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Abstract: Crop evapotranspiration estimation is a key parameter for achieving functional irrigation
systems. However, ET is difficult to directly measure, so an ideal solution was to develop a simulation
model to obtain ET. There are many ways to calculate ET, most of which use models based on
the Penman–Monteith equation, but they are often inaccurate when applied to greenhouse crop
evapotranspiration. The use of machine learning models to predict ET has gradually increased, but
research into their application for greenhouse crops is relatively rare. We used experimental data for
three years (2019–2021) to model the effects on ET of eight meteorological factors (net solar radiation
(Rn), mean temperature (Ta), minimum temperature (Tamin), maximum temperature (Tamax), relative
humidity (RH), minimum relative humidity (RHmin), maximum relative humidity (RHmax), and
wind speed (V)) using a greenhouse drip irrigated tomato crop ET prediction model (XGBR-ET) that
was based on XGBoost regression (XGBR). The model was compared with seven other common
regression models (linear regression (LR), support vector regression (SVR), K neighbors regression
(KNR), random forest regression (RFR), AdaBoost regression (ABR), bagging regression (BR), and
gradient boosting regression (GBR)). The results showed that Rn, Ta, and Tamax were positively
correlated with ET, and that Tamin, RH, RHmin, RHmax, and V were negatively correlated with ET.
Rn had the greatest correlation with ET (r = 0.89), and V had the least correlation with ET (r = 0.43).
The eight models were ordered, in terms of prediction accuracy, XGBR-ET > GBR-ET > SVR-ET >
ABR-ET > BR-ET > LR-ET > KNR-ET > RFR-ET. The statistical indicators mean square error (0.032),
root mean square error (0.163), mean absolute error (0.132), mean absolute percentage error (4.47%),
and coefficient of determination (0.981) of XGBR-ET showed that XGBR-ET modeled daily ET for
greenhouse tomatoes well. The parameters of the XGBR-ET model were ablated to show that the
order of importance of meteorological factors on XGBR-ET was Rn > RH > RHmin> Tamax> RHmax>
Tamin> Ta> V. Selecting Rn, RH, RHmin, Tamax, and Tamin as model input variables using XGBR ensured
the prediction accuracy of the model (mean square error 0.047). This study has value as a reference
for the simplification of the calculation of evapotranspiration for drip irrigated greenhouse tomato
crops using a novel application of machine learning as a basis for an effective irrigation program.

Keywords: XGBoost regression; evapotranspiration; solar greenhouse; drip irrigated tomato;
machine learning

1. Introduction

The tomato is a kind of delicious vegetable, which is indispensable on the dinner
table of our people, and modern consumers seek to improve both the appearance and
nutritional value of it. Therefore, in the context of water scarcity, it is necessary to study the
physiological ecology of the tomato based on modern agricultural production techniques to
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improve its yield and quality. Devising an accurate mathematical crop evapotranspiration
(ET) model is fundamental to improving crop water use efficiency and thus important in
developing a practical irrigation system for a greenhouse [1,2]. Evapotranspiration is an
important parameter in the study of dynamic change in a field water cycle [3] and energy
balance [4] and is therefore of great concern in agricultural production.

ET of greenhouse crops is governed by many factors. Most approaches to develop-
ing an effective irrigation program depend on the creation of an accurate mathematical
model of evapotranspiration [5–7]. Current models that predict ET for greenhouse crops
consist mainly of empirically based equations using modern mathematical algorithms.
The empirical equations draw on energy balance and water vapor diffusion theories to
create predictive models of ET that are primarily driven by meteorological factors; such
models are robust and widely applied. Commonly used models include the single source
Penman–Monteith (P-M) model [8], the dual source Shuttleworth–Wallace (S-W) model [9],
the energy-based Priestley–Taylor model [10], and the dual crop coefficient model [11].
These models have been applied in the study of tomato evapotranspiration [12]. However,
these models are flawed: the P-M model must improve its use of resistance parameters; the
S-W model has many parameters and is unduly influenced by several resistance parameters;
the empirical coefficients of the P-T model need to be corrected for different locations; and
the dual crop coefficient method lacks consideration of ground cover.

