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Abstract: Drought stress impairs the normal growth and development of plants through various
mechanisms including the induction of cellular oxidative stresses. The aim of this study was to
evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA)
on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants.
Application of MeJA (20 µM) or SA (2 mM) alone caused modest reductions in the harmful effects of
drought. However, combined application substantially enhanced drought tolerance by improving
the physiological activities and antioxidant defense system. The drought-induced generation of
O2

•− and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when
seeds or leaves were pre-treated with a combination of MeJA (10 µM) and SA (1 mM) than with
either hormone alone. The combined application of MeJA and SA to drought-stressed plants also
significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase,
peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the
ascorbate–glutathione cycle. Taken together, our results suggest that seed or foliar application of a
combination of MeJA and SA restore growth and normal physiological processes by triggering the
antioxidant defense system in drought-stressed plants.

Keywords: abiotic stress; antioxidant defense; phytohormones; photosynthesis; pulse crop;
water deficit

1. Introduction

French bean (Phaseolus vulgaris L.) is one of the world’s most widely cultivated bean
species [1]. For example, in Central and South America it accounts for 90% of total bean
production [2]. It is a dual-purpose crop that is grown as pulse (grain) and consumed in
the immature stage as a tender vegetable [3]. However, bean cultivation in approximately
60% of the regions around the world is affected by drought stress during different periods
of crop growth [1,4]. Drought stress decreases plant growth and development by changing
plant morphology and triggering variations in a suite of key physiological and biochemical
processes [5]. Drought stress is known to increase leaf proline content and decrease
leaf chlorophyll content, relative water content, stomatal conductance, cell membrane
stability, and maximal efficiency of photosystem II by interrupting the electron transport
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chain and chloroplast integrity [6]. Drought stress during the bean flowering period
decreases the number of pods per plant and the number of seeds per pod [7], thereby
reducing productivity. Frequent, longer, and more severe droughts, accompanied by erratic
rainfall, are expected in the 21st century across many regions of the world [8,9], including
Bangladesh [10], due to the fact of climate change. This predicted increase in episodes of
drought stress will constrain crop cultivation and productivity in the future.

Drought-stressed plants experience oxidative damage due to the generation of reactive
oxygen species (ROS; singlet oxygen [1O2], superoxide radical [O2

•−], hydrogen peroxide
[H2O2], and hydroxyl radical [•OH]). The ROS-induced damage to biomolecules is one
of the major factors that limit plant growth under drought stress [11]. Increased ROS
accumulation severely damages cell membrane integrity by accelerating lipid peroxida-
tion [12,13], protein degradation, and nucleic acid damage [14]. Plants can mitigate the
toxicity of ROS by activating a dynamic antioxidative defense system comprised of both
non-enzymatic and enzymatic constituents [15,16]. The enzymatic components of this
antioxidant defense mechanism contain superoxide dismutase (SOD), four enzymes of the
ascorbate–glutathione cycle (i.e., ascorbate peroxidase (APX), monodehydroascorbate re-
ductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR)),
catalase (CAT), glutathione peroxidase (GPX), and glutathione s-transferase (GST) [15,17].
The non-enzymatic antioxidants are ascorbate (AsA), glutathione (GSH), tocopherol, fla-
vanones, carotenoids, and anthocyanins, among others [16].

Exogenous application of cellular protectants, such as plant hormones, signaling
molecules, and trace elements, is a popular approach in research aimed at enhancing abi-
otic stress tolerance [18–20]. For instance, methyl jasmonate (MeJA) and salicylic acid (SA)
are the regulatory phytohormones that play a pivotal role in plant signaling responses to
environmental cues through the orchestration of a myriad of defensive mechanisms [20–23].
The exogenous application of these two hormones together to mustard [18,24], grasses [25],
jatropha [22], Verbascum [26], and maize [27] has been shown to protect plants against abi-
otic stresses, including drought, by regulating important physiological processes ranging
from photosynthesis to nitrogen and proline metabolism and by activating the antioxidant
defense system. Previous studies on wheat [28], maize [27], sweet potato [29], and Eureka
lemon [30] have suggested that treatment with 5–20 µM MeJA and/or 0.5–2 mM SA effec-
tively enhances the defense signaling routes to mitigate damage due to the abiotic stresses.

