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Abstract: The use of contaminated water to irrigate crop plants poses a risk to human health from
the bioaccumulation potential of microcystins (MCs) in the edible tissues of vegetable plants. The
main objective of this study is to determine the concentration of total microcystins (MC-LR and
MC-RR) in leafy green plants (Lactuca sativa L. var. longifolia and Eruca sativa) that have previously
been irrigated with polluted water. Integrated water samples were collected by cleaned plastic bottles
at a depth of about 30 cm from one of the sources of water used to irrigate agricultural lands for crop
plants. At the same time, samples from plants were also collected because this water from the lake
farm is used for the irrigation of surrounding vegetable plants such as Lactuca sativa L. var. longifolia
and Eruca sativa. The dominant species of cyanobacteria in water samples are Microcystis aeruginosa
(Kützing) and Oscillatoria limnetica Lemmermann, which were detected with an average cell count
2,300,000 and 450,000 cells/mL, respectively. These two dominant species in water produced two MCs
variants (MC-LR, -RR) that were quantified by high-performance liquid chromatography (HPLC).
Dissolve and particulate MCs were detected in the irrigation waters by HPLC with concentrations
of 45.04–600 µg/L. MCs in the water samples exceeded the WHO safety limit (1 µg/L) of MC in
drinking water. In addition, the total concentration of Microcystin in Lactuca sativa L. var. longifolia
and Eruca sativa were 1044 and 1089 ng/g tissues, respectively. The estimated daily intake (EDI) of
microcystins by a person (60 kg) consuming 300 g of fresh plants exceeded the total daily intake
guidelines (0.04 µg kg−1 body weight) for human food consumption. According to the findings of
this study, irrigation water and plants used for human consumption should be tested for the presence
of MCs regularly through critical and regularly monitored programs to prevent the accumulation
and transfer of such toxins through the food web.

Keywords: Microcystis aeruginosa; Oscillatoria limnetica; accumulation; microcystins; Lactuca sativa L.;
Eruca sativa

1. Introduction

Due to the nutrient enrichment of the aquatic environment and climate change,
cyanobacterial blooms have become a worldwide problem [1,2]. Cyanobacteria can pro-
duce a huge spectrum of harmful and destructive toxins [3]. Cyanotoxins are secondary
metabolites that can be classified chemically as cyclic peptides, alkaloids, or lipopolysac-
charides (LPS) and functionally as hepatotoxins, neurotoxins, or dermatotoxins [4]. Among
the diverse cyanotoxins types, microcystin (MCs) is the most frequent occurrence and is
hazardous in the aquatic environment [5]. Anabaena, Fischerella, Gloeotrichia, Nodularia,
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Nostoc, Oscillatoria, Microcystis aeruginosa, and Planktothrix are the most common producers
that produce extremely water-soluble and non-volatile MCs [6,7]. They are known as cyclic
heptapeptides (D-Ala1-X2-D-MeAsp3-Y4-Adda-Arg5-D-Glu6-Mdha7). X and Ya are two
L-amino acids found in the peptide ring. Over 100 MCs variants have been discovered
and named based on the variable amino acids that complete their structures [8,9]. The
World Health Organization (WHO) established a tolerable daily intake (TDI) for humans of
1 µg/L for MC-LR in drinking water and 0.04 µg/kg of body weight/day as a provisional
guideline limit [10].

Hepatotoxins are poisonous to the liver and can cause liver damage that is due to the
mechanism that they pick up from the intestine, blood, or the liver [11,12]. MC causes liver
injury through the inhibition of protein phosphatase, which may lead successively to the
accumulation of phosphorylated proteins in the liver, cell necrosis, massive hemorrhage,
and death [13]. Furthermore, liver toxins may cause tumor promotion in both the liver and
colon [14]. When water contaminated by MCs is used for agriculture, applied by either
direct spraying or taking them through the roots, hepatotoxins were accumulated in plants,
causing a hazardous risk [15]. Toxins may affect crops through their effect on either germi-
nation or growth rates of some vegetables, such as lettuce or grasses [16]. In vitro studies
have revealed that MC-LR may cause harm to other vital organs such as the kidney [17],
thymus [18], and male reproductive organs [19,20]. Humans might be exposed to MC-LR
by feeding crops irrigated with MC-contaminated water. Cyanotoxin accumulation in
edible storage organs of agricultural crops such as stems, leaves, fruits, seeds, and corms
has been documented using both direct irrigation and spray irrigation [21,22].