As computer technology has advanced in recent years, many researchers have started
to use modern mathematical algorithmic techniques, such as machine learning, in modeling
crop ET. For example, Li et al. (2020) [13] developed a model to predict plant transpiration
that used random forest regression with plant and environmental parameters. Ahmed et al.
(2022) [14] modeled reference crop evapotranspiration using an artificial neural network
combined with limited meteorological information. Jiang and Chen (2018) [15] addressed
the drawbacks of BP neural networks to create a GA-BP neural network based on the
crop water demand prediction model, thus increasing the applicability of ANN models.
Darouich et al. (2021) [16] created the SIMDualKc model which predicted daily reference
jute water requirements, and this research has provided a body of baseline references
for developing models that predict greenhouse crop ET, but there are still obstacles to
overcome in developing such a model. For example, support vector regression is slow for
large scale training datasets, and it is sensitive to missing data, parameters, and kernel
functions; however, a neural network requires a large quantity of data. The weak classifiers
that AdaBoost relies on tend to take a long time to train. Random forest algorithms and
bagging algorithms may underfit.

In light of the advantages and drawbacks just described, we decided to use the
popular technique of extreme gradient boosting to improve ET prediction for greenhouse
crops. Extreme gradient boosting (XGBoost) is currently the fastest and best open source
boosted tree toolkit [17–19] and the algorithm is an improved gradient boosting decision
tree (gbdt) that can be used for both classification and regression applications [20]. It is
widely used in various fields in applications such as predicting gaseous emission pollutants
from buses [21], predicting gene expression [22], and medical patient classification [23].
XGBR (extreme gradient boosting regression) is highly effective in modeling small- and
medium-sized datasets; it is flexible and very scalable [24]. XGBR incorporates multiple
tree models to build a stronger learning model, which is advantageous for ET prediction
as ET is governed by many factors. It is clear that XGBR has great value in predicting
evapotranspiration of crops.

In machine learning, it is often necessary to introduce additional factor parameters to
obtain accurate model results, which increases the difficulty of observational measurement.
How to reduce the numbers of factors and parameters without decreasing model accuracy is
therefore a challenge for model application. Ablation experiments can filter out redundant
parameters in validating a model [25,26]. This technique identifies the key characteristic
variables of the model by removing some modules of the model to see whether model
performance is changed, and it can reduce model overfitting caused by excessive numbers
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of parameters. Ablation has been successfully used in intrusion detection systems [27],
driver fatigue detection [28], and crop recognition [29]. We chose many meteorological
factors to fit ET in order to increase model accuracy; whether or not the number of model
parameters can be reduced using ablation needed to be demonstrated. The objectives of
this study were as follows: the input variables were determined through distributions
of meteorological factors and correlation coefficients, and eight regression algorithms,
including XGBR, were used to model drip irrigated greenhouse tomato ET and analyze
the model prediction results. In the process of model optimization, the number of input
meteorological factors were gradually reduced using ablation experiments to construct a
more reasonable model for predicting drip irrigated greenhouse tomato ET.

2. Research Results
2.1. Analysis of the Normal Distribution Patterns of ET and Meteorological Factors

The selected data were compared with a normal distribution and other standard
distributions to determine the type of distribution of the selected meteorological and ET
data. Figure 1 shows the distributions of evapotranspiration (ET), net solar radiation (Rn),
temperature (Ta), minimum temperature (Tamin), maximum temperature (Tamax), relative
humidity (RH), minimum relative humidity (RHmin), maximum relative humidity (RHmax),
and wind speed (V). The blue curve in Figure 1 shows the fitting of the normal distribution
for each factor, and the black curve is the fitted standard distribution curve. From Figure 1,
we can see that the fitted curves of ET, Ta, Tamax, and RHmin were similar to the standard
normal distribution curve, with similar skewness and kurtosis. Kurtosis of the fitted
curves for Rn, Tamin, RH, RHmax, and V differed from the standard normal distribution
curve, which indicated that the distributions of the ET, Ta, Tamax, and RHmin data were
approximately normal and that the distributions of the Rn, Tamin, RH, RHmax, and V data
need to be further analyzed.

The Shapiro–Wilk test was also used to determine if the sample data were normally
distributed. A normal probability plot was used to fit the probability distribution of the
data in conjunction with the Shapiro–Wilk test [30]. Figure 2 shows the probability distri-
butions of ET and the eight meteorological factors (Figure 2) with the normal probability
plot. The Shapiro–Wilk test produced significant values (p > 0.05) for ET and the eight
meteorological factors, respectively: 0.318, 0.132, 0.087, 0.267, 0.198, 0.303, 0.073, 0.061, and
0.053. This analysis shows that ET and the meteorological data selected for this study were
approximately normally distributed and can therefore be used in the model to predict
changes in ET.

