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Abstract: Rice cultivation in cold regions of China is mainly distributed in Heilongjiang Province,
where the growing season of rice is susceptible to low temperature and cold damage. Choosing and
planting rice varieties with suitable GD according to the accumulated temperate zone is an important
measure to prevent low temperature and cold damage. However, the traditional identification
method of rice GD requires lots of field investigations, which are time consuming and susceptible to
environmental interference. Therefore, an efficient, accurate, and intelligent identification method
is urgently needed. In response to this problem, we took seven rice varieties suitable for three
accumulated temperature zones in Heilongjiang Province as the research objects, and we carried
out research on the identification of japonica rice GD based on Raman spectroscopy and capsule
neural networks (CapsNets). The data preprocessing stage used a variety of methods (signal.filtfilt,
difference, segmentation, and superposition) to process Raman spectral data to complete the fusion
of local features and global features and data dimension transformation. A CapsNets containing
three neuron layers (one convolutional layer and two capsule layers) and a dynamic routing protocol
was constructed and implemented in Python. After training 160 epochs on the CapsNets, the model
achieved 89% and 93% accuracy on the training and test datasets, respectively. The results showed
that Raman spectroscopy combined with CapsNets can provide an efficient and accurate intelligent
identification method for the classification and identification of rice GD in Heilongjiang Province.

Keywords: japonica rice; Raman spectroscopy; Python; capsule networks; growth duration

1. Introduction

Heilongjiang Province is located in the black-soil zone of the Northeast Plain, one of
the three major black-soil zones in the world. It is also the province with the largest rice
planting area in China and occupies an important position in the world’s rice market [1,2].
The growth, development, and yield formation of rice are sensitive to temperature and
light. Cold damage is one of the most important agrometeorological disasters for rice in
cold regions. Rice cultivation in cold regions of China is mainly distributed in Heilongjiang
Province [3,4], which belongs to both a high-cold rice region and mid–high latitude region,
and the growing season of rice is susceptible to low temperature and cold damage [5–8].
According to the National Bureau of Statistics of China [9], from 2017 to 2019, the rice yield
(kg/ha) in Heilongjiang Province was 7139.57, 7098.79, and 6986, respectively. Due to the
impact of low temperature and cold damage, in recent years, rice yields in Heilongjiang
Province have been declining at a rate of 1.59% [9]. The accumulated temperate zone is
an important reference for the planting layout and variety selection of various crops in
Heilongjiang Province [4]. Rice cultivation is mainly distributed in the 1st–3rd accumulated
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temperate zones of Heilongjiang Province. Different accumulated temperate zones have
different requirements for GD of rice varieties. Choosing and planting rice varieties with
suitable GD according to the accumulated temperate zone is an important measure to
prevent low temperature and cold damage [10,11]. Japonica rice is a subspecies of rice
that is resistant to low temperature and weak light, suitable for planting in Heilongjiang
Province. It also has a low amylose content and good palatability [12]; therefore, rice
breeding experts regard the accurate identification of GD of japonica rice varieties in cold
regions as an important task.

Some researchers have obtained a variety of rice phenotype data through lots of field
investigations, used statistical methods to analyze the phenotype data, and carried out
research on the identification of rice GD [13–16]. The source of phenotypic data mostly relies
on human experience, and the data collection process is time consuming and susceptible to
environmental interference. Based on the identification results of phenotypic data, other
researchers have carried out molecular QTL markers of rice variety GD to further confirm
the molecules affecting rice GD [17–20]. Molecular labeling methods not only require
skilled operation of instruments by professionals, but also incur high costs, which limits
the development of large-scale molecular detection. With the developments in science and
technology, there are more and more intelligent means. It is of great significance to design
and construct an efficient, non-destructive, and accurate classification and identification
method for japonica rice GD.

Raman spectroscopy technology can provide rapid, simple, repeatable, and non-
destructive qualitative and quantitative analysis without sample preparation, which can be
directly measured by laser [21]. Farber Charles [22] discussed the application of Raman
spectra as an unlabeled, non-invasive, and non-destructive analysis technique for the rapid
and accurate identification of nutrients in 15 different rice grains. Ling Zhu et al. [23]
used Raman spectroscopy to identify the varieties and origin of rice in China. Tian [24]
established a rapid non-destructive detection method for distinguishing rice-producing
areas using Raman spectroscopy. Pezzotti Giuseppe’s team [25] analyzed polysaccharides
from nine rice varieties in Japan based on Raman spectroscopy. At present, the application
of Raman spectroscopy in the classification and identification of GD of japonica rice has
not been reported.

