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Abstract: Diseases and climate change are major factors limiting grape productivity and fruit
marketability. Lasiodiplodia theobromae is a fungus of the family Botryosphaeriaceae that causes
Botryosphaeria dieback of grapevine worldwide. Abiotic stress may change host vitality and impact
susceptibility to the pathogen and/or change the pathogen’s life cycle. However, the interaction
between both stress drivers is poorly understood for woody plants. We addressed the hypothesis that
distinct morpho-physiological and biochemical responses are induced in grapevine (Vitis vinifera)–L.
theobromae interactions depending on when water deficits are imposed. Grapevines were submitted
to water deficit either before or after fungus inoculation. Water deficit led to the reduction of the net
photosynthetic rate, stomatal conductance, and transpiration rate, and increased the abscisic acid
concentration regardless of fungal inoculation. L. theobromae inoculation before water deficit reduced
plant survival by 50% and resulted in the accumulation of jasmonic acid and reductions in malondi-
aldehyde levels. Conversely, grapevines inoculated after water deficit showed an increase in proline
and malondialdehyde content and all plants survived. Overall, grapevines responded differently
to the primary stress encountered, with consequences in their physiological responses. This study
reinforces the importance of exploring the complex water deficit timing × disease interaction and the
underlying physiological responses involved in grapevine performance.

Keywords: defense mechanisms; plant physiology; hormones; Botryosphaeria dieback; water deficit
timing × pathogen interaction

1. Introduction

Vitis vinifera L. is a very important commercial fruit crop worldwide, covering a
global area of approximately 7.5 million hectares. Besides grapevine berries being mainly
used for wine production, grapevine is also exploited for the production of fresh table
grapes, dried fruit (raisins), juice, tannins, and antioxidants [1]. Grapevines are adapted to
continuously deal with a plethora of biotic and abiotic stresses [2]. However, this delicate
adaptive balance has been threatened due to shifts in global climate patterns related to
temperature increases and severe water deficit periods that may favour the incidence of
plant diseases [3], changing host vulnerability and/or pathogen behavior. Grapevine trunk
diseases (GTDs) are among the most destructive fungal diseases of Vitis vinifera worldwide,
as there are still no effective control measures available [1,4]. These diseases represent a
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true challenge for viticulture, affecting the vineyard heritage and causing serious economic
losses in this industry [1].

Botryosphaeria dieback, one of the main GTDs, is caused by several species of
Botryosphaeriaceae, including Lasiodiplodia theobromae [1,4]. Common signs of L. theo-
bromae infection in grapevine include leaf spots and wilting, bud necrosis or mortality,
dead arms, shoot dieback, and bunch rot [1,4,5]. Furthermore, infections may lead to the
development of brown stripes below the bark and wedge-shaped necrotic sectors [1,4,5].
Lasiodiplodia theobromae is widely distributed, but is more prevalent in tropical and subtrop-
ical regions e.g., [5]. This pathogenic fungus is recognized as latent in many woody plants,
including grapevines [1], being able to survive endophytically in their hosts and transmit
into a pathogenic phase after the onset of abiotic stress, including high temperatures and
drought [4,6–8].

Grapevines are well-adapted to moderate water deficits, which can even enhance
wine quality if occurring during maturation [9]. However, the occurrence of frequent
drought periods—especially in regions with a Mediterranean climate—impairs overall
grapevine performance, with negative impacts on grape yield and quality [10]. Plant
responses to water deficits are complex and dependent on the duration and intensity of the
stress [11]. The regulation of stomata closure by abscisic acid is a key grapevine response to
prevent water losses and to protect against more severe damage such as leaf cavitation and
shedding during water deficits [12,13], also resulting in reductions in carbon assimilation.
Bertamini et al. [14] showed that water stress impacts grapevine leaf functioning; decreases
leaves’ relative water content (RWC), dry matter, and chlorophyll content; and increases
leaf proline content. Higher lipid peroxidation due to increases in hydrogen peroxide and
the enhancement of antioxidant enzyme activity are common features [15].

