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Abstract: Persian (Common) walnut (Juglans regia L.) is a famous fruit tree species valued for its
nutritious nuts and high-quality wood. Although walnut is widely distributed and plays an important
role in the economy and culture of Pakistan, the genetic diversity and structure of its populations
in the country remains poorly understood. Therefore, using 31 nuclear microsatellites, we assessed
the genetic diversity and population structure of 12 walnut populations sampled across Pakistan.
We also implemented the geostatistical IDW technique in ArcGIS to reveal “hotspots” of genetic
diversity. Generally, the studied populations registered relatively low indices of genetic diversity
(NA = 3.839, HO = 0.558, UHE = 0.580), and eight populations had positive inbreeding coefficient
(FIS) values. Low among-population differentiation was indicated by AMOVA, pairwise FST and DC.
STRUCTURE, PCoA and neighbor joining (NJ) analysis revealed a general lack of clear clustering
in the populations except that one population in Upper Dir was clearly genetically distinct from
the rest. Furthermore, the Mantel test showed no correlation between the geographic and genetic
distance (r = 0.14, p = 0.22), while barrier analysis suggested three statistically significant genetic
barriers. Finally, the spatial interpolation results indicated that populations in Ziarat, Kashmir, Dir,
Swat, Chitral, and upper Dir had high intrapopulation genetic diversity, suggesting the need to
conserve populations in those areas. The results from this study will be important for future breeding
improvement and conservation of walnuts in Pakistan.
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1. Introduction

The common walnut (Juglans regia L.; Juglandaceae) is a monoecious, wind pollinated,
fruit tree with animal-based seeds dispersed. It is self-compatible but achieves a high rate
of cross-pollination [1,2], mostly favoring protandry but sometimes protogyny, and usually
has a diploid genome karyotype of 2n = 32 [3–6], although a karyotype of 2n = 34 has been
found in one study [7]. Economically, J. regia is valued for its nutritious and medicinal nuts
as well as high-quality timber [8,9]. Its nuts have a rich biochemical profile, comprising fats
(52–70%), proteins (14–24%), vitamins, and minerals [10]. These biochemical components
have been linked to reduced risk of respiratory, cardiovascular, and cancer-associated
complications [11]. The numerous dietary and therapeutic benefits associated with walnuts
have contributed to the expansion of its local and global demand, with Pakistan producing
approximately 0.4% of the global volume in 2021 [12]. Although Pakistan is an exporter
of in-shell walnut, the production of the fruit is primarily for home consumption and
local trade.

It is thought that J. regia originated in the mountains of Eastern and Central Asia
including Pakistan, even though the precise area of origin is still debatable [13–15]. Today
J. regia is distributed across over 60 countries throughout the subtropical and temperate
regions of the world, and is harvested from both cultivated and wild stands [16], thus
it contributes greatly to the economy of those countries. However, despite the immense
contribution of J. regia to the culture and economy of Pakistan, the country has been
experiencing a declining trend in its production [17]. This problem can be addressed by
scientific interventions such as germplasm improvement, marker assisted breeding, and in
situ conservation. Specifically, a comprehensive analysis of the genetic diversity of walnut
in Pakistan would provide a rational basis for parental selection of breeding materials,
especially in the face of climate change and biotic stressors such as pests which threaten
cultivated walnuts. This would ensure increased production to meet both the national
and international market demand. Additionally, mapping out patterns of genetic diversity
will help to determine areas that require urgent in situ and ex situ conservation of J. regia.
Thus far, 249 individuals of J. regia from Pakistan have been investigated using a variety
of methods, i.e., protein content (20 individuals [18]), morphology (203 individuals; [19])
fruit properties and nutritional composition (six cultivar individuals; [10]) and RAPD
markers (20 individuals [19]). Morphological, physiological, and biochemical traits are
all largely influenced by environmental factors and therefore unreliable indicators of
genetic content or relatedness [20,21]. On the other hand, DNA-based molecular markers
are stable, more reliable, and less prone to environmental plasticity, and are therefore
preferred for population genetics studies. Neutral markers such as microsatellites (SSR)
are ideal for genetic diversity studies due to their reproducibility, high polymorphism,
codominant inheritance, and abundance in the genome [22]. Additionally, SSRs also exhibit
transferability across species of Juglans and high universality across their genomes [23], as
shown by the 32 novel SSR markers initially developed for J. sigillata [24], used successfully
with other Juglans species [25].