2.2. Correlations of ET and Meteorological Factors

Analysis of correlations between different variables was undertaken before the model
was created. Correlations between the dependent variable ET and the eight independent
variables (Rn, Ta, Tamin, Tamax, RH, RHmin, RHmax, V) are shown in Figure 3. It can be seen
that Rn, Ta, and Tamax were positively correlated with ET and that Tamin, RH, RHmin, RHmax,
and V were negatively correlated with ET. Rn had the greatest correlation with ET (R = 0.89)
and V was least correlated with ET (R = 0.43). It can also be seen that some meteorological
factors were correlated. We therefore decided to use all eight meteorological variables as
independent variables when creating the prediction model.

2.3. Analysis of Model Accuracy
2.3.1. XGBR-ET Model Training and Testing

Figure 4 shows variation in error during model training using XGBR with eight
meteorological factors as the independent variables and ET as the dependent variable.
Training error on both the training and testing datasets gradually decreased as model
training increased to 500 terminating iterations of XGBR. At this point, the error value of
the training set was 0.002 and the error value of the test set was 0.048, a difference of 0.046.
It can be seen that the fitting of XGBR was good for both the training and test datasets.
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Figure 1. Distributions of ET and eight meteorological factors. (a) showing the distribution of
evapotranspiration (ET). (b) showing the distribution of net solar radiation (Rn). (c) showing the
distribution of temperature (Ta). (d) showing the distribution of minimum temperature (Tamin).
(e) showing the distribution of maximum temperature (Tamax). (f) showing the distribution of relative
humidity (RH). (g) showing the distribution of minimum relative humidity (RHmin). (h) showing the
distribution of maximum relative humidity (RHmax). (i) showing the distribution of wind speed (V).
The blue curve showing the fitting of the normal distribution for each factor. The black curve is the
fitted standard distribution curve.
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Figure 2. Normal probability plot of ET and eight meteorological factors. (a) showing the normal
probability plot of evapotranspiration (ET). (b) showing the normal probability plot of net solar
radiation (Rn). (c) showing the normal probability plot of temperature (Ta). (d) showing the nor-
mal probability plot of minimum temperature (Tamin). (e) showing the normal probability plot of
maximum temperature (Tamax). (f) showing the normal probability plot of relative humidity (RH).
(g) showing the normal probability plot of minimum relative humidity (RHmin). (h) showing the
normal probability plot of maximum relative humidity (RHmax). (i) showing the normal probability
plot of wind speed (V).
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Figure 3. Correlation coefficients for ET and eight meteorological factors.

Figure 4. XGBR training loss.

2.3.2. Analysis of the Predictions of Different Models

We selected seven regression algorithms to compare with XGBoost regression: tra-
ditional linear regression (LR), support vector regression (SVR), K neighbors regression
(KNR), random forest regression (RFR), and the computer regression algorithms AdaBoost
regression (ABR), bagging regression (BR), and gradient boosting regression (GBR). We
developed prediction models for greenhouse tomato crop ET based on the eight regression
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algorithms using the eight meteorological factors (Rn, Ta, Tamin, Tamax, RH, RHmin, RHmax,
and V) as input variables and ET as the output variable. The prediction results of the eight
models are shown in Figure 5.

Figure 5. Fitting results of ET predicted by eight models. (a) fitting result of measured ET and
estimated ET by LR-ET. (b) fitting result of measured ET and estimated ET by SVR-ET. (c) fitting
result of measured ET and estimated ET by KNR-ET. (d) fitting result of measured ET and estimated
ET by RFR-ET. (e) fitting result of measured ET and estimated ET by ABR-ET. (f) fitting result of
measured ET and estimated ET by BR-ET. (g) fitting result of measured ET and estimated ET by
XGBR-ET. (h) fitting result of ET measured ET and estimated ET by GBR-ET.
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The output ET values of the eight models were normalized to permit comparison of
accuracy between them. Figure 5 shows that BR-ET, XGBR-ET, and GBR-ET performed
better than other models and KNR-ET, RFR-ET, and ABR-ET performed relatively badly.
MSE values obtained from the training and testing of the eight models can be compared in
Figure 6.

Figure 6. MSE values for ET predicted by training and testing datasets for eight models.