A number of reports have confirmed the protective role of MeJA and SA under abiotic
stress conditions; however, few investigations have examined the combined application of
these plant signaling molecules for mitigation of oxidative damage in plants under stressful
conditions. Moreover, to the best of our knowledge, no studies have aimed to elucidate the
impact of exogenous MeJA and SA, independently or in combination, on the amelioration of
drought-induced oxidative stress in French bean. Recently, Tayyab et al. [27] demonstrated
that the combined application of MeJA and SA significantly improved drought tolerance in
maize seedlings. Therefore, the goal of this study was to examine how drought-stressed
French bean plants respond to exogenous MeJA and SA, applied both separately and in
combination, as seed and foliar pre-treatments. The findings from this study provide
new mechanistic insights into the coordinated actions of MeJA and SA on the antioxidant
defense system in French beans to enhance tolerance against drought-induced oxidative
stress. The specific objectives of the study were (i) to determine the effects of exogenous
application of MeJA and SA, separately and in combination, on the morpho-physiological
traits of French beans and (ii) to evaluate the role of exogenous MeJA and SA and their
combined application on the antioxidant defense system of French bean plants exposed to
drought stress conditions.

2. Materials and Methods
2.1. Plant Material, Experimental Conditions, and Treatments

A popular, high yielding, and widely cultivated French bean variety, BARI Jharsheem-
1, was used as the experimental material. Seeds were collected from the Vegetable Divi-
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sion, Horticulture Research Center, Bangladesh Agricultural Research Institute, Gazipur,
Bangladesh. The experiment was carried out in a dry and cool environment (Table S1).

Methyl jasmonate (CAS #39924-52-2) and salicylic acid (CAS #69-72-7) were purchased
from Sigma–Aldrich Chemie GmbH, Germany. Seeds were surface-sterilized with 1% (v/v)
sodium hypochlorite for 10 min and rinsed thoroughly 3 times with sterile distilled water
and then soaked in solutions of 20 µM MeJA and 2 mM SA for 18 h prior to sowing, while
seeds for the combined application were soaked in an equal volume mixture of 10 µM
MeJA and 1 mM SA [27]. Seeds for the control and drought groups were soaked in sterile
water. Seeds were then sown in pots (18 cm in diameter × 23 cm in height) containing
13 kg of silt loam soil (sand 26%, silt 50%, and clay 24%), maintained at a full pot capacity
of 30.6% volumetric soil water content. The soil was fertilized properly as recommended by
Ahmmed et al. [31]. Ten healthy seeds were sown per pot, maintaining uniform spacing in
each pot. Seven days after germination, seedlings were thinned to retain five uniform and
healthy seedlings in each pot. Fifteen days after germination, the seedlings, which were
previously soaked in the hormones, were again treated with MeJA (20 µM), SA (2 mM),
and combined (10 µM MeJA + 1 mM SA) solutions as foliar spray. Another set of plants
were sprayed with distilled water. Drought stress was imposed a day after the foliar spray
by stopping irrigation until the end of the experiment, while the control pots were well
watered. The experiment was a completely randomized design (CRD) with five treatments
(control, drought (D), drought-stressed plants treated with methyl jasmonate (D + MeJA),
salicylic acid (D + SA), and their combination (D + MeJA + SA)) with four replications.

2.2. Pot Capacity and Water Content of the Experimental Soil

The pot capacity of the soil used was measured prior to the start of the experiment
gravimetrically using the procedure of Ogbaga et al. [32]. Briefly, pots of completely
water-saturated soil were weighed and then dried to a constant weight at 105 ◦C. The
differences between the weights of the water-saturated and oven-dried soils were used to
determine the amount of water required to bring the pots to pot capacity, and volumetric
water content (%) was determined accordingly. In addition, the water content (%) of the pot
soils (at a 15 cm depth) was monitored daily using a digital soil moisture meter (PMS-714,
Lutron Electronic Enterprise Co., Ltd., Taiwan, China).

2.3. Growth Parameters

At harvest (25 days after foliar application), root length (RL), shoot length (SL), root
dry weight (RDW), shoot dry weight (SDW), leaf dry weight (LDW), and total dry weight
(TDW) were calculated from 5 plants in each replication. Root and shoot length were
determined from the root–shoot junction to the tip of the longest root and shoot, respectively,
using a meter scale. Dry weights were weighed after drying the plant samples at 80 ◦C
until a stable weight was reached.