SSR loci in Juglans have proved effective for the analysis of genetic diversity and
population structure of both cultivated and wild walnut species [26–30]. However, only
limited information exists on the genetic diversity and population structure of J. regia based
on SSR markers in Pakistan [31]. Therefore, in the current study, we employed 31 SSR loci to
genotype wild walnut trees in Pakistan. We aimed to (1) characterize the genetic diversity
and structure of populations of J. regia, and (2) identify ‘hotspots’ of genetic diversity that
deserve conservation. The results reported herein will provide a more detailed information
on the genetic diversity and structure of walnut in Pakistan, and hence might promote
effective and sustainable utilization and conservation of walnut germplasm in the country.
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2. Materials and Methods
2.1. Population Sampling

We collected 198 individuals of J. regia from 12 populations majorly distributed in
natural forests along river sides and mountainous areas across Pakistan, even though
some populations such as HCR were found in a settlement area (Table 1; Figure 1). These
populations were collected between 2017 and 2019, and were treated as natural, based
on the knowledge of the local people and the collectors. However, bearing the sampling
sites of populations such as HCR, we clearly could not rule that sampled populations
could be a mixture of wild and once cultivated walnut trees in unknown proportion.
For each population, 9–22 individuals were collected, with a distance of at least 100 m
between sampled individuals, and a population distance bearing a minimum of at least
1 km and maximum 700 km (Table S3). Mature healthy leaves intended for DNA extraction
were collected and dried in silica gel. Voucher specimens of each sampled individual
were prepared and deposited at the herbarium of Kunming Institute of Botany, Chinese
Academy of Sciences (KUN).

Table 1. Sampling information of 12 populations of J. regia from Pakistan.

Sampling Site ID N Latitude Longitude Elevation (m) Habitat

Chitral CLR 20 35.7713 71.7418 2753 Mountainous region
Ziarat ZTR 9 30.3814 67.7179 2543 Mountainous region
Swat STR 11 35.506 72.5714 2075 Mountainous region

Kashmir KAR 20 34.1809 73.6642 1152 Mountainous region
Dir 1 DIR 20 35.1975 71.8681 1487 Mountainous region

Shangla SHR 14 34.8873 72.6009 1904 Mountainous region
Kurram Agency KMR 20 33.6959 70.3368 1197 River side
Upper Kurram UKR 20 33.9702 70.0701 2964 Mountainous region

Dir upper DUB 10 35.2119 71.8725 1514 Mountainous region
Dir 2 HDR 22 34.8012 72.1575 1245 Hilly areas
Swat HSR 22 34.4147 72.4735 980 Hilly areas

Chitral HCR 10 35.5688 71.8067 1359 Hilly areas

Note: ID, population identity, N number of collected individuals.