The test set results show that the best performing of the eight models was XGBR-ET
and the worst performing was KNR-ET. MSE for ABR-ET and RFR-ET was also >0.05,
which indicates that ABR-ET and RFR-ET were not sufficiently accurate in predicting ET.
MSE values of the three linear models (LR-ET, SVR-ET, and KNR-ET) were ranked in
decreasing order KNR-ET > LR-ET > SVR-ET; the greatest prediction accuracy was given
by SVR-ET. In the overall analysis, XGBR-ET produced the most accurate predictions of ET.

MSE, RMSE, MAE, MAPE, and R2 for the eight models allowed us to evaluate the
models. Table 1 shows that MSE and RMSE were identically ordered for the eight models:
in descending order, KNR-ET > RFR-ET > ABR-ET > LR-ET > SVR-ET > BR-ET > GBR-ET >
XGBR-ET. MSE for XGBR-ET was 0.032 and RMSE was 0.163; these values were, respectively,
21.88% and 25.77% less than those for GBR-ET, which was second to XGBR-ET in prediction
accuracy, and, respectively, 259.38% and 85.89% less than those for KNR-ET, which was
the least accurate model. MAE and MAPE for the eight models were ordered KNR-ET >
ABR-ET > RFR-ET > LR-ET > SVR-ET > BR-ET > GBR-ET > XGBR-ET. This ordering was
similar to the MSE and RMSE ordering with the single difference being the juxtaposition
of RFR-ET and ABR-ET. The differences between the three indicators were not significant
except for XGBR-ET, RFR-ET, and BR-ET. R2 for the eight models was ordered XGBR-ET >
GBR-ET > SVR-ET > ABR-ET > BR-ET > LR-ET > KNR-ET > RFR-ET.

Table 1. Values of MSE, RMSE, MAE, MAPE, and R2 for the eight models.

Model MSE RMSE MAE MAPE R2

LR-ET 0.067 0.257 0.172 8.36% 0.812
SVR-ET 0.053 0.218 0.162 6.72% 0.854
KNR-ET 0.115 0.303 0.237 10.83% 0.807
RFR-ET 0.072 0.285 0.197 8.77% 0.805
ABR-ET 0.071 0.282 0.216 9.95% 0.834
BR-ET 0.042 0.207 0.159 6.59% 0.823

XGBR-ET 0.032 0.163 0.132 4.47% 0.981
GBR-ET 0.039 0.205 0.154 6.38% 0.960



Plants 2022, 11, 1923 9 of 17

R2 was greatest for XGBR-ET (0.981). R2 for XGBR-ET was 2.19% greater than for
GBR-ET, which was second to it in prediction accuracy and 21.86% greater than for RFR-ET,
which was least accurate. This analysis shows that the prediction accuracy of GBR-ET was
satisfactory. XGBR-ET had the least MSE, RMSE, MAE, and MAPE and greatest R2 values,
in contrast to other models, which indicates that the XGBR-ET model had the highest
prediction accuracy.

2.4. Weather Factor Ablation Experiment

Ablation analysis was conducted to determine if the XGBR-ET model was overfitting.
The importance of the factors was assessed and the importance of the rankings of the
independent variables in the XGBR-ET model was analyzed (Figure 7a,b). Quantification of
feature importance allowed us to obtain the degree of importance of the factors so that we
could create permutations of the importance in order to weight and evaluate the importance
of the features. Figure 7a shows that the features (independent variables) were ordered,
in descending order of importance, Rn > RH > RHmin > Tamax > RHmax > Tamin > Ta > V,
and after the permutation importance analysis of the test set (Figure 7b), it can be seen
that the permutation importance of the eight independent variables for ET was Rn > RH >
RHmin > Tamax > Tamin > RHmax > Ta > V. It can thus be seen that in the XGBR-ET model,
the independent variable Rn had the greatest effect on model performance with an MDI
value of 0.867, and V had least effect with an MDI value of 0.003.

Figure 7. Plots of the characteristic importance and ranking importance of the input variables of
the XGBR-ET model. (a) Plot of the characteristic importance of the input variables of the XGBR-ET
model. (b) Plot of the ranking importance of the input variables of the XGBR-ET model.