Eruca sativa Mill (commonly known as rocket salad and Lactuca sativa) are ancient
crops of great economic and agronomic importance. They are a member of the Brassicaceae
family. They contain vitamin C, as well as antioxidants such as phenolic compounds,
carotenoids, and glucosinolates and degradation products such as isothiocyanates [23,24].
As a result, using cyanobacteria-contaminated water for irrigation may have an impact on
the growth of these crops when they accumulate MCs in their edible tissues, posing a risk
to human health if contaminated tissues are consumed. Many studies are reporting the
effects of various concentrations of microcystin, both on the development of some plants
and the accumulation of leaf tissue [25,26]. Ref. [26] observed the contamination of L. sativa
when irrigated with water containing microcystin at a concentration of 1700 mg L−1 for
10 days; therefore, this work aims to determine the concentration of total microcystins
(MC-LR and MCRR) in edible tissue of leafy green plants that were previously irrigated
with polluted water and evaluates the potential risk of MCs levels accumulated in these
parts to human health.

2. Results
2.1. Cell Count of Two Dominant Species (Microcystis aeruginosa (Kützing) and Oscillatoria
limnetica Lemmermann) and Microcystin Concentration in Irrigation Water

Water samples were collected from irrigation during October. The species composi-
tion of phytoplankton recorded in the water are shown in Table 1. Oscillatoria limnetica
and Microcystis aeruginosa were detected with an average cell count of 2,300,000 and
450,000 cells/mL, respectively, as shown in Table 1. This increase in cell count may be due
to the temperature being favorable for cyanobacterial growth (blooming). Dissolved and
particulate MCs were detected in the irrigation waters by HPLC with concentrations of
45.04–600 µg/L. MCs in the water samples exceeded the WHO safety limit (1 µg/L) of
MC in drinking water. Particulate MCs had positive correlations with the total number of
cyanobacteria cells Oscillatoria limnetica and Microcystis aeruginosa (r = 0.989–0.998). The
dominant and abundant species isolated from irrigation during October were found to pro-
duce different amounts and profiles of MCs (Figures 1 and 2 and Table 2). Methanolic extract
of the cyanobacteria Oscillatoria limneteca and Microcystis aeruginosa contained mainly
MC-LR with minor MC-RR, when compared to MC-LR and MC-RR standard (Figure 1).
Oscillatoria limnetica could produce two MC variants (MC-LR, RR), these variants showed
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different proportions, where MC-LR represented the highest proportion (4 × 104 µg/cell)
and MC-RR represented the lowest one 1.8 × 104 µg/cell. The intracellular concentration
of microcystin from the culture of Oscillatoria limnetica was 58,000 µg/L, while it was
7305 µg/L. The particulate concentration of MCs (intracellular MCs) inside the culture
of Microcystis aeruginosa was 87,000 µg/L, while dissolved microcystin concentration
(extracellular MCs) was 1000 µg/L. Microcystin concentration in each pure culture had
a positive correlation with the total number of Microcystis aeruginosa and Oscillatoria
limnetica (r = 0.507–0.654, p = 0.010).

Table 1. Cell density (cell mL−1) of phytoplankton present in water samples used in irrigation of
crop plants (Eruca sativa and Lactuca sativa).