2.2. DNA Extraction, Microsatellite Amplification, and PCR Product Analysis

Total genomic DNA was extracted from about 0.02 g of silica gel-dried leaf tissue
following a modified CTAB protocol [32,33], and concentrations of DNA were adjusted to
30–50 ng/µL for each sample. From a panel of screened primers, a total of 31 SSR primer
pairs were selected (Table S1), comprising 13 nuclear genomic SSRs originally developed
for J. sigillata [24,25], four EST-SSRs developed for J. regia [34,35], one transcriptome-based
SSR developed for Juglans mandshurica [36], two genomic library enrichment based SSRs
designed for J. regia [37], and 11 Genome-based SSRs which have been used in our previous
study [25]. These primer pairs included those with tri (20), tetra (7), penta (3), and hexa
(1) repeat motifs (Table S1), and all were used to genotype the 198 walnut trees. The
forward primers were fluorescently labeled with FAM, HEX, or TAMRA dyes (Optimus Bio,
Kunming, China) at the 5′end. Multiplexing based on color and size allowed us to group
the 31 primer pairs into five multiplexes (Table S1). PCR amplification was conducted on
a Veriti® 96-Well Thermo-Cycler (Applied Biosystems, Foster City, CA, USA). The 15 µL
multiplex PCR mix comprised 1 µL of each reverse and forward primer, and 2 µL of the
DNA template with the remaining volume topped up with an appropriate amount of
Golden Star T6 Super PCR mix (Tsingke, Wuhan, China). The following thermocycling
regimen was employed: initial denaturation at 98 ◦C for 2 min, 35 cycles 98 ◦C for 10 s,
primer annealing temperatures (53–61 ◦C; Table S1) for 15 s, 72 ◦C for 10 s, then a final
extension at 72 ◦C for 5 min, with a holding temperature of 4 ◦C. The fragment sizes of PCR
products were determined using an ABI 3730xl (automated sequencer Applied Biosystems,
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Foster City, CA, USA). GENEMARKER v4.0 (SoftGenetics, State College, PA, USA) was
used to score the SSR data as diploid genotypes.
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2.3. Data Analysis

MICROCHECKER v2.2.1 [38] was used to examine the presence of null alleles and
allele dropout. We used GenAIEx v6.5 [39] to determine the percentage polymorphism per
population (%P), attained by dividing the number of polymorphic bands in each population
by the average number of bands.

For each population, the number of alleles (NA), observed heterozygosity HO), ex-
pected heterozygosity (HE) and unbiased expected heterozygosity (UHE) across loci was
calculated in GenAIEx. Any significant shift from Hardy-Weinberg equilibrium with re-
spect to heterozygosity deficit was evaluated by testing for inbreeding coefficient (FIS)
among the populations, with 5000 randomizations using FSTAT v2.9.3.2 [40]. Number of
alleles or allelic richness of a given population can be used to gauge the population’s breed-
ing prospects. However, the number of alleles per locus is often dependent on population
size, hence allelic richness was calculated using rarefaction with HP-Rare v1.1 [41]. The
private alleles numbers were calculated in GenAIEx. Subsequently, we used the Inverse
Distance Weighted (IDW) interpolation function in the GIS software ArcGIS v10.7 (ESRI,
Redlands, CA, USA) to infer the allelic richness and expected heterozygosity outside the
sampled sites and areas. Additionally, we tested for correlation between genetic diversity
(observed heterozygosity) and elevation using the R package hierfstat [42].
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To examine the pairwise genetic differentiation (FST) and genetic distance (DC) between
pairs of populations, we used FreeNA v11.0 [43]. FST values were calculated based on the
corrected ENA (excluding null alleles) procedure, and corrected values of Cavalli-Sforza
and Edwards algorithm [44], while the calculation of the values of genetic distance (DC)
followed the INA (including null alleles) algorithm. Subsequently, the data was represented
on a heatmap generated in the Origin v8.0 program (Origin Lab Inc., Northampton, MA,
USA). Analysis of molecular variance (AMOVA) was conducted in Arlequin v3.5.1.3 [45]
to determine genetic variation among and within the populations. To infer the genetic
structure of J. regia populations, the non-rooted tree was generated using the neighbor-
joining (NJ) procedure with 1000 bootstrap replicates in POPTREE v2.0 [46]. Tree topologies
were viewed and adjusted accordingly in Figtree v1.4.2 [47]. Bayesian analysis of population
genetic structure with STRUCTURE v2.3.4 was used with the admixture model and a
correlated allele frequency procedure [48,49]. To determine the optimal number of clusters
(K), population structure was tested at K values ranging from 1 to 10, each with 10 replicates
based on 100,000 Markov Chain Monte Carlo (MCMC) iterations following a burn-in period
of 10,000 steps, followed by evaluation of optimal K using STRUCTURE HARVESTER
v6.94 [50]. The population structure was displayed graphically using DISTRUCT v1.0 [51]).
Principal coordinate analysis (PCoA) based on the covariance standardized method of
pairwise Nei’s genetic distance implemented in GenAIEx was used to further determine the
genetic structure of the studied walnut populations. Isolation by distance was determined
by performing a Mantel test [52] in GenAIEx using a permutation of 1000. We used
Geographical Distance Matrix Generator v1.2.3 [53] to generate the geographic distance
matrix, whereas the FST matrix was obtained in GenAIEx. We also performed genetic barrier
analysis using BARRIER v2.2 [54] following the maximum difference algorithm from [55],
and with an assessment of five genetic barriers, to define the spatial differentiation between
populations, and identify substantial breaks. The geographical coordinates and pairwise
genetic distance were generated by MSA v4.05 [56] with a bootstrap of 100; these were used
to link Delaunay triangulation and to infer the corresponding Voronoi tessellation. Nei’s
genetic distance (DA); [57] was used to connect each edge of the Voronoi polygon.

