

Supplementary material

Spectroscopic and molecular methods to differentiate gender in immature date palm (*Phoenix dactylifera* L.)

Abdul Latif Khan ^{1,†}, Ahmed Al-Harrasi ^{1,†,*}, Muhammad Numan ¹, Noor Mazin AbdulKareem ¹, Fazal Mabood ^{2,*} and Ahmed Al-Rawahi ¹

- ¹ Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
- ² Department of Chemistry, University of Swat, Khyber Pakhtunkhwa, Pakistan
- * Correspondence: aharrasi@unizwa.edu.om (A.A.H.); fazal@uswat.edu.pk (F.M.)
- ⁺ equally contributed.

Supplementary Tables

Table S1. Primers used for identifying the gender specific traits in date palm samples.

SSR Locus	GeneBank ID	Primer Sequences	Tm (°C)	
mPdIRDP50	$PDK_{20}(1202771)$	F:CATGGAAGTTGTTGGCAGAG	60	
	FDK_3081202771	R:CATGCTCCTTGCCTCAATG	00	
mPdIRDP52	PDK 30c680001	F:TCGTGCTACAATGCCAAGAG	60	
	1DK_308080001	R:CTAATGCTTGCATGGGAGGT	00	
mPdIRDP80	PDK 30c6550063	F:ATTGGGTGTTGGTCTCTAGGAA	60	
	TDK_3080350905	R: TCGTGCTACTGCTTCTCCATTA	00	
mPdCIR078	A 1571695	F:TGGATTTCCATTGTGAG	50	
	AJ3/1085	R:CCCGAAGAGACGCTATT	50	
mPdIRD031	DDV 20,201751	F:GCAGGTGGACTGCAAAATCT	60	
	FDK_308801731	R:CTATTGGGGTGCTGATCCAT	00	
mDdIDD022	DDK 30.712151	F:GGAGCATACAGTGGGTTTGC	60	
IIII uIKD033	1DK_508712151	R:CAGCCTGGGAATGAGGATAG	00	
mPdIRD040	PDK_30s862741	F:GAGAGATGCGTCAGGGAATC	60	
		R:CCAGAATCTTCCAAGCAAGC	00	
PDK-511		F: GCCACCACATCGAAGTCATCAACGA		
		R: TTGGGACAACCCTTGCCATATG		
DDV 101		F: CCATGCTCAATGCCCTTAGTCGCCTACCGG		
1 DK-101		R: TTGACTTTATCGAAGGGTTACCGTTG		
PDK-131		F: GAGGTACTTCTCAAAGAATCTGTAGA		
		R:TTCAACATTTTGGGTCAGGTCTAGGT		

Loci belonging to scaffolds linked to gender: mPdIRDP50, mPdIRDP52, mPdIRDP80; diversity microsatellite loci: mPdCIR078, mPdCIR031, mPdCIR033, mPdCIR040.

Table S2. Estimated Allele Frequencies and Estimated Heterozygosity and other analysis for all Populations.

Gender	n	Α	Ne	Но	He	p-Value	Rst	% variation
Male	20	8	6	0.690	0.53	0.016	0.534	81.67
Female	20	5	3	0.482	0.31	0.34	0.108	12.394
ć	1)	T		D1///		6 11 6 6 11 1	T 01	

n = no. of samples, Na = No. of Different Alleles, Ne = No. of Effective Alleles, I = Shannon's Information Index, He = Expected Heterozygosity, uHe = Unbiased Expected Heterozygosity.

Figure S1. NIR spectra (without pre-processing) of male (**A**) and female immature date palm leaf samples (**B**). A scattering effect was observed due to absorbance without preprocessing in the wavelength range from 4000 to 10,000 cm⁻¹. The spectra represent the fifty individual samples that were tested five times.

Figure S2. PCA model loading plot of the NIR spectral data of both male and female immature date palm leaf samples.

Figure S3. PLS-DA score plot using the NIR spectral data of male and female date palm leaf extract samples.

Figure S4. PLS-DA loading plot using the NIR spectral data of male and female date palm leaf extract samples.

Figure S5. PLS-DA loading plot using the NIR spectral data of male and female date palm leaf extract samples. The scattering effect was observed due to absorbance without preprocessing in the wavelength range of 4000 to 10,000 cm⁻¹. The spectra represent the fifty individual samples that were tested five times.

Figure S6. PCA Loading plot using FTIR ATR spectral data of male and female date palm leaf samples.

Figure S7. PCA plot for PLS-DA using FTIR ATR spectral data of male and female date palm leaf samples.

Figure S8. PLS-DA loading plot using FTIR ATR spectral data of male and female date palm leaf samples.

Figure S9. PCA model loading plot of the NMR spectral data of both male and female date palm leaf extract samples.

PCA: NIR spectra (5000–7000 without pre-processing) Unknown-1 to 20 (Male- immature) Unknown-21 to 50 (Female- immature)

Figure S10. NIRS of unknown samples at immature stage of date palm.

PCA: NIR spectra (5000–7000 without pre-processing) Unknown-1 to 20 (Male- immature) Unknown-21 to 50 (Female- immature)

Figure S11. PLS-DA plot using NIRS spectral data for unknown samples at immature stage of date palm.