Algal Species Cell Number (Cells/mL)

Cyanobacteria

Oscillatoria limnetica Lemmermann 2,300,000

Merismopedia minima G.Beck 20

Merismopedia tenuissima Lemmermann 16

Microcystis aeruginosa (Kützing) 450,000

Synechocystis aquatilis Sauvageau 22

Chlorophyta

Ankistrodesmus gracilis (Reinsch) 20

Chlorella vulgaris Beyerinck 80

Chlorococcum lobatum (Korshikov) 88

Pediastrum duplex Meyen 96

Scenedesmus ellipsoideus Chodat 10

Ankistrodesmus gracilis (Reinsch) 20

Chlorella vulgaris Beyerinck 80

Chlorococcum lobatum (Korshikov) 88

Pediastrum duplex Meyen 96

Bacillariophyta

Cyclotella sp. 5

Fragillaria sp. 12

Melosira sp. 8

Navicula sp. 6

Nitzschia sp. 4

Tribonema sp. 4

Table 2. Concentrations of intracellular and extracellular microcystins in Microcystis aeruginosa and
Oscillatoria limnetica isolated from water.

Samples MC-RR (µg/L) MC-LR (µg/L) Total (µg/L)

Intracellular MCs (Oscillatoria limnetica) 18,000 40,000 58,000

Extracellular MCs (Oscillatoria limnetica) 2300 5005 7305

Intracellular MCs of (Microcystis aeruginosa) 1000 87,000 88,000

Extracellular MCs (Microcystis aeruginosa) 20 285 305
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Figure 1. HPLC profile of standard microcystin, extracellular (1) and intracellular (2) MCs pro-
duced from Oscillatoria limnetica Lemmermann isolated from some of the water sources used in ir-
rigation of crop plants in Sohag district. 
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Figure 1. HPLC profile of standard microcystin, extracellular (1) and intracellular (2) MCs produced
from Oscillatoria limnetica Lemmermann isolated from some of the water sources used in irrigation of
crop plants in Sohag district.

2.2. Accumulation of Microcystin-LR and RR in Edible Parts of the Two Vegetable Plants (Eruca
sativa and Lactuca sativa L.)

MCs were detected in edible parts of the vegetable plants (Eruca sativa and Lactuca
sativa L.) irrigated with the contaminated waters by HPLC (Table 3). The MCs detected in
edible tissues of vegetable plants did not differ greatly among different plants (p > 0.05. The
level of accumulated microcystin was higher than the limit of the World Health Organiza-
tion (WHO) (0.04 µg kg−1 body weight) for human food consumption. The concentration
of MC accumulated in green L. sativa irrigated with contaminated water was (1089 ng g−1

FW), as shown in Figure 3. This is also higher than the limit of WHO. The concentrations
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of MCs accumulated in green L. sativa was slightly higher than concentrations of MCs
accumulated in fresh tissue of E. sativa, which was 1044 ng g−1 FW and also exceeded the
limit of WHO.
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Figure 2. HPLC profile of extracellular (3) and intracellular (4) MCs produced from Microcystis
aeruginosa isolated from some of the water sources used in irrigation of crop plants in Sohag district.

Table 3. Concentrations of microcystin (MC-LR and MC-RR) accumulated in edible parts of two
plants (Eruca sativa and Lactuca sativa L.).

MC-RR (ng g−1 FW) MC-LR (ng g−1 FW) Total (ng g−1 FW)

MCs accumulated E. sativa 89 1000 1089
MCs accumulated L. sativa 56 988 1044
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Figure 3. HPLC profile of accumulated MCs from E. sativa (5) and L. sativa (6) collected from the
same site that were previously irrigated with polluted water.