3. Results
3.1. Genetic Diversity

The SSR loci in our study showed high polymorphism, minimal stuttering, minimal
allele drop-out, and low average number of null alleles (Table S2). The mean percentage of
polymorphic loci per population was 97%, with a range of 90% to 100%. The overall genetic
diversity indices were generally low (NA = 3.793, HO = 0.563, HE = 0.558). At population
level, mean observed heterozygosity (HO) ranged from 0.523 (DIR) to 0.649 (ZTR) while
the expected heterozygosity (UHE) was lowest in DUB (0.465) and highest in HDR (0.629).
The average number of alleles for the entire dataset was 3.793, while the total number of
alleles per population ranged from 83 (DUB) to 142 (HDR). Generally, the mean value for
UHE was slightly higher than the HO (Table 2). All populations had private alleles, albeit in
varying levels (data not shown). The mean inbreeding coefficient (FIS) ranged from −0.134
in DUB to 0.120 in HDR, with 7 of 12 populations showing positive inbreeding values
(Table 2).

Table 2. Statistical diversity parameters of walnut from Pakistan derived from 31 SSRs.

POP NT NA HO HE UHE AR FIS

CLR 112 3.613 0.564 0.541 0.555 2.200 −0.016
ZTR 113 3.645 0.649 0.594 0.630 2.360 −0.033
STR 116 3.742 0.554 0.575 0.609 2.340 0.090
KAR 128 4.129 0.628 0.591 0.606 2.320 −0.038
DIR 99 3.194 0.509 0.521 0.535 2.110 0.049
SHR 122 3.935 0.610 0.580 0.602 2.320 −0.014
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Table 2. Cont.

POP NT NA HO HE UHE AR FIS

KMR 120 3.871 0.563 0.568 0.583 2.230 0.036
UKR 121 3.903 0.520 0.521 0.534 2.140 0.029
DUB 83 2.677 0.523 0.440 0.465 1.930 −0.134
HDR 142 4.581 0.542 0.614 0.629 2.390 0.141
HSR 133 4.290 0.514 0.569 0.582 2.260 0.120
HCR 122 3.935 0.575 0.578 0.609 2.340 0.060
Total - - - - - - -
Mean 117.583 3.793 0.563 0.558 0.578 - –

Note: Genetic diversity index: NT total number of alleles, NA number of alleles, HO observed heterozygosity, HE
expected heterozygosity, UHE unbiased expected heterozygosity, AR allelic richness, FIS inbreeding coefficient.