Interactions between water stress and Botryosphaeria dieback have been investi-
gated [1,16] by imposing water stress either before or after plant inoculation with Botryosph-
aeriaceae species. van Niekerk [8] evaluated the effect of water deficits in grapevines previ-
ously infected with Neofusicoccum australe, Neofusicoccum parvum, L. theobromae, and Diplodia
seriata. The authors observed that the length of the lesions around the inoculated sites
was higher in plants under water stress. Other experiments induced water limitations in
grapevines before Botryosphaeriaceae inoculation. While Neofusicoccum luteum showed
greater aggressiveness in plants grown under a higher soil moisture content [17], higher
susceptibility to Botryosphaeria dothidea, D. seriata, L. theobromae, and N. parvum was found
in grapevines under water-limiting conditions [18]. In general, results were influenced by
the age and genotype of the host, type of pathogen, severity of both stressors, and the time
and order of occurrence of the fungal infection and water stress. Although these reports
focused on the effect of water deficits in the outcome of plant–pathogen interactions, it is
difficult to ascertain the influence of stress timing in relation to infection on woody plants
defence responses, or a clear role for this interaction [19]. Moreover, how abiotic stress
factors may influence the transition from the endophytic to the pathogenic phases for GTD
fungi is still unclear [5].

The present work aims to elucidate how water deficit timing (pre- and post-inoculation)
influences disease progression in grapevines infected with L. theobromae by evaluating key
stress-related physiological markers such as gas-exchange parameters, primary metabolism,
and some hormones.

2. Results
2.1. Symptoms of Pathogen Infection

External symptoms of disease, including foliar chlorosis and wilting, varied amongst
the treatments (data not shown); growth, for instance, was clearly affected by some of the
treatments (Figure 1A). Grapevines with the F-WD treatment (inoculation before water
deficit) exhibited the most severe disease symptoms, including wilting of shoots, foliar
chlorosis, and necrosis. Furthermore, 50% of the grapevines with the F-WD treatment
(inoculation after water deficit) did not survive 28 days after inoculation (Figure 1B),
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dictating the end of the experiment for all treatments. Internal stem lesions were visible in
all inoculated grapevines, with the internal stem lesion in WD-F grapevines being half that
of the F-WD (Figure 1C).
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Figure 1. (A) External disease symptoms, (B) survival rate (%), and (C) internal stem lesion (cm2)
of grapevines exposed to WW (well-watered control); WW-F (well-watered fungal inoculation);
WD (water deficit); F-WD (inoculation before water deficit); WD-F (inoculation after water deficit).
Different lowercase letters indicate significant differences among the five treated groups (p ≤ 0.05).

2.2. Plant Water Status, Leaf Gas Exchange, and Chlorophyll a Fluorescence

Plant water status was evaluated by midday stem water potential (Ψmd). The water
deficit alone (WD) or combined with fungal inoculation (WD-F and F-WD) induced a
significant reduction in Ψmd in comparison to well-watered grapevines—the reduction
being higher with the WD than with the combined stresses (Figure 2A). In spite of the slight
decrease with the WD-F, non-significant differences were observed relating to water use
efficiency (Figure 2B).

Leaf gas-exchange parameters varied in response to WD, fungal inoculation, and
combined conditions (Figure 3). Plants under WD, WD-F, and F-WD presented similar
trends for A, gs, and E—with the imposed stresses causing severe reductions (Figure 4A–C).
The fungal infection in the well-watered vines (WW-F) resulted in a significant decrease in
gs, and a slight decrease in A and E (Figure 3A–C). The internal CO2 concentration was not
significantly affected (Figure 3D).

Regarding chlorophyll a fluorescence, significant decreases were observed in the ΦPSII
(actual PSII efficiency) of all treatments in comparison to the control (WW; Figure 4A). A
reduction in Fv/Fm (the maximum photochemical quantum efficiency of PS II) was only
observed in WD-F (Figure 4B).
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Figure 2. Midday stem water potential ((A): Ψmd) and water use efficiency (B) of grapevines exposed
to WW (well-watered control); WW-F (well-watered fungal inoculation); WD (water deficit); F-WD
(inoculation before water deficit); WD-F (inoculation after water deficit). Different lowercase letters
indicate significant differences among the five treated groups (p ≤ 0.05).
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Figure 3. (A) Net photosynthetic rate (A), (B) stomatal conductance (gs), (C) transpiration rate (E),
and (D) internal CO2 concentration (Ci) of grapevine plants exposed to WW (well-watered control);
WW-F (well-watered fungal inoculation); WD (water deficit); F-WD (inoculation before water deficit);
WD-F (inoculation after water deficit). Different lowercase letters indicate significant differences
among the five treated groups (p ≤ 0.05).