The preceding analysis suggested that we conduct a series of ablation experiments
based on the permutation importance order Rn > RH > RHmin > Tamax > Tamin > RHmax
> Ta > V. The results of the training set and test set ablation experiments based on this
order are shown in Figure 8. Num_Params 8 on the horizontal axis indicates that all eight
independent variables were model inputs; Num_Params 7 indicates that model input
excluded the least important permutation parameter, V: Num_Params 6 indicates that the
two least important permutation parameters, Ta and V, were excluded, and so on. The
vertical axis shows MSE for the model predicted values versus the measured values.
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Figure 8. MSE plots of eight meteorological factors in ablation experiments.

Figure 8 shows that for the test set, MSE for the model output tended to decrease and
then increase as the number of input variables was reduced, which indicates that the model
over-fits (MSE = 0.057) when all variables were used as input terms (Num_Params 8 on the
horizontal axis). As the number of input terms decreased, the model prediction accuracy
reached the highest value (MSE = 0.047) at Num_Params 5 (i.e., the input variables were Rn,
RH, RHmin, Tamax, and Tamin), and MSE increased if the number of input variables further
decreased. The preceding ablation experiments led us to conclude that when modeling
greenhouse drip irrigated tomato ET using XGBoost regression, Rn, RH, RHmin, Tamax, and
Tamin should be selected as the model input variables to ensure the greatest model accuracy.

3. Discussion

Eight meteorological factors were used as variables (Rn, Ta, Tamin, Tamax, RH, RHmin,
RHmax, and V) in this study. Analysis of the correlations between meteorological factors
and ET showed that the meteorological factors affecting ET were primarily Rn, RH, and
Ta. This result is consistent with previous studies [31]. Rn had the greatest effect on ET
because net radiation, which is responsible for temperature differences, is the sole source of
energy, and Rn is related to sunshine hours and total solar radiation [32]. ET had a good
fit with Tamax and a bad fit with Ta and Tamin; this result is consistent with the findings
of Cheng et al. (2021) [33] and Wang et al. (2017) [34]. Huang and Li (2021) [35] used
correlation analysis and principal component analysis to determine the contributions of
meteorological factors to reference crop ET and found that ET0 had the greatest correlation
with Tamax, which is consistent with our results. We found that the meteorological factor V
was least correlated with ET. This result differed slightly from that of Su and Fan (2020) [32]
due to differences in the greenhouse environment and in experimental conditions.

In comparing and analyzing the results of fitting eight regression algorithms to ET,
we found that among the eight models, MSE, RMSE, MAE, MAPE, and R2 for the linear
models (LR-ET, SVR-ET, and KNR-ET) all indicated that SVR-ET had the best prediction
accuracy. Although R2 for ABR-ET, BR-ET, and RFR-ET was <0.95, considering MSE, RMSE,
MAE, MAPE, and R2 together showed high prediction accuracy for ABR-ET, BR-ET, and
RFR-ET. Similar conclusions were made by Song et al. (2020) [18] and Li et al. (2019) [22].
R2 for GBR-ET reached 0.960, and prediction accuracy was also high, but R2 for XGBR-
ET was greater, reaching 0.981, and was the highest of the eight models. We found that
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XGBR-ET was a powerful computational tool, and it continuously calculated the weights of
hidden states from GBR, showing that it could better capture time series features and mine
deeper information than conventional machine learning models. Additionally, XGBR-ET
had the least values of MSE, RMSE, MAE, and MAPE, indicating that XGBR-ET more
accurately predicted ET. XGBR-ET produced the best predictions because it increased
the control of model complexity by randomly sampling samples and features, which
improved the generalizability of the model and ultimately reduced the prediction error.
Yu et al. (2020) [36] obtained results consistent with ours using XGBoost as the main
regression model and a particle swarm optimization algorithm to optimize the parame-
ters of XGBoost for meteorological and soil moisture data. In contrast, the ABR-ET and
KNR-ET model architectures were relatively simple, and those models had limited ability
to capture features. The prediction accuracy of the models, in descending order, was
XGBR-ET > GBR-ET > SVR-ET > ABR-ET > BR-ET > LR-ET > KNR-ET > RFR-ET. In sum-
mary, XGBR-ET outperformed the other seven models in terms of accurate prediction of
greenhouse tomato crop ET. We therefore recommend the XGBR-ET model for predicting
ET for tomato crops and our results can be used to determine the best irrigation program
for tomato crops in central China.