Through geospatial interpolations of UHE, and AR, we generated the genetic diversity
landscape surfaces of J. regia in Pakistan (Figure S2). The highest values of UHE (0.63)
were reported in populations located in the southwestern and northern areas, whereas two
populations in Dir 1 (DIR) and upper Dir (DUB), both in the northern region, registered the
lowest UHE values (0.47; Figure S2). AR values ranged between 1.93 (DUB) and 2.39 (HDR).
The highest values of AR were mostly in the northern region, although two populations,
one from the southwestern and the other from the Northeastern also registered high
values of AR. As with the case of UHE, two populations from Dir and upper Dir also had
low AR levels in the range of 1.93–1.94 (Figure S2). The correlation analysis indicated a
weakly positive but non-significant relationship between genetic diversity and elevation
(Figure S3).

3.2. Population Genetic Structure
3.2.1. Patterns of Genetic Differentiation

Generally, the current populations had low (0.05 to 0.25) FST and moderate (0.20 to 0.50)
DC (Figure 2a). Population DUB was genetically divergent from the rest of populations
(FST = 0.20–0.25; DC = 0.42–0.52). On the other hand, certain population pairs (HDR-HCR,
KAR-CLR and ZTR-CLR) appeared to be genetically close to one another in terms of both
genetic differentiation and genetic distance. AMOVA analysis indicated that 9% of the total
variation was partitioned among populations, 2% among individuals within populations,
while the remaining 89% resided within individuals (Table 3).
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FST while the lower part denotes the Dc (Cavalli-Sforza). The values were computed based on
1000 permutations. (b) Neighbor-joining tree showing genetic relationships among 12 populations of
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Table 3. Hierarchical AMOVA results among 12 walnut populations generated from 31 SSR loci.

Source of Variation Degree of
Freedom

Sum of
Squares

Variance
Components

Percentage
Variation (%) p Value

Among populations 11 383.111 0.588 9 <0.001
Among individuals 186 1577.53 0.106 2 <0.001
within populations
Within individuals 198 1593.5 6.280 89 <0.001

Total 395 3554.14 6.974 100

3.2.2. Two Main Genetic Groups

The neighbor-joining (NJ) tree partitioned the J. regia populations into two genetic
clusters: cluster 1 comprising only one population (DUB) and cluster 2 comprising all other
populations (Figure 2b). Populations HDR and HCR formed a sub-cluster within cluster 2
with high bootstrap support of >95%. STRUCTURE analysis showed that 2 was the best
K value, followed by 3 (Figure 3b), hence both are shown (Figure 3a). Consistent with
NJ results, under K = 2, population DUB was genetically distinguishable and separated
from the rest of the populations in the STRUCTURE analysis (Figure 3a). PCoA likewise
placed all members of DUB into one distinct cluster whereas all of the remaining 11 pop-
ulations formed another loose cluster with some outliers (Figure 3c), further supporting
the STRUCTURE and NJ results. STRUCTURE did, however, indicate that HCR and HDR
were closer to DUB than were the other 9 populations. The clustering of populations in the
NJ, STRUCTURE and PCoA analyses did not follow patterns of geographical distribution
except that UKR and KMR were both geographically close and clustered together.
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Figure 3. Genetic clustering of 12 populations of J. regia based on 31 SSR loci. (a) Bayesian inference of
population structure at K = 2 and K = 3 using STRUCTURE. (b) Inference of the optimal K value using
the Delta K. (c) Relationship among the walnut populations represented by the first two coordinates
of the PCoA.
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3.2.3. Mantel Test and Genetic Barrier

The Mantel test revealed a lack of significant correlation between geographic and
genetic distance among the studied populations of J. regia (r = 0.14, p = 0.22) (Figure S1).
However, three main genetic barriers were detected, with a bootstrap support of >79%
(Figure 4). The first barrier (B1) separated the western populations UKR, KMR, DIR, DUB,
HCR and CLR from populations SHR, HSR and KAR in the center of J. regia’s range in
Pakistan. B2 mainly separated populations HDR from STR from the rest of the populations,
while B3 separated ZTR from the rest.
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are shown in red line, with the thin black lines indicating the administrative boundaries.