2.3. Risk Assessment and Potential Health Hazards of Microcystin on Plants (Eruca sativa L. and
Lactuca sativa)

To assess the human health risk, the estimated daily intake (EDI) of MCs via con-
sumption of green vegetables that are commonly consumed in Egypt was calculated and
compared with the estimated daily intake (EDI) of the World Health Organization limit
(0.04µg MC-LR/kg body weight (BW)/day) [27]. Taking into account that green plants
could be consumed in most countries, including Egypt, as fresh green plants and could be
consumed daily, then, if a 60 kg adult person consumes 300 g (FW) of green contaminated
plants with MCs, 1089 and 1044 ng/g fresh weight as reported in our study (Table 4),
the corresponding EDI would be 3630 and 34,801 ng MCs/kg BW/d, respectively. Mean-
while, if 25 kg children consume 100 g of such MC-contaminated plants green beans, EDI
values are 4338 and 4176 (ng/kg BW/d) and are higher than those estimated for adults
and represent more danger because of less sensitivity in children (Table 4). This indicates
that green plants cultivated under these conditions worldwide could represent a risk to
human health through food consumption. The toxin concentrations recorded in plants
exceeded this limit and could represent a health risk for both adults and children. This
indicates that green plants cultivated under these conditions worldwide could represent a
risk to human health through food consumption. As a result, the impact of irrigation water
contaminated with poisonous cyanobacteria on plants should be closely monitored and
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MC levels in irrigation waters should be evaluated frequently, particularly in places where
cyanobacteria blooms are prevalent. Furthermore, before being delivered into commerce,
all plants used for human consumption must be tested for the presence of MCs and other
cyanotoxins regularly.

Table 4. Estimated daily MCs intake through food consumption of edible parts of two plants.
(µg/kg/d).

EDI (Adults) ng/g FW EDI (Children) ng/g FW

MCs accumulated E. sativa 3630 4356
MCs accumulated L. sativa 3480 4176

3. Discussion

The present study reported the occurrence of microcystin-producing species of cyanobac-
teria in water that are used for irrigation of crop plants (Eruca sativa and Lactuca sativa
L.) in southern Egypt. Two dominant cyanobacterial species, Microcystis aeruginosa and
Oscillatoria limnetica, were present with high cell density (blooms). HPLC analysis revealed
that cyanobacterial cells in naturally occurring blooms of these species produced MCs with
varying concentrations and profiles. Generally, the most common MCs variants produced
by these species during the present study were MC-LR and -RR. Detection of MC variants in
water is important and critical for setting guideline values, as some variants (e.g., MC-RR)
are less toxic than other variants, e.g., MCLR [28]. These MC-producing species dominated
phytoplankton populations and constituted most cyanobacterial blooms in our sample
during autumn. The findings support the notion that cyanobacteria prefer higher tempera-
tures for growth [21]. For example, the highest concentration of particulate MCs in water
was linked to the highest cell density of Oscillatoria limnetica and Microcystis aeruginosa.
Other studies have found a link between MC production in cyanobacterial blooms and the
cell density of dominant species in the aquatic environment [28]. According to previous
research on toxin production in cyanobacteria, MC-LR is the most toxic and commonly
found cyanotoxin variant in freshwater sources around the world [29]. It is also a specific
inhibitor of the protein phosphate enzymes 1 and 2 A, which regulate a variety of cellular
functions in higher plants [30]. In addition to intracellular MCs, dissolved extracellular
MCs were discovered in natural waters [28]. MCs were found accumulated in the edible
tissue of two crop plants (Eruca sativa and Lactuca sativa L.) in our study.

Previous research has also revealed that when vegetables and other plants are irrigated
with MC-contaminated water, significant amounts of MCs accumulate, posing a risk to
human health [31]. Soils growing leafy vegetables had higher MC concentrations than those
growing fruit and root vegetables. The concentrations of MCs in soils growing various
vegetable species were first linked to the volume of irrigation water used. Water quotas for
agriculture in Guangdong and Yunnan provinces of China demonstrated that 1.2–3.3 times
more irrigation waters were used for leafy vegetables than for fruit and root vegetables [31].
A great concern about the accumulation of MCs in green beans is the potential human risk
from consumption of such contaminated food [32]. MC bioaccumulation affects human
health via diet [31,33,34]. The estimated daily intake (EDI) was calculated to assess the
health risk of MC-LR from consuming the edible parts (leaves) of the planted vegetables.
Adult EDI values of MCs in plants ranged from 3480–3630 ng/kg/d, both of which were
87–90-fold higher than the WHO detection limit (Table 4). The EDI values of MCs in plants
for children ranged from 4167 to 4356 ng/kg/d, which were both 104–108 times higher
than the WHO detection limit (Table 4). As a result, higher microcystin concentrations in ir-
rigation water may result in greater MC bioaccumulation, as well as increased phytotoxicity
and human health risks.
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4. Materials and Methods
4.1. Collection of Water Samples and Isolation of Oscillatoria limnetica and Microcystis aeruginosa