Plants 2022, 11, 1961 5 of 13

Plants 2022, 11, x FOR PEER REVIEW 5 of 14 
 

 

Regarding chlorophyll a fluorescence, significant decreases were observed in the 
ɸPSII (actual PSII efficiency) of all treatments in comparison to the control (WW; Figure 
4A). A reduction in Fv/Fm (the maximum photochemical quantum efficiency of PS II) was 
only observed in WD-F (Figure 4B). 

 
Figure 4. (A) Midday quantum yield of PSII photochemistry (ɸPSII) and (B) maximum quantum 
yield of PSII photochemistry (Fv/Fm) of grapevines exposed to WW (well-watered control); WW-F 
(well-watered fungal inoculation); WD (water deficit); F-WD (inoculation before water deficit); WD-
F (inoculation after water deficit). Different lowercase letters indicate significant differences among 
the five treated groups (p ≤ 0.05). 

2.3. Stress-Related Metabolites: Proline and MDA 
Free proline content was differentially modulated by the imposition of water stress 

and fungal infection (Figure 5A). Proline levels increased similarly in the WD and F-WD 
plants, but non-significantly in relation to WW plants. Fungal infection after water deficit 
(WD-F) resulted in higher proline levels in comparison to all other treatments, but only 
significantly compared with the WW. Regarding the MDA content, a slight, non-
significant increase was observed in the WW-F, WD, and WD-F plants, while the F-WD 
plants exhibited a significantly lower MDA content in relation to WD-F (Figure 5B). 

 
Figure 5. (A) Proline content and (B) malondialdehyde content (MDA) of grapevines exposed to 
WW (well-watered control); WW-F (well-watered fungal inoculation); WD (water deficit); F-WD 
(inoculation before water deficit); WD-F (inoculation after water deficit). Different lowercase letters 
indicate significant differences among the five treated groups (p ≤ 0.05). 

  

Figure 4. (A) Midday quantum yield of PSII photochemistry (ΦPSII) and (B) maximum quantum
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2.3. Stress-Related Metabolites: Proline and MDA

Free proline content was differentially modulated by the imposition of water stress and
fungal infection (Figure 5A). Proline levels increased similarly in the WD and F-WD plants,
but non-significantly in relation to WW plants. Fungal infection after water deficit (WD-F)
resulted in higher proline levels in comparison to all other treatments, but only significantly
compared with the WW. Regarding the MDA content, a slight, non-significant increase
was observed in the WW-F, WD, and WD-F plants, while the F-WD plants exhibited a
significantly lower MDA content in relation to WD-F (Figure 5B).
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Figure 5. (A) Proline content and (B) malondialdehyde content (MDA) of grapevines exposed to
WW (well-watered control); WW-F (well-watered fungal inoculation); WD (water deficit); F-WD
(inoculation before water deficit); WD-F (inoculation after water deficit). Different lowercase letters
indicate significant differences among the five treated groups (p ≤ 0.05).

2.4. Hormonal Dynamics

In general, leaf hormonal content was influenced by the imposed water deficit and
fungal infection (Figure 6). Endogenous SA content was significantly reduced in WW-F
plants (Figure 6A) compared to WW. JA only showed a significant accumulation in F-WD
plants, while ABA content significantly increased with all WD treatments (Figure 6C).
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3. Discussion

This study enabled us to add new insights into abiotic and biotic stress combination in
woody plants and the role of infection timing on physiological and biochemical plant re-
sponses using a relevant pathosystem as an experimental platform. Infection of grapevines
with L. theobromae before water deficit or after a period of water deficit induced different
physiological responses according to the primary stress encountered, which resulted in
increased susceptibility to the pathogen or led to a primed-like state, respectively. Here, we
aim to highlight the role of abiotic stress in biotic interactions—a topic usually neglected
in grapevine research. Grapevines showing similar internal stem lesions had different
survival rates and some different physiological responses depending on the time when the
abiotic stress was imposed (pre- or post-inoculation).