4. Discussion
4.1. Genetic Diversity of Walnut Populations

Our results show that populations of J. regia from Pakistan harbor a low to moderate
level of genetic diversity (Table 2), which is generally comparable to the previous genetic
diversity estimate for J. regia populations from other regions [29]. However, a recent study
of cultivated J. regia from Western Himalaya, Pakistan revealed a higher heterozygosity
value (0.227) [58], which was attributed to seed-based propagation, high heterozygosis
and dichogamy. The relatively low genetic diversity in the current study could be due
to habitat fragmentation, natural geographic barriers and/or anthropogenic habitat loss.
Indeed, habitat fragmentation leads to population size reduction, consequently causing
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reduction in allelic richness and genetic diversity through genetic drift, increased selfing
and mating among close relatives [59,60]. This phenomenon has been observed for other
plant groups such as Yew plant [61] and Spondias purpurea [62].

Heterozygosity deficit were detected in eight J. regia populations. Three possible
causes are the presence of null alleles, inbreeding, and population sub-structuring [63,64].
Null alleles result in underestimation of observed heterozygosity and overestimation of
fixation indices [65]. Even though 14 loci had null alleles, their frequencies were moderately
low (Table S2), suggesting the role of other factors such as endogamy, and population
sub-structuring. Inbreeding could be common in walnut populations, likely due to limited
dispersal of the seeds, favoring mating with siblings or close relatives. Additionally,
habitat fragmentation could also result in isolation of populations, causing population sub-
structuring, ultimately impacting the number of heterozygotes. The observed heterozygote
deficit further supports the observed low genetic diversity in the studied populations.
Similar results were found in walnut populations from Xizang [66]. However, a further
possible cause is artificial selection, if some populations include land races with the history
of cultivation.

The interpolation of UHE and AR revealed high intrapopulation genetic diversity in
the northern, eastern and southwestern regions suggesting that these geographical areas
might be centers of genetic diversity for J. regia in Pakistan. The high levels of UHE and AR
in the northern region indicate a possible center of genetic diversity, perhaps originating as
a glacial refugium, as corroborated by the presence of private alleles in all the populations.
Indeed, northern Pakistan might encompasses the Pleistocene refugial to where many plant
species retreated during the ice ages; this area is therefore expected to harbor high genetic
diversity [67,68]. However, without information on the fossils in Pleistocene of common
walnut trees, this potential cause remains speculative for J. regia. Alternatively, considering
the long-standing economic and cultural importance of walnut cultivation in Asia [69], the
high genetic diversity of walnut in northern Pakistan could also be linked to admixture
caused by artificial seed selection and dispersal. This also holds for populations KAR and
ZTR in the southwestern and Northeastern regions of Pakistan, respectively. Additionally,
the increase of genetic diversity with rising elevation is consistent with the view that higher
elevations experience less human encroachment, hence have less ecosystem disturbance
leading to better plant adaptability [70]. However, considering that this relationship was
only weakly positive and non-significant, more comprehensive sampling may be required
in order to arrive at a more definite conclusion in the future.

4.2. Genetic Structure of Walnut Populations

The AMOVA analysis revealed higher among-population than within-population
partitioning genetic variation, a rare scenario particularly for species with outcrossing
mating system such as walnut. Therefore, this could be as a result of habitat fragmentation
as discussed above, and possibly the influence of artificial selection on landraces, if it occurs.
Fragmentation of habitats limits or prevents long-distance pollination events, resulting in
pollination only within clumps of close relatives. The results from AMOVA were consistent
with the differentiation depicted by pairwise FST and DC which suggested low to moderate
FST and DC within populations, similar to results obtained for Calotropis gigantea and J. regia
from Kyrgyzstan [29,71].