2.4. Physiological Parameters
2.4.1. Leaf Chlorophyll and Pigment Content

At harvest, three 3rd fully expanded leaves from each replicate were used to estimate
leaf SPAD value (chlorophyll index) and pigment contents. SPAD value was recorded just
before the final harvest with a Chlorophyll Meter (Model: SPAD-502, Minolta Co., Ltd.,
Tokyo, Japan). Then, the leaves were harvested into Ziplock polybags and brought to the
laboratory for pigment extraction. Leaf pigments were extracted in 80% (v/v) acetone
and absorbance of the supernatant was determined with a UV-visible spectrophotometer
(GENESYS 10S UV-VIS, Thermo Fisher Scientific, Waltham, MA, USA) at 663, 645, and
470 nm for Chl a, Chl b, and carotenoid content, respectively, and calculated according
to Arnon [33].
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2.4.2. Canopy Temperature Depression

Canopy temperature was measured on alternate days by a hand-held infrared ther-
mometer (Model- MT4, HTC Instruments, Taipei, Taiwan, China; distance–spot ratio, 12:1).
An angle of approximately 30◦ to the horizontal line and a distance of 30 cm from the
3rd fully opened leaf surface was maintained during measurement of the canopy tem-
perature. Canopy temperature depression (CTD) was determined using the procedure
of Fischer et al. [34] as ambient temperature minus leaf temperature. CTD was measured
from five leaves in each replicate.

2.4.3. Leaf Relative Water Content

Leaf relative water content (LRWC) was estimated following the procedure of
Meher et al. [35]. Briefly, 0.5 g leaf sample was immersed in 100 mL of distilled water
for 4 h. The weights of turgid leaf samples were then measured and then oven-dried at
80 ◦C for 48 h. The dry weights of the samples were recorded until a constant weight was
achieved. The procedure was repeated thrice for each replicate.

LRWC (%) = [(Fresh weight − Dry weight)/(Turgid weight − Dry weight)] × 100

2.4.4. Cell Membrane Stability

Cell membrane stability (CMS) was determined following the procedure of
Sairam et al. [36]. Briefly, in two sets, 30 leaf discs (0.7 cm in diameter) were taken from
three completely opened third leaves and put in test tubes containing 10 mL deionized
water. One set of 15 leaf discs was incubated at 40 ◦C for 30 min and the second set at
100 ◦C in a boiling water bath for 15 min, and then their electrical conductivities, C1 and
C2, respectively, were read with a conductivity meter. The process was repeated thrice for
each replicate. CMS was calculated following the equation:

CMS (%) = [1 − (C1/C2)] × 100

2.5. Biochemical Observations
2.5.1. Proline Content

Leaf proline content was measured spectrophotometrically by an acid-ninhydrin
method using the procedure outlined by Bates et al. [37]. The proline content was calculated
using a standard curve and reported as µmol g−1 fresh weight.

2.5.2. Oxidative Stress Indicators

Generation of superoxide radicals (O2
•−) were measured following the method of

Elstner and Heupel [38] with some modifications. Briefly, 0.3 g fresh leaf tissue was
homogenized in 3 mL of 65 mM K–P buffer (pH 7.8) and centrifuged at 5000× g for
10 min. With 750 µL supernatant, 675 µL K–P buffer and 70 µL of 10 mM hydroxylamine
hydrochloride were added, vortexed, and incubated at 25 ◦C for 20 min. To the mixture,
375 µL of 17 mM sulfanilamide, 37.5 µL α-naphthylamine, and 337.5 µL K–P buffer were
added and vortexed. Then, 2.25 mL diethyl ether was added to the mixture, vortexed again,
and incubated for 10 min. The absorbance of the upper clear fraction was recorded at
530 nm. The O2

•− generation was calculated by comparing a standard curve of NaNO2
−.

Fresh leaf tissues (0.5 g) were homogenized in 3 mL of 5% (w/v) trichloroacetic acid (TCA).
After centrifugation at 11,500× g for 10 min, the supernatant was used to determine H2O2 and
malondialdehyde (MDA). The H2O2 content was determined spectrophotometrically according
to the procedure of Yang et al. [39] with some modifications. Briefly, 400 µL supernatant was
added to 400 mL of 10 mM potassium phosphate buffer (pH 7.0) and 800 mL of 1 M potassium
iodide (KI). The reaction was allowed to proceed in the dark for 1 h before measuring the
absorbance at 390 nm. The H2O2 concentration was calculated using the extinction coefficient
of 0.28 µM−1 cm−1. The methods of Heath and Packer [40] and Mohi-Ud-Din et al. [41]
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were followed for MDA determination. The MDA content was calculated using an extinction
coefficient of 155 mM−1 cm−1 and represented as nmol g−1 FW).