The importance of meteorological factors as independent variables in the XGBR-ET
model was, in descending order, Rn > RH > RHmin > Tamax > RHmax > Tamin > Ta > V.
The importance value of Rn was 0.867 and of RH was 0.092; the values of other factors
were <0.035, which shows that Rn and RH were more important than other factors of ET.
Liu et al. (2020) [37] obtained similar results in a study of the effects of environmental
factors on ET, but their conclusions differed slightly from those of Zhang et al. (2014) [38].
The main reason for this difference was that Zhang et al. (2014) [38] used the Penman–
Monteith equation as the basic equation for calculating ET of greenhouse cucumber and
used correlation analysis to calculate the amount of cucumber transpiration. Our results are
slightly different in this study because the subject plant was tomato, and a machine learning
algorithm was used. The ablation experiment showed that choosing Rn, RH, RHmin, Tamax,
and Tamin as the model input variables ensured the greatest model accuracy.

4. Materials and Methods
4.1. Experimental Site Overview and Design

The experiment was conducted in a solar greenhouse at the comprehensive experimen-
tal base of Xinxiang, Chinese Academy of Agricultural Sciences (35◦9′ N, 113◦5′ E, 78.7 m
above sea level), from March to July in each of the years 2019–2021. The soil in the test
area was sandy loam (IUSS Working Group WRB, 2014) up to 1.0 m in depth, with a mean
bulk density of 1.49 g/cm3, and field soil water capacity of 0.32 cm3/cm3. The tomato
variety used in the trial was Jinpeng M6. Seedlings were raised in January and planted in
the greenhouse in a full bed with an area 17.6 m2 (8.8 m long × 2 m wide) in wide–narrow
rows (65 cm wide and 45 cm narrow) when they reached 3 leaves and 1 heart (3 complete
leaves and 1 still developing cotyledon). The plants were irrigated by drip irrigation (drip
head spacing 30 cm and drip head flow rate 1.1 L/h). No experimental treatment was set
up at the seedling stage, and water treatment (irrigation quota was 0.9 Ep) was started
when tomatoes entered the rapid growth period and the soil moisture content at 0–60 cm
dropped to 75% field capacity. The amount of water per irrigation event and irrigation
frequency were determined by reference to cumulative evaporation (Ep) of a standard
20 cm evaporation pan (20 cm diameter and 11 cm deep) that was placed 20 cm above the
canopy, with height being adjusted promptly according to crop growth. At 07:30–08:00
everyday, evaporation from the pan was measured with an accuracy of 0.1 mm, and the pan
was replenished after measurement from a quantity of 20 mm distilled water to ensure the
water in the pan was free of impurities. When cumulative evaporation reached 20 ± 2 mm,
the plot was uniformly irrigated. A water meter with accuracy of 0.001 m3 was installed at
the head of the test site to ensure precise control of irrigation water. Other management
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measures were the same as conventional local greenhouse cultivation, as were all other
agronomic measures, such as topping, spraying, and fruit counting.

4.2. Experimental Data Observation Content and Methods
4.2.1. Meteorological Data

A fully automated meteorological monitoring system was installed in the middle of the
greenhouse 2 m above the ground surface. The equipment included a net radiometer (Rn,
NRLITE2, Kipp & Zonen, Delft, The Netherlands), an integrated temperature–humidity
sensor (Ta, RH, CS215, Campbell Scientific, Inc., Monterrey, CA, USA), and an anemometer
(V, Wind Sonic, Gill, UK) to measure wind speed at 2 m above the ground with an accuracy
of ±0.02 m/s. All data were collected at 5 s intervals, and averages were calculated once
every 30 min and recorded in the CR1000 data collector (Campbell, Monterrey, CA, USA).

4.2.2. Soil Water Content

In order to monitor the changes of soil moisture and heat environment at different
points in real time, a set of soil moisture monitoring systems (ZL6, Ningbo, China) were
buried in the middle of each test plot, and each instrument was connected to 6 probes. The
measurement depths were 0, 10, 20, 30, 40, and 60 cm, and the data were recorded every
30 min and stored in the system. In order to reduce the measurement error, water content
of the 0–100 cm soil layer was measured using TRIME-IPH time domain reflectometry
(Micromodultechnik GmbH, Ettlingen, Germany) in 20 cm layers; each measurement
was repeated three times and the average value was taken. The TRIME tube was buried
equidistant from two drip heads in the same drip irrigation belt and measured once before
and once after irrigation. The instrument was corrected periodically at each reproductive
stage by the soil drying method for instrument error reduction.