Changes in the photosynthetic activity in water deficit (WD, WD-F, and F-WD) plants
were revealed by: (i) lower levels of stomatal conductance (gs), (ii) decreases in CO2
assimilation (A), and (iii) decreases in the transpiration rate (E) compared with well-watered
plants (WW, WW-F)—confirming the impact of water deficits on grapevine physiological
responses [8]. The photosynthesis disturbance observed in WD grapevines seems to
occur due to stomatal limitations, as observed by the low gs value [20]. The stomatal
closure observed in WD in both infected and non-infected grapevines was associated
with a low water potential (Figure 3A) and ABA accumulation (Figure 6C) to limit water
loss [21]. Additionally, Khaleghnezhad et al. [22] showed that compared to the well-watered
condition, water deficit plants showed severely decreased A, gs, and Ci, accompanied by
an increase in ABA content.

The role of ABA in mediating mechanisms, whereby grapevine copes with abiotic
stresses, is well reported [23]—including in water deficit scenarios [24,25]. ABA has been
considered a negative regulator of disease resistance due to the interference of abscisic acid
with biotic stress signalling that is regulated by SA and JA. Recent research shows that ABA
could also be implicated in increasing the resistance of plants towards pathogens via its
positive effect on callose deposition [26].

However, regarding gas-exchange parameters, there was no evidence of an additive
effect of infection, since no significant differences were detected between WD, WD-F, and
F-WD regarding A, gs, E, and ABA content. Our results show that the WD outperformed
the other treatments. It should be noted that healthy leaves were chosen for the analysis
of photosynthetic performance, which reinforces the absence of differences at this level.
Even so, the significant declining slope of the Fv/Fm in the WD-F suggests a decrease in
the photochemical efficiency potential photoinhibition that may occur when a water deficit
is imposed prior to L. theobromae inoculation. Photoinhibition occurs when photoprotec-
tion mechanisms fail to dissipate the excess excitation energy generated under limited
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photosynthesis, and photo-oxidative damages lead to decreased photosynthetic efficiency
and/or maximum rates [27].

Inoculation of cashew seedlings with Lasiodiplodia theobromae resulted in the signifi-
cantly lower maximal photochemical quantum yield of PSII (Fv/Fm) compared to that for
the control samples [28]. However, these studies did not include an interaction with factors
such as WD. Other studies [13] reported that gs needed to be reduced by 60–70% before
changes in the electron transport rate and non-photochemical quenching of chlorophyll
fluorescence were observed [29]. Intrinsic water-use efficiency (WUEi) is also reported to
decrease under more severe or long-term droughts because of damage or the inhibition of
photosynthesis [30]. Even so, it was possible to identify specific characteristics of stress re-
lated to the moment of inoculation of the fungus, aligning with the idea that the interaction
between hydric status and infection is quite complex and unpredictable. Studies exploring
the interaction between drought and the grapevine vascular disease esca demonstrates
that drought completely suppresses esca leaf symptoms, and although esca and drought
both alter plant water transport and carbon balance, they do so in completely distinct
ways [31]. Drought is also reported to modulate immune response resistance in grapevines
challenged by Botrytis cinerea [32]. However, the relationship between mechanisms of
drought tolerance and resistance to pathogens remain unknown and several actors may
be involved.

Plants activate distinct defence responses depending on the life cycle of the attacker
encountered. In these responses, salicylic acid (SA) and jasmonic acid (JA) play important
signalling roles. Several results support the hypothesis that heat stress facilitates L. theobro-
mae colonization, because of the fungus’ ability to use the phenylpropanoid precursors and
SA—both compounds known to control host defence [33–35]. SA has been used under a
water deficit due to the role of this substance in stimulating plant protection mechanisms
against drought stress and the oxidative stress induced by it. Thus, its application increases
the content of proline, which in addition to its protective role—along with other osmotic
regulators—also improves the water status of the plant [36].