Machine learning methods, such as principal component analysis (PCA), support vector
machines (SVM) [26,27], random forests [28], and classification and regression trees (CART) [29],
are often used in classification problems based on Raman spectral data [30–35]. However, they
are limited by the shallow architecture of their own models, their performance is far inferior
to machine deep learning methods, and the analysis of spectral data cannot be further
improved [36]. In 2006, a paper by Hinton et al. [37] in Science led to the study of machine
deep learning. Machine deep learning has been successfully applied to multiple pattern
classification problems [38,39], including agricultural applications [40]. Convolutional
neural networks (CNNs) [41,42] have been widely used as a classic kind of deep neural
network. However, CNNs typically perform poorly with small datasets [43], which is the
case for most of the plant database. In 2017, Hinton et al. [44] proposed a vector capsule
network and a dynamic routing algorithm between capsules. Capsule networks establish
the location relationship of features so that they can achieve better results than CNNs with
similar structures in many small datasets [45]. In view of this, this paper was based on the
structural advantages of CapsNets and its excellent performance. We adopted CapsNets
architecture to solve the japonica rice classification problem.

At present, the application of Raman spectroscopy combined with CapsNets in the
identification and classification of GD of japonica rice has not been reported. In this study,
an intelligent classification model of japonica rice GD is proposed for the first time by
combining Raman spectral data with CapsNets. The main purpose of this study was to
provide an efficient and accurate intelligent classification method for japonica rice GD for
breeding experts.
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2. Materials and Methods
2.1. Test Material

Seven japonica rice varieties were collected from the experimental field of Qiqihar
Branch of Heilongjiang Academy of Agricultural Sciences in September 2021. As shown in
Figure 1, the seven tested japonica rice varieties were divided into three GD types (p < 0.05).
QJ1 had a longer GD (144 days) and was suitable for planting in the first accumulation
zone of Heilongjiang Province. SJ13 and HJ313 had a medium GD (134–135 days) and
were suitable for planting in the second accumulation zone of Heilongjiang Province. LJ47,
KY131, LJ11, and HH311 had short GD (124–126 days) and were suitable for planting in the
third accumulation zone of Heilongjiang Province.
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Figure 1. The GD values of 7 tested japonica rice varieties. Values with different superscript letters
were significantly different at p < 0.05. The GD refers to the number of days (d) that rice takes from
emergence to maturity.

2.2. Measurement of Spectral Data

In September 2021, 10 holes of each variety were placed in a laboratory at room
temperature of about 25 ◦C for natural air drying for 15 days, and the moisture content was
reduced to about 20%. Five panicles were collected at different locations of each hole, and
two grains were selected from each panicle, with a total of 100 grains from each variety.
The husking process was carried out manually, and a thin blade was used to remove
fluorescence on the surface of rice grains. Finally, 35 complete rice grains were selected as
samples (Table 1), and a total of 245 samples were obtained.

Table 1. Appropriate accumulated temperature zone and quantity of test samples (ATZH: accumula-
tion temperate zone in Heilongjiang Province).

Serial Number Name of Sample ATZH Number of Samples

1 QJ1 The first 35
2 SJ13 The second 35
3 HJ313 The second 35
4 LJ47 The third 35
5 KY131 The third 35
6 LJ11 The third 35
7 HH311 The third 35

The spectral data of samples were collected using an Advantage 532 Desktop Raman
spectrometer. Each spectrum was scanned with a resolution of 1.4 cm−1 over 200–3400 cm−1,
and the spectral information of 245 samples was obtained with 4 scanning times. ProScope



Plants 2022, 11, 1573 4 of 14

HR 2.3 software was used to obtain sample image information and sample data, which
were saved in PRN format. The data processing software used was Python.

2.3. Preprocessing of Spectral Data

Raman spectrum acquisition does not require sample preparation, but the sample
shape, roughness, and acquisition parameters set in the acquisition software will also
affect the results. In order to enhance data differences and promote the purpose of the
modeling effect, spectrum preprocessing is essential. In this experiment, the original
spectral data were filtered by the signal.filtfilt function [46]. The filter was constructed
using signal.butter, where b, a= scipy.signal.butter (N, Wn) (N: the order of the filter; Wn:
the critical frequency or frequencies; b: the numerator coefficient vector of the filter; a:
the denominator coefficient vector of the filter) [47]. In this test, the N parameter was 2
(one-step forward and one-step backward filtering to avoid phase difference) and the Wn
parameter was 0.002 (Wn = 2×cutoff frequency/sampling frequency). Secondly, based
on the signal.filtfilt function, the difference method was used to extract the spectral crest
information, as shown in Equation (1). Finally, the extracted spectral peak information was
filtered by the signal.filtfilt function, the N parameter was set to 2, and the Wn parameter
was set to 0.03.