4.2.3. Estimation of Tomato Evapotranspiration

Estimation of tomato diurnal evapotranspiration was calculated using the water
balance method:

ET = P + Ir + U − D + (W0 −Wt) (1)

where ET is diurnal evapotranspiration (mm); Ir is irrigation water (mm) (12 irrigations
throughout the whole growth stage); P is rainfall (mm); U is groundwater recharge (mm);
D is deep seepage (mm); and W0 and Wt are diurnal water storage in the 0–100 cm soil
layer at the beginning and end of the period, respectively (mm). The water storage in
the 0–100 cm soil depth was calculated by means of average volumetric water content.
Since the experiment was conducted in a greenhouse, P = 0. The water table at the test site
was deep (below 5.0 m), and groundwater could not be absorbed by the crop (i.e., U = 0).
The single irrigation quota for all treatments was small (maximum 20 mm) and produced
almost no deep seepage (i.e., D = 0). The above equation can therefore be simplified as:

ET = Ir + (W0 −Wt) (2)

4.3. The Eight Regression Algorithms
4.3.1. XGBoost Regression

XGBoost was first proposed by Chen and Guestrin [39] as an improvement over the
gradient boosted decision tree GBDT. Conventional trees only use first-order derivatives,
but XGBoost regression (XBR) innovatively introduced second-order derivatives and regu-
lar terms, making the algorithm good in training and rapid in computing. The XBR learning
process is as follows.

1. XGBoost basic function
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Assume that there are K trees in the model. The basic function of the model can be
expressed as:

ŷi = φ(xi) =
K
∑

k=1
fk(xi), fk ∈ F

with F =
{

f (x) = ωq(x)

}(
q : Rm → {1, 2, · · · , T}, ω ∈ RT) (3)

where ŷi is the prediction value of the model for the sample, F denotes the set of all trees,
f (x) is the function of one tree, T is the number of leaf nodes of the tree, q(x) is the mapping
function of the sample data corresponding to a leaf node on the tree, and wq(x) is the score
of the leaf node.

2. XGBoost objective function

Obj(θ) = ∑n
i l(yi, ŷi) + ∑K

k=1 Ω( fk) (4)

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (5)

where ∑n
i l(yi, ŷi) is the model loss function, Ω( fk) is the regular term of tree k, and γ and

λ are XGBoost customizing parameters that, respectively, limit the number of leaf nodes
and control the size of the node score; other variables are as for the previous equations.

3. XGBoost training

The XGBoost algorithm is an ensemble technique that trains cumulatively and succes-
sively to iteratively optimize the objective function until the objective function reaches a
minimum value, at which time training is complete. The training process starts with the
optimization of the first tree, and when the model iterates to tree t, it is given by:

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (6)

If the loss function is squared error, the objective function can be changed to:

Obj(t) = ∑n
i

(
yi − ŷ(t)i

)2
+

t
∑

i=1
Ω( ft)

= ∑n
i

[
2
(

ŷ(t−1)
i − yi

)
ft(xi) + ft(xi)

2
]
+ Ω( ft) + constant

(7)

where ŷ(t)i is the prediction value of the model that has iterated to t trees, ŷ(t−1)
i is the

prediction of the model after optimization of the previous t − 1 trees, ft(xi) is the score of
the newly added t trees, and constant is the sum of the regularization terms of the previous
t − 1 trees.

If the loss function is a general function, the Taylor expansion is used to solve for the
minimum value.

4.3.2. Linear Regression

A multivariate linear regression model is expressed in the form:

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip + εi i = 1, 2, · · · , n. (8)

where Xi1, Xi2, . . . , Xip are independent predictor variables and Yi is the predicted outcome
(dependent) variable.
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4.3.3. Support Vector Regression

The support vector regression model (SVR) [40] is:

f (x) =
n

∑
i=1

(ai − a∗i )k(xi·x) + b (9)

where a∗ is the Lagrangian multiplier; i is sample i, and xi ∈ RN .

4.3.4. K Neighbors Regression

K neighbors regression (KNR) is used to find the closest K samples in the training set
based on a distance measure for each sample pair, and then to make predictions based on
the K nearest neighbors.

4.3.5. Random Forest Regression

Random forest regression (RFR) is a combinatorial classification method that is based
on decision trees and statistical learning theory [41]. M samples are randomly selected
by bagging (bootstrap aggregating), and m variables are then randomly selected at each
node as candidates for splitting the node to construct a single decision tree. These steps
are repeated to generate a mass regression decision tree. The final prediction result of the
model is the average of the prediction results of the mass regression decision tree.