SA induces a defence against biotrophic pathogens that feed and reproduce on live
host cells, whereas JA activates a defence against necrotrophic pathogens that kill host cells
for nutrition and reproduction [37]. So, this could explain the highest JA concentration
being obtained in the F-WD grapevines, suggesting a defence response to L. theobromae
infection. JA synthesis is a usual feature for many plant fungal pathogen interactions
or symbionts [38] including L. theobromae. Interestingly, JA production has only been
reported in plant–fungi interactions, suggesting that these fungi may have evolved the
ability to produce JA in order to colonize plants [38]. Most classical plant hormones are also
produced by pathogenic and symbiotic fungi. The way in which these molecules favour the
invasion of plant tissues and the development of fungi inside plant tissues is still largely
unknown [39].

Plant responses to WD-F treatment seems to be mainly linked to water deficit outcomes,
showing less-negative effects than F-WD in terms of survival rates. This WD-F behaviour
may be because plants previously exposed to water deficits can activate a priming response
which enables plants to defend from possible pathogen infection, leading to a higher
survival rate than that of F-WD (Figure 1B) [40]. Barradas et al. (2018) [41] reported that
water stress-primed plants were slightly more resistant to fungal infection than non-primed
ones in the Eucalyptus–Neofusicoccum eucalyptorum pathosystem.

One of the most important responses of grapevines to WD is the overproduction of
total free amino acids and proline [42,43]. The higher accumulation of proline in WD-F
plants could indicate the stimulation of this defence mechanism against WD, the first
threat encountered. Apart from acting as an osmolyte for osmotic adjustment, proline
contributes to stabilizing sub-cellular structures (e.g., membranes and proteins), scavenging
free radicals and buffering the cellular redox potential [44]. We hypothesise that this occurs
because grapevines exposed to water stress followed by infection show an increase in
lipid peroxidation (high concentration of), probably due to ROS production [45]. Increased
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membrane lipid peroxidation is proportional to the intensity of WD and is derived from
the spontaneous reactions of ROS with organic molecules contained in the membranes [46].
Interestingly, WD-F showed higher MDA compared to F-WD. This could be related to the
magnitude of the water deficit impact, which seems to be higher than the stress imposed
by pathogen inoculation. However, we should bear in mind that in relation to WD-F and
F-WD treatments, there is a gap of 14 days in water deficit treatments.

4. Materials and Methods
4.1. Plant Material

Dormant cuttings of grapevine rootstocks (1103-P) and Touriga Nacional scion
(22-ISA-PT; 6 months old) were rooted in 2 L plastic pots filled with 3:2 (w/w) peat:perlite
and acclimated for three months (April to July 2018) under greenhouse conditions: natural
light, 60/65% relative humidity (day/night), and approximately 25 ◦C day/15 ◦C night.
Plants were watered once a week until rooting and the development of the first leaves.
Afterwards, all grapevines were watered up to 70% field capacity (FC) and fertigated twice
a week with 5 mL/L of N:P:K nutrient solution (5:8:10, Complesal, Bayer CropScience,
Carnaxide, Portugal).

Pot weight was monitored every day and the percentages of FC were maintained by
adding the amount of water lost. Pots were randomly arranged throughout the experiment.
Plants were left to grow with two main stems and all the growth above the ninth node
was trimmed.

4.2. Experimental Design

The experiment was conducted between July and August 2018. Greenhouse conditions
were maintained as in the acclimation period during the experiment, but the watering
regime was altered, and the plants were inoculated with L. theobromae (isolate Bt105).
Grapevine plants were randomly allocated to five different treatments (Figure 7), which
included two levels of watering (water deficit and well-watered) and two levels of inocula-
tion (inoculated and non-inoculated). To evaluate the effects of water deficit timing, two
inoculation treatments were included either before or after the stress imposition. Thus, the
treatments were: WW (well-watered control—70% Field Capacity); WW-F (well-watered
inoculated—70% FC); WD (water deficit control 15% FC); F-WD (inoculation before water
deficit–15% FC); WD-F (inoculation after water deficit 15%–FC). Each of the five treatments
had five biological replicates, providing a total of 30 experimental units.
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Water Deficit Treatment

Well-watered pots (WW and WW-F) were maintained gravimetrically every day to
keep the soil water content at 70% FC by manually watering. To evaluate the effects of water
deficit timing on host–fungi interactions, watering was withheld until the soil moisture
content reached 15% FC, and then maintained gravimetrically daily for 14 days before
inoculation (WD-F) or after inoculation (F-WS; Figure 7).