X = x− y1 (1)

Note: y1 is the spectral intensity filtered by the signal.filtfilt function, and x is the
original spectral intensity.

2.4. Selection of Effective Crest Information

In order to better retain effective crest information, improve the model classification
accuracy, and reduce the number of calculations, the selection of crest information is
essential. Firstly, referring to wave crest extraction, Raman spectral characteristics, and
the attribution of rice [48], seven effective crests were extracted at 480 cm−1, 865 cm−1,
941 cm−1, 1129 cm−1, 1339 cm−1, 1461 cm−1, and 2910 cm−1. Secondly, with each effective
wave peak as the center, 56 and 55 points were taken forward and backward, respectively,
and 112 points in total were taken as a window (Figure 2a). Each sample had 7 effective
wave peaks, and a total of 784 points were extracted. Finally, the 112 points intercepted
from each wave peak were divided into 4 segments with 28 points in length on average.
Then, the four segments were aligned and overlapped (Figure 2b). Each wave peak obtained
28× 4 two-dimensional data information, and each sample obtained 28× 28 two-dimensional
data information.
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2.5. Evaluation Indices of CapsNets Model

The goal of this paper was to investigate and design a CapsNets model for classifying
GD of japonica rice as accurately as possible. The realization of the CapsNets model is divided
into three layers: initial layer (Conv1), primary capsules layer, and final CapsLayer (Figure 3).
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Figure 3. Schematic of the CapsLayer model.

As shown in Figure 3, Conv1 is a normal convolutional layer, which has 256 output
channels and 9 × 9 convolution kernels with a stride of 1 and ReLU activation. This
layer extracts low-level features that are then used as inputs to the primary capsules,
a convolutional capsule layer. This convolutional layer has 256 output channels and
9 × 9 convolution kernels with a stride of 2. The outputs are segmented into [32 × 8]
vectors (primary capsules). Therefore, each primary capsule output sees the outputs of all
256 × 9 × 9 Conv1 units, which is a group 8D vectors in the 6 × 6 grid. The primary
capsules contain advanced features. The length of the output vector of a capsule represents
the probability that the entity represented by the capsule is present in the current input.
The output capsule is computed using a nonlinear squashing function (Equation (2)) to
ensure that the length of the vector is between 0 and 1. The third layer (final CapsLayer)
has one capsule per class, and each of these capsules receives input from all the capsules in
the layer below.

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(2)

Note: vj is the vector output of capsule j, and sj (Equation (3)) is the input vector of
capsule j.

sj = ∑
i

cijû(j|i) (3)

Note: cij (Equation (6)) are coupling coefficients. û(j|i) (Equation (5)) is the prediction
vector of the output of capsule j at a higher level computed by capsule i in the layer below.

Agreement routing is used between primary capsules and final CapsLayer. Agreement aij
Equation (4) for updating log probabilities and coupling coefficients is calculated (Equation (6)).

aij = vjû(j|i) (4)

Note: vj is the vector output of capsule j. û(j|i) is calculated.

û(j|i) = Wijui (5)

Note: ui is the output of capsule i in the layer below. Wij is a weight matrix between
each ui in primary capsules and vj, j ∈ (1, 3), which needs to be learned in the back pass.
Coupling coefficients are calculated as follows:

cij =
exp(bij)

∑k exp(bij)
(6)
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Note: cij are coupling coefficients. bij is the log probability that capsule i will be coupled
with capsule j and it is initially set to 0 at the beginning of the routing by agreement process.
cij is calculated from bij using the softmax function.

The final CapsLayer work can be simply summarized into four steps: I, matrix trans-
formation; II, input weighting (Equation (5)); III, weighted sum (Equations (3)–(6)); IV,
nonlinear transformation (Equation (2)). We use the Python-based pytorch (a deep learning
algorithm framework) to build the CapsNets to complete the experiment.

3. Results and Discussion
3.1. Analysis of Spectral Data Preprocessing

Figure 4 shows that the spectral information of the seven rice varieties (245 samples)
was intertwined in a disorderly manner, making it difficult to distinguish. Therefore, it was
essential to preprocess the spectral data.
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Figure 4. The 245 raw spectral curves for 7 varieties. Raman shift is the reciprocal of wavelength, and
its range is 200–3400 cm−1. Intensity is the intensity of Raman scattering.