4.3.6. AdaBoost Regression

AdaBoost is an iterative augmented regression algorithm (ABR) [42]. It uses a single
feature as a weak learning algorithm and performs multiple iterations on the same training
sample set to form a sequence of weak classifiers, then selects weights based on the classifi-
cation effect and finally weights and combines the classifiers to form a strong classifier.

H(x) =
{

1 ∑T
t=1 αtht(x) ≥ 0.5 ∑T

t=1 αt
0 other

(10)

where T is the number of iterations, and αt = ln( 1
βt
) is the weight of the weak classifier

ht obtained in iteration t. A larger value of H(x) indicates greater importance of the
weak classifier.

4.3.7. Bagging Regression

Bagging regression (BR) [43] is based on the random selection of k training sets from a
dataset to obtain weak classifiers and then training and voting to obtain strong classifiers
for subsequent processing.

4.3.8. Gradient Boosted Regression

The integrated gradient boosting regression (GBR) algorithm is, after M iterations [20]:

fM(x) = ρ + 0.1
M

∑
m=1

J

∑
j=1

ρmj I, x ∈ Rmj (11)

where Rmj is the leaf node region, j = 1, 2, . . . , j; ρmj is the best residual fit value; and I is the
indicator function, which takes the value 1 when condition x falls into the leaf node region
and 0 otherwise.

4.4. Data Processing and Model Evaluation

1. The data for 2019–2021 were combined and randomized and then divided into two
datasets for training and testing in the ratio 4:1. The XGBoost regression algorithm
was called using Python for model training and testing.
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2. The data were standardized before modeling in order to eliminate the influence of the
magnitude between indicators on the prediction using the equation:

Y =
X− X

σ
(12)

where Y is the standardized value, X is the original data, X is the mean of the original data,
and σ is the variance of the original data.

3. Mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE) [44–46], and coefficient of determination (R2)
were used to evaluate the accuracy of the model [47]. Lower values of MSE, RMSE,
MAE, and MAPE indicate greater prediction accuracy. R2 indicates the degree of fit
between predicted and measured values of the model; if R2 is close to 1, the model is
a good fit. The equations are:

MSE =
∑N

1 (Qi − Pi)
2

N
(13)

RMSE =

[
N

∑
i=1

(Qi − Pi)
2

N

]0.5

(14)

MAE =
1
N

N

∑
i=1
|Qi − Pi| (15)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Qi − Pi
Pi

∣∣∣∣ (16)

R2 =

 ∑N
i=1
(
Qi −Q

)(
Pi − P

)√
(Qi −Q)

2
√
(Pi − P)2

 (17)

where Pi is the measured value, Qi is the model predicted value, P is the mean of the
measured value, Q is the mean of the model predicted value, and N is the number of
data points.

5. Conclusions

We measured daily ET, Rn, Ta, Tamin, Tamax, RH, RHmin, RHmax, and V of greenhouse
tomatoes in order to analyze the meteorological factors that affected ET and to compare
the accuracy of various models in predicting ET using eight regression algorithms: LR,
SVR, KNR, RFR, ABR, BR, XGBR, and GBR. From analysis of our results, we drew the
following conclusions.

1. Rn, Ta, and Tamax were positively correlated with ET, and Tamin, RH, RHmin, RHmax,
and V were negatively correlated with ET. Rn had the greatest correlation with ET
(r = 0.89), and V had the least correlation with ET (r = 0.43).

2. Prediction accuracy of the models was, in descending order, XGBR-ET > GBR-ET >
SVR-ET > ABR-ET > BR-ET > LR-ET > KNR-ET > RFR-ET. The respective values of
MSE, RMSE, MAE, MAPE, and R2 for XGBR-ET were 0.032, 0.163, 0.132, 4.47%, and
0.981. XGBR-ET was more accurate in predicting ET than the other seven models.
Thus, the XGBR-ET model better predicts daily evapotranspiration of the greenhouse
tomato crop during the entire growth period.

3. The results of the ablation experiments showed that the feature importance of the
input variables of XGBR-ET was, in descending order, Rn > RH > RHmin > Tamax >
RHmax > Tamin > Ta > V. When predicting ET of drip irrigated greenhouse tomato
using XGBR, the selection of Rn, RH, RHmin, Tamax, and Tamin as model input variables
will ensure maximum accuracy (MSE = 0.047).
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