Integrated water samples were collected by cleaned plastic bottles at a depth of about
30 cm from one of the sources of water used to irrigate agricultural lands for crop plants.
At the same time, samples from plants Lactuca sativa L. and Eruca sativa were also collected
because they had previously been irrigated with contaminated water. The cyanobacteria
Oscillatoria limnetica and Microcystis aeruginosa were isolated from some water sources used
in irrigation of crop plants (Lactuca sativa L. and Eruca sativa). The organisms were grown
separately in a 250 mL conical flask containing BG-11 medium at 30 ◦C and 50 mol m−2 s−1

illumination with a 16:8 light/dark period.
The cells were harvested at the exponential stage and centrifuged for 15 min at

6000× g. Extracellular MCs were determined from the cell-free supernatant using HPLC.
The pellet was extracted in methanol (80%) overnight at room temperature of 25 ◦C to
determine intracellular MCs. The supernatants were blended and the organic solvent was
evaporated using sterile air. Toxins in the remaining aqueous fraction were removed using
a C-18 cartridge. Toxins were then eluted with 80% methanol, evaporated to dryness,
and reconstituted in 1 mL of methanol. Toxin concentrations were determined using
Agilant-1200 high-performance liquid chromatography (HPLC) with a UV photodiode-
array detector set to 238 nm. Chromatographic separation was carried out on a Zorbax
eclips—C18 (150 mm 4.6 mm, 5 m) column (USA), using the conditions previously described
by [35]. Extracellular MCs in a cell-free medium of Oscillatoria limnetica and Microcystis
aeruginosa were also detected by HPLC using the same method described above. Dissolved
and particulate MCs were detected in the irrigation waters by HPLC.

4.2. Determination of Microcystin Accumulated in Plants (Lactuca sativa L. and Eruca sativa)

Shoots (3 g) were collected from each plant, washed three times with distilled water,
thinly sliced horizontally, and stored at −80 ◦C for microcystin analysis. They were
homogenized separately in a mortar with 20 mL of 80% methanol. Each homogenate was
wrapped in aluminum foil and left at room temperature overnight. Each plant extract
was centrifuged at 6000× g for 15 min before being re-extracted in 80% methanol. The
supernatants were collected and evaporated with sterile air under dry conditions. The
dried extracts were completely dissolved in methanol and filtered through a 0.2 m nylon
syringe filter. MCs in the supernatant of plants were also detected by HPLC using the same
method described above.

4.3. Calculation of Estimated Daily Intake

Based on our data, MCs concentrations were detected in (Lactuca sativa L. and Eruca
sativa). Estimated daily vegetable consumption is calculated according to [36].

EDI (µg/kg BW/d) = (MC × DC)/BW

We assumed that adults consume 300 g of Eruca sativa and Lactuca sativa per day,
whereas children consume only 100 g. Where MC is MCs concentration (ng g−1 FW), DC is
the daily vegetable consumption and BW is the average body weight (adults, 60 kg, and
children, 25 kg).

4.4. Statistical Analysis

Differences in the total number of cyanobacteria and accumulating MCs in Eruca
sativa and Lactuca sativa were determined by one-way ANOVA. Results were considered
significant at p < 0.05.

5. Conclusions

The presence of toxic Oscillatoria limnetica and Microcystis aeruginosa and/or their MC
toxins in irrigation water poses a risk to human and animal health. MC concentrations in
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plants (Eruca sativa and Lactuca sativa) irrigated with water contaminated with cyanobacte-
rial cells led to estimates of daily MCs intake (3480–3630 ng kg−1 body weight, respectively)
that exceeded the total daily intake guidelines (0.04 µg kg−1 body weight) for human
food consumption. This study suggests that irrigation water, as well as plants used in
human consumption, should be regularly monitored for the presence of MCs and other
cyanobacterial toxins.
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