Figure 5 shows that the filtered curve by the signal.filtfilt function was smoother
and clearer than the original curve. The normalization algorithm was used to eliminate
the dimensional influence [49] and optimize the spectral data [49], and the Wn (critical
frequency or frequencies) parameter of this experiment was set to 0.002. This parameter
was able to filter more details and invalid information as much as possible, and reserve
more original information for the difference method to extract wave peaks.

As shown in Figure 6, this experiment used the difference method to obtain 10 obvious
peaks, which were extracted at 480 cm−1, 865 cm−1, 941 cm−1, 1129 cm−1, 1339 cm−1,
1461 cm−1, 1780 cm−1, 2140 cm−1, 2330 cm−1, and 2910 cm−1. At the same time as the
peaks were obtained, small spectral clutters appeared. Therefore, the signal.filtfilt function
was used to filter the peaks again.

Figure 7 shows the curve of the peak information processed by the difference method.
The scipy.signal.filtfilt method was smoother and clearer than that processed by the dif-
ference method. When filtering wave peaks, the Wn parameter 0.03 was selected, which
filtered out invalid information again and retained more original effective information,
thus improving the resolution of the identification model.
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Figure 6. The curve of the peak information extracted by the difference method for 245 samples.

3.2. Analysis of Selection of Effective Crest Information

In this experiment, two segmentation methods and one superposition fusion method
were used to convert one-dimensional data to two-dimensional data, and 245 2D data
of 28 × 28 were obtained. The imshow method [50] in the Python-based matplotlib
package was used to complete the data visualization (Figure 8). Two-dimensional scalar
data are presented as a pseudocolor image. The values were mapped to colors using
normalization and a color map. Based on the fusion of local features and global features [51],
the two-dimensional scalar data were transformed into two-dimensional visual image
information, and the recognition rate of japonica rice GD identification was improved by
taking advantage of CapsNets’ ability in image information classification [45].
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Figure 8. Nine pieces of 28 × 28 two-dimensional image information. Class 0, Class 1, and Class 2
were japonica rice varieties suitable for planting in the third, first, and second accumulation zones of
Heilongjiang Province, respectively.

3.3. Performance Analysis of CapsNets Model

In order to study the modeling performance of the CapsNets model for japonica rice
GD identification and classification, Python was first used to eliminate abnormal sample
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image information (Table 2), and then 177 labeled items of image sample information of
the training set were brought into the CapsNets model for machine deep learning. Finally,
56 items of image sample information of the test set were brought into the CapsNets model
for identification, and a CapsNets total of 160 training sessions were conducted. The results
are shown in Figure 9.

Table 2. Number of training samples and test samples with classification labels.

Name of
Sample Label of Sample

Sample
Subtotal

Training Set Test Set

LJ47 0 24 8 32
KY131 0 26 8 34
LJ11 0 24 8 32

HH311 0 26 8 34
QJ1 1 26 8 34
SJ13 2 26 8 34

HJ313 2 25 8 33

Total 177 56 233
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Figure 9. Classification results of japonica rice GD by CapsNets model. Epoch represents the number
of training cycles of the model, and the yellow line and blue line represent the accuracy of training
datasets and test datasets, respectively.

As shown in Figure 9, there was no significant change in the accuracy of the training
datasets and test datasets when the training epochs were between 10 and 35. The accuracy
of the training datasets and test datasets improved significantly when the training epochs
were between 35 and 110. The accuracy fluctuated significantly when the training epochs
were between 110 and 120. Finally, the accuracy converged to 86–92.85% when the training
epochs were between 120 and 160.

Table 3 shows the training epochs, value of loss function, and accuracy of training
datasets when the accuracy of test datasets exceeded 90%. When the training epochs were
133 and 150, the accuracy of test datasets reached the highest of 93%, and when the training
epochs were 160, the accuracy of training datasets reached the highest of 89%. When the values
of loss function were 0.1074 and 0.1181, the accuracy of test datasets was up to 93%, and when
the value of loss function was 0.1014, the accuracy of training datasets was up to 89%.
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Table 3. The training cycles and loss function values with high accuracy were obtained by the
CapsNets model.

