was conducted in a growth chamber under 12/12 h photoperiod
(light/darkness), with a light intensity of 240 µmol m−2 s−1 and a temperature of 25 ◦C
for 14 days. Seeds were considered germinated when the primary root was longer than
10.0 mm. Germinated seeds were recorded 14 days after the test installation.

After 14 days of exposure to drought and salt stresses, the shoot length (SL), primary
root length (RL), and total seedling length (TL) were measured using a meter scale. The
shoot dry matter (SDM), root dry matter (RDM), and total seedling dry matter (TDM) were
recorded after oven drying at 85 ◦C for 48 h.

4.3. Manhattan Distance and Similarity

The distance function (metric) of two vectors x and y is designed by d(x, y), d : Rn ×
Rn → R, and must satisfy the requirements: (a) d(x, y) > 0; (b) d(x, x) = 0; (c) d(x, y) =
d(y, x); and (d) d(x, y) + d(y, z) ≥ d(x, z) [18]. The Minkowski distances of two vectors
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are defined as Equation (1):

d(x, y, p) =
(
∑n

i=1|xi − yi|p
)1/p

(1)

For p = 1 and p = 2, this distance is named Manhattan and Euclidean, respectively.
For comparison, Figure 5 shows these distances in the plane, where d(X, Y, 1) = g + h and
d(X, Y, 2) = f .

Manhattan distance can be understood as the shortest route taken by a taxi driven in
a city whose streets are perpendicular. On the other hand, the Euclidean distance is the
intuitive notion of distance used by us. Aggarwal, Hinneburg, and Keim [25] establish that
the Manhattan distance is the most adequate to contrast the difference between the nearest
and farthest vectors from a fixed vector.

Since the variables can be on different scales, applying a pre-processing step named
normalization is necessary. This consists of dividing the variables by their maximum value,
i.e., x̃i = xi/max(xi), where xi is the value of the variable for the i-th sample and x̃i is the
respective normalized value. This ensures that x̃i is in a range between 0 and 1. In addition,
the scale is eliminated, and the variable becomes dimensionless.
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4.4. TOPSIS

The TOPSIS method can be employed in six steps, as described below [33]. Let X =(
xij
)

m×n be a decision matrix with m alternatives and n criteria, where xij is the value of
the alternative i concerning criterion j, do:

Step 1. Normalizes the decision matrix: rij = xij/ ∑m
i=1 x2

ij , ∀j;
Step 2. Given a criteria weight vector w = [w1, w2, . . . , wn], obtain the weighted

normalized decision matrix: vij = rijwT
j , such that ∑ wj = 1;

Step 3. Determine the worst alternative Aw (negative-ideal solution) and best alterna-
tive Ab (positive-ideal solution) as: Awj = maxm

i=1vij and Abj = minm
i=1vij, respectively;

Step 4. Calculate the Euclidean distance from each alternative i to the worst and best

alternatives: Sw
i =

√
∑m

i=1
(
vij − Awj

)2 and Sb
i =

√
∑m

i=1

(
vij − Abj

)2
, respectively;

Step 5. Calculate the relative closeness from each alternative i to the worst alternative:
Ci = Sw

i /
(

Sw
i + Sb

i

)
.

The coefficient Ci provides a TOPSIS score to rank the alternatives. The higher its
value, the closer that alternative is to the ideal solution. In the context of this study, the
alternatives are the genotypes, and the criteria are the Manhattan distances.

4.5. Proposed Approach

Our objective is to verify which genotypes are less sensitive to changes in the stressed
environment, referring to salinity and drought. As stated in Section 4.3, we can use distance
metrics to measure the similarity between objects. The experiments carried out with the
soybean genotypes considered three environments: control, saline, and drought. We know
that stressed environments alter plant responses. Therefore, there will be changes in the
values of the measured variables. We can verify how much these modifications altered the
characteristics of the plants. To do so, we can model it as a VSM problem. We calculated
the distance between the control samples’ mean and the stressed samples’ mean for each
genotype. Then, we compare the distances. Those genotypes that present the smallest
distance to the control samples are the genotypes less sensitive to saline and/or drought
stress. Our approach considers the Manhattan distance because, according to Aggarwal,
Hinneburg, and Keim [25], it is more suitable to contrast the difference between the nearest
and farthest vectors from a fixed vector.

A second approach aims to combine distances for the comparison in the stressed
environments, that is, Control/Saline or Control/Drought. In this way, we will know
which genotypes are more similar to the control samples in both stressed environments. To
combine the distances of saline (ds) and of drought (dd) environments from the control, we
propose the use of the TOPSIS method, where the first and second column of the decision
matrix is composed of values ds and dd, respectively, for each genotype (alternative).
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Although TOPSIS can be applied directly in the measured variables, this would not be
adequate. Therefore, there is no way to determine whether a greater or lesser value of the
magnitude of these variables implies a better or worse genotype. Therefore, it is necessary
to use the idea of similarity (or distance). So, we are sure that a smaller distance indicates
greater similarity with the control sample.

The entire computational implementation was carried out in the Python language
using the Colab environment and the NumPy, Pandas, IPython, Seaborn, Scipy, and Mat-
plotlib libraries [34–41]. The developed source code and experimental data can be accessed
at this link: https://github.com/brunobro/selection-of-soybean-genotypes, accessed on
24 August 2022.

5. Conclusions

Our results show that the genotypic stability of 70 soybean genotypes can be quantified
by the TOPSIS method and Manhattan distance when comparing drought and salinity
conditions in relation to the non-stressful environment (control). Based on the TOPSIS
method, we can select the best soybean genotypes for environments with multiple abiotic
stresses. Among all soybean genotypes tested, RK 6813 RR, ST 777 IPRO, RK 7214 IPRO,
TMG 2165 IPRO, 5G 830 RR, 98R35 IPRO, 98R31 IPRO, RK 8317 IPRO, CG 7464 RR, and LG
60,177 IPRO are the 10 most stable under drought and saline stress conditions. Furthermore,
from the point of view of plant breeding, these selected genotypes can be used as parents
to obtain genotypes resistant to drought and salinity.
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