4.3. Fungal Culture and Plant Inoculation

The L. theobromae Bt105 isolate used in this study was isolated from V. vinifera cv.
Castelão in Portugal [34]. Fungal inoculation was initiated by surface disinfection of the
stems with 70% ethanol. A 5 mm area of the bark was removed with a sterile cork borer from
the base of each stem between the second and third nodes. The wounds were inoculated
with 5 mm mycelial plugs taken from the actively growing margin of 5-day-old colonies of
L. theobromae growing on potato dextrose agar (PDA; VWR Chemicals, Leuven, Belgium)
at 25 ◦C in darkness. Each inoculation point was covered with moist cotton wool and
sealed with Parafilm to prevent desiccation. Plants from the WW and WD treatments were
mock-inoculated with sterile 5 mm PDA plugs to assure that the observed lesions were due
to infection by the pathogen and not due to wounding.

4.4. Survival Rate, Internal Stem Lesion, and Re-Isolation of the Pathogen

The survival rate was quantified based on the presence of living, above-ground tissues
and calculated considering the initial number of plants per treatment relative to the final
number of plants alive at the end of the experiment. The development of external disease
symptoms (stem lesions, foliar chlorosis, and wilting) was visually assessed each week.
Internal stem lesions were measured in all plants per treatment at the end of the experiment.
Small pieces of necrotic tissue from the edge of each lesion were cut and placed on PDA and
incubated at 25 ◦C in the darkness (to fulfil Koch’s postulates), followed by identification
of the pathogen through micromorphological analysis.

4.5. Leaf Gas Exchange-Related Parameters and Plant Water Status

Net CO2 assimilation rate (A, µmol CO2 m−2 s−1), stomatal conductance (gs, mol
H2O m−2 s−1), transpiration rate (E, mmol H2O m−2 s−1), and intercellular CO2 concen-
tration content (Ci, vpm) were measured in five independent biological replicates per
treatment using a portable infrared gas analyser (LCpro-SD, ADC BioScientific Ltd., Hod-
desdon, UK) equipped with a broad-leaf chamber. To find out the saturation light intensity
A/PPFD (photosynthetic photon flux density; light response curves of CO2 assimilation)
curves were performed with the following PPFD: 2000, 1500, 1000, 750, 500, 250, 100, 50,
and 0 mmol m−2 s−1. After A/PPFD data analysis, punctual measurements at saturation
light intensity were performed at 1500 mmol m−2 s−1. The following conditions were
maintained inside the chamber during all measurements: air flux: 200 mol s−1; 25 ◦C block
temperature; and atmospheric CO2 and H2O concentration. Data were recorded when the
measured parameters were stable (2–6 min). Water use efficiency (WUEi) was calculated
using the formula: WUEi = A/E.

Midday stem water potential (Ψmd, MPa) was measured with a Scholander-type
pressure chamber (PMS Instrument Co., Albany, OR, USA) in five independent biological
replicates per treatment at 12:30 (solar time), as described before [10].

4.6. Chlorophyll a Fluorescence Analysis

Steady-state modulated chlorophyll fluorescence was determined with a portable
fluorometer (Mini-PAM; Walz, Effeltrich, Germany) on the same leaves as used for the
gas-exchange measurements. Light-adapted components of chlorophyll fluorescence were
measured in the midday period: steady-state fluorescence (F), maximal fluorescence (F’m),
variable fluorescence F’v (equivalent to F’m − F), and quantum yield of PSII photochemistry
(ΦPSII; equivalent to F’v/F’m). Leaves were then dark-adapted for at least 30 min to
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obtain F0 (minimum fluorescence), Fm (maximum fluorescence), Fv (variable fluorescence,
equivalent to Fm − F0), and Fv/Fm (maximum quantum yield of PSII photochemistry).

4.7. Proline and Lipid Peroxidation Determination

Proline content was determined as described by Bates et al. [47], with slight mod-
ifications. Five leaves (50 mg) were collected per treatment, frozen in liquid N2, and
homogenized with 750 µL sulfosalicylic acid (3%, w/v). Following centrifugation (10 min,
10,000× g, 4 ◦C), 500 µL of supernatant were collected in a new tube, and 500 µL of ninhy-
drin acid and 500 µL of glacial acetic acid were added. After incubation at 100 ◦C for 1 h
and cooling on ice, 1 mL of toluene was added to the solution and the absorbance was read
at 520 nm. The free proline content was calculated using a standard curve.