Serial
Number Training Epochs

Value
of Loss

Function

Accuracy of
Training
Datasets

Accuracy of Test
Datasets

1 110 0.1148 84 91
2 112 0.1239 84 91
3 126 0.1111 86 91
4 133 0.1181 86 93
5 137 0.1194 85 91
6 139 0.1157 86 91
7 149 0.1076 88 91
8 150 0.1074 88 93
9 155 0.1101 88 91
10 160 0.1014 89 91

3.4. Discussion of the Description Results

The GD of rice is related to the amylum content in grains [52,53]. Referring to the
results of Raman spectral correlation analysis, it can be seen that the effective band range of
rice mainly concentrates in the region of 200–1800 cm−1 and 2800–3200 cm−1 [54,55]. In this
experiment, wave crests were extracted from Raman spectral data of samples at GD stage
by signal.filtfilt-difference method. In combination with the Raman spectral correlation
analysis of rice, seven wave crests were extracted, and the attributed substances were
amylum and sugar [48,56], with amylum being the aggregation of sugar molecules [57,58].
The spectral characteristic frequency of the same species with different attributes had
different offsets, i.e., the spectral crest image had different offsets [59]. In this experiment,
1/2 of each wave crest was selected for segmentation, in order to extract the characteristic
information of the wave crest offset of each sample. The same species owned a wave crest at
the same Raman shift, but the wave crest starts, ends, and peaks of samples with different
attributes were different [48,59]. In this experiment, 1/4 and 3/4 of each wave crest were
selected for segmentation processing, in order to extract the characteristic information of
the start, end, and peak intensity of each sample. In view of this, the seven wave crests
extracted from each sample and the characteristic information selected by the segmentation
method for each wave crest in this experiment provided a basis for the classification of
biological characteristics of rice GD.

The capsule network suitable for small datasets is improved by modifying the dynamic
routing protocol. Agreement routing imitates hierarchical communication of information
across neurons in human brains that are responsible for perception and understanding [43].
For each potential parent, the capsule network can increase or decrease the connection
strength by dynamic routing, which is more effective than primitive routing strategies,
such as max pooling in CNNs [60]. Considering the number of samples (233) in this experi-
ment, we used a full-link routing protocol. In other words, the output was routed to all
possible parents. Table 3 shows that in the small sample set, when the training cycles were
110–160 and the loss function was 0.1014–0.1239, the training set and test set had the highest
performance: 89% and 93%, respectively. In the few-shot task (Figure 10), the samples
are regarded as parts, the classes are regarded as the whole, and the class representation
encoded by the dynamic routing algorithm is more representative [61].
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Figure 10. Schematic diagram of neural capsule calculation process.

Overfitting is already an unavoidable problem in machine deep learning on small
sample datasets, which can be solved from three aspects: training data, training pro-
cess, and model structure [62]. Dataset enhancement based on image transformation can
effectively improve the overfitting problem of image classification models [63], but the
two-dimensional data in this experiment were generated through data transformation, so
this method was not applicable. The generation of the overfitting problem is closely related
to the training process. As shown in Figure 11, during the training process, the model
experienced underfitting (epoch less than 120) to overfitting (epoch greater than 170). In
this experiment, the method of early stopping was adopted, and selecting the appropriate
number of training cycles (the epoch was equal to 160) effectively avoided the overfitting
problem. It is also possible to use the L1 (lasso) regularization or L2 (ridge) regularization
method to process the weight parameters during the training process to solve the problem
of overfitting [64,65]. Because the capsule network model in this experiment used the
capsule structure and dynamic routing, this method was not used. An overly complicated
model structure is also a major cause of overfitting. Therefore, simplifying the model
structure, reducing the network capacity, and reducing the number of parameters can also
effectively prevent overfitting. In this experiment, the structure of the three-layer model
was used (Figure 11). Even though the number of training cycles continued to increase, the
difference between the accuracy of the model on the training set and the test set did not
continue to expand, but remained within a reasonable interval.
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Figure 11. Classification results of japonica rice GD by CapsNets model. Epoch was the number of
training cycles of the model, and the yellow line and blue line represent the accuracy of the training
and test datasets, respectively.

4. Conclusions

The present study exhibits the feasibility of Raman spectroscopy combined with
the CapsNets method for the classification of japonica rice GD. In order to improve the
classification accuracy, a method of preprocessing of spectral data was constructed based on
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signal.filtfilt combined with difference and signal.filtfilt. For the selection of effective crests,
information was obtained based on two segmentation methods and one superposition
fusion method, and the CapsNets model was established. The training epochs were
between 110 and 160, and the classification accuracy of the CapsNets model was between
91% and 93%. The performance of the CapsNets model tended to be stable. It provides
a new approach to establish an efficient and accurate intelligent classification method of
japonica rice GD.
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