STRUCTURE, PCoA and NJ tree results clearly demonstrated that population DUB
was delineated from the rest of the populations, suggesting that gene flow from DUB to
other populations was very limited, though HCR and HDR might have limited gene flow
with DUB according to STRUCTURE. A normal explanation would be geographical barriers,
but DUB is situated in the middle of a cluster of populations in northern Pakistan, whereas
ZTR and KAR are far more distant. Therefore, the distinctness of DUB likely reflects its
history, not its current geography. Hence DUB might have been genetically altered by
gene flow from cultivated material or local land races, or possibly derive wholly from a
distinct region (e.g., East Asia). Hence further research is needed on this population for
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better determination of its nature. The regional intermixing of populations other than DUB,
as confirmed by STRUCTURE, PCoA and NJ tree appears inconsistent with a naturally
fragmented distribution. The close proximity of many northern populations might explain
the genetic similarity between them, but UKR and KMR are >300 km away from the
main cluster, whereas KAR and ZTR are each >700 km away from all others. Hence the
genetic similarity of these distant populations is difficult to explain in terms of the current
distribution. Therefore, other factors must be considered, such as a common historical gene
pool and previous connections in the range that have now been lost, or possible recently
human or natural transport of propagules.

The Mantel test showed no correlation between geographical and genetic distance,
thus further supporting our assumption of frequent gene flow and potential long-distance
dispersal of propagules. Considering the topographical complexity of Pakistan, it is likely
that walnut populations in the country are geographically isolated by the geographic
barriers. Our analysis identified three significant genetic barriers, which might coincide
with mountain ranges such as the Hindu Kush, Karakoram, and Himalaya in the northern
Pakistan. Barrier B1 ran north to south, whereas B2 ran Northwest to Southeast. The
third barrier, B3, might have been simple distance, or the varying relief (probably part
of Chaghi hill) separating ZTR from the other populations (Figure 1). The presence of
the geographical barriers among the studied populations suggests potential constraints to
migration and natural gene flow, restricting outcrossing and promoting inbreeding and
also selfing, because J. regia is self-compatible [72]. Thus, it is plausible that geographically
imposed barriers helped shape the genetic structure of the studied populations, as has been
shown for other taxa [73–75].

4.3. Genetic Diversity Hotspots and Conservation Implications

The ultimate aim of conservation study is to guarantee the continuous existence of
populations and to ensure the maintenance of their evolutionary potential [63]. Knowledge
on the present levels of genetic diversity and the pattern of genetic variation of J. regia in
Pakistan is vital to devise appropriate measures for conservation [76]. Genetic diversity is
low for the populations of walnut in Pakistan, making them prone to extinction particularly
if they occur in isolation. Therefore, we recommend both in situ and ex situ conservation
strategies as a way of maintaining the adaptive potential of this species. We found that
population DUB has a small population size, showed the least genetic diversity, and is
also the population most distinct from others. Hence, it requires urgent attention through
interventions by both in situ and ex situ conservation. Additionally, spatial interpolation
of genetic diversity indices revealed the need to conserve populations HDR, HCR, KAR,
SHR, ZTR and KAR on the basis of their high genetic diversity. Finally, we identified
three significant barriers, which are constraints to migration and natural gene flow in the
region. We recommend deliberate augmentation of geneflow within and between walnut
populations through artificial dispersal strategies, except population DUB so as to avoid
outbreeding depression.

5. Conclusions

The current study is the first attempt to comprehensively explore the genetic diversity
and structure of J. regia in Pakistan. Our results suggested that the genetic diversity of J. regia
in Pakistan is somewhat low. Additionally, our results revealed high genetic diversity in
six populations, and genetic distinction in DUB therefore, conservation attention should be
given to those populations to ensure ultimate germplasm improvement for future breeding.
As a future research direction, we propose wider sampling of J. regia populations from
adjacent regions, for better understanding of the genetic relationship of J. regia in Pakistan
and adjacent regions. Moreover, we recommend seeking local knowledge regarding human
intervention into apparently wild populations. Despite the limitations of our study, the
data presented herein is a strong basis for the germplasm improvement and conservation
management of J. regia in Pakistan.
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of J. regia, including regression line (r = 0.14, p = 0.22 at 1000 randomization). Figure S2: Spatial
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