Lipid peroxidation was estimated by measuring the amount of malondialdehyde
(MDA) in the leaves following the protocol described by Hodges et al. [48], using 50 mg
of frozen leaves. Samples were extracted with 2.5 mL of 0.1% TCA (trichloroacetic acid)
and vortexed. After centrifugation, an aliquot of the supernatants was added to a test tube
with an equal volume of either: (1) positive (+) 0.5% (w/v) TBA solution containing 20%
(w/v) TCA; or (2) negative (−) TBA solution in 20% TCA. Samples were heated at 95 ◦C
for 30 min and, after cooling and centrifuging, the absorbance was read at 440, 532, and
600 nm. MDA equivalents (nmol mL–1) were calculated as (A − B/157,000) × 106, where
A = [(Abs 532+TBA) − (Abs 600+TBA) − (Abs 532–TBA − Abs 600–TBA)] and B = [(Abs
440+TBA − Abs 600+TBA) × 0.0571].

4.8. Hormone Quantification

Salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) were extracted from
five leaves per treatment based on Durgbanshi et al. [49]. After finely ground, freeze-
dried tissue (50 mg) was mixed with internal standards (Sigma-Aldrich, Düren, Germany),
100 ng of SAd6, 100 ng of dihydrojasmonic acid, 100 ng of ABAd6, and 5 mL of distilled
water. After cold centrifugation, supernatants were recovered, and the pH was adjusted
to 3 with 30% acetic acid. The acidified water extract was partitioned twice against 3 mL
of diethyl ether. The organic upper layer was recovered and the vacuum evaporated
in a centrifuge concentrator (SpeedVac, Jouan, Saint Herblain, France). The dry residue
was then resuspended in a 10% methanol solution by gentle sonication. The resulting
solution was passed through 0.22 µm regenerated cellulose membrane syringe filters (Albet
S.A., Barcelona, Spain) and directly injected into a UPLC system (Acquity SDS, Waters
Corp., Milford, MA, USA). Analytes were separated by reverse-phase (Nucleodur C18,
1.8 µm 50 × 2.0 mm, MachereyNagel, Barcelona, Spain) using a linear gradient of ultrapure
water (A) and methanol (B; both supplemented with 0.01% acetic acid) at a flow rate of
300 µL min−1. The gradient used was: (0–2 min) 90:10 (A:B), (2–6 min) 10:90 (A:B), and
(6–7 min) 90:10 (A:B). Hormones were quantified with a Quattro LC–triple quadrupole mass
spectrometer (Micromass, Manchester, UK) connected online to the output of the column
through an orthogonal Z-spray electrospray ion source. The analytes were quantified after
external calibration against the standards.

4.9. Statistical Analysis

Data are presented as mean ± standard error (SE) of five independent biological
replicates. Statistical procedures were performed using SigmaPlot (Systat Software Inc., San
Jose, CA, USA). After testing for ANOVA assumptions (homogeneity of variances with the
Levene’s mean test, and normality with the Kolmogorov–Smirnov test, p ≤ 0.05), statistical
differences among all treatments were evaluated by one-way analysis of variance (ANOVA,
p ≤ 0.05) followed by post-hoc multiple comparisons using the Tukey test. Different lower
cases indicate significant differences among the treatments (WW, WW-F, WD, F-WD, and
WD-F) at p ≤ 0.05.
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5. Conclusions

There have been very few studies experimentally addressing the effects of the timing
of drought on physiological responses of woody plants to pathogen infection [19,50]. With
this work, we hope to have contributed to this gap in knowledge by addressing a biological
system that is extremely important economically but still subject to many challenges.

Our results illustrate different specific responses in the interactions between biotic
and abiotic stress in grapevines that are dependent on the order of stress imposition. The
percentage of survival decreased only when WD was imposed after L. theobromae inocula-
tion, contrasting with the priming effect verified when WD was imposed prior to fungal
inoculation. Overall, grapevines respond differently to the primary stress encountered,
with consequences at different physiological and—mainly—biochemical responses, which
were not found in internal stem lesions, but were clear in the grapevines’ survival rate.
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