2.5.3. Extraction and Quantitation of Soluble Protein

Fresh leaf tissue (1:2) (w/v) was extracted in 0.5 M potassium–phosphate (K–P) buffer
(pH 7.0) in ice-cold mortar. The extraction buffer included 1 mM ascorbic acid, 1 M
KCl, β-mercaptoethanol, and glycerol. The homogenate was centrifuged at 11,500× g for
15 min, and the supernatant was used for enzymatic activities assays. Bradford’s [42] rapid
quantification method was used to determine the protein content of each enzyme solution.

2.5.4. Assays of Enzymatic Activities

The lipoxygenase (LOX, EC: 1.13.11.12) activity was assayed spectrophotometrically at
234 nm as per Doderer et al. [43] using linoleic acid as a substrate. The activity was calculated
using an extinction coefficient of 25,000 M−1 cm−1. The superoxide dismutase (SOD, EC:
1.15.1.1) activity was assayed based on the inhibition method of Spitz and Oberley [44]. The
catalase (CAT, EC: 1.11.1.6) activity was measured at 240 nm according to the method of
Noctor et al. [45] and calculated using an extinction coefficient of 39.4 M−1 cm−1.

The guaiacol peroxidase (POD, EC: 1.11.1.7) activity was quantified as per the descrip-
tion of Castillo et al. [46] at 470 nm after 1 min and calculated considering an extinction
coefficient of 26.6 mM−1 cm−1. The activity of glutathione peroxidase (GPX, EC: 1.11.1.9)
was measured following Elia et al. [47] at 340 nm for 1 min. An extinction coefficient of
6.62 mM−1 cm−1 was used to compute the activity. The glutathione S-transferase (GST,
EC: 2.5.1.18) activity was measured spectrophotometrically by following the method of
Hossain et al. [48] with model substrate 1-chloro-2,4-dinitrobenzene (CDNB) at 340 nm.
The activity was calculated using an extinction coefficient of 9.6 mM−1 cm−1.

The activities of glutathione reductase (GR, EC: 1.6.4.2), ascorbate peroxidase (APX, EC:
1.11.1.11), monodehydroascorbate reductase (MDHAR, EC: 1.6.5.4), and dehydroascorbate
reductase (DHAR, EC: 1.8.5.1) were measured according to Noctor et al. [45] at 340, 290, 340,
and 265 nm, respectively. For all enzymes, absorbance changes were observed for 1 min, and ex-
tinction coefficients of 6.2 mM−1 cm−1, 2.8 mM−1 cm−1, 6.2 mM−1 cm−1, and 14 mM−1 cm−1

were used for the quantification of GR, APX, MDHAR, and DHAR, respectively.

2.6. Statistical Analysis

The data were analyzed using Statistix 10 (https://www.statistix.com/) (accessed
on 26 May 2021). The least significant difference (LSD) test was used to compare the
means at the p ≤ 0.05 significance level. R v.4.1.0 for Windows was used to create a
heatmap and to perform principal component analysis (PCA) (http://CRAN.R-project.
org/) (accessed on 26 May 2021). Trait mean values were normalized and the library
pheatmap was adapted to generate heatmap and hierarchical clusters (distance = Euclidean
and method = ward.D2) [49]. PCA was performed with the packages ggplot2, factoextra,
and FactoMineR [50,51].

3. Results
3.1. Soil Water Content

By the 25th day of treatment, visible effects, including reduced plant height and
appearance, increased droopiness, chlorosis, and wilting of leaves, were observed in the
French bean plants. Plants were harvested on that day to record observations and conduct
chemical analyses (Figure 1). The silt loam used in this study gave a pot capacity of
30.6% volumetric soil water content, determined gravimetrically prior to the start of the
experiment (Figure 2). The soil water content was considerably lower for the drought-
stressed pots than in the control throughout the experiment (Figure 2). At plant harvest,
the soil water contents recorded from the control, drought (D), D + MeJA, D + SA, and
D + MeJA + SA treatments were equivalent to 59%, 24%, 26%, 25%, and 25% of pot capacity,

https://www.statistix.com/
http://CRAN.R-project.org/
http://CRAN.R-project.org/
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respectively (Figure 2), confirming that the symptoms observed in the drought-stressed
French bean plants were indicative of water deficit.
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pre-treated (seed and foliar) with a combination of 10 µM methyl jasmonate and 1 mM salicylic acid.
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Figure 2. Soil water status of the control, drought (D), and drought-stressed plants treated with methyl
jasmonate (D + MeJA), salicylic acid (D + SA), and their combination (D + MeJA + SA) throughout the
experimental period. Soil water content was recorded daily for every pot. Each data point indicates
the 3-day running average values across four replicates. Vertical bars represent +/− values of the
mean. The experimental soil was silt loam (clay:silt:sand = 24:50:26) with a full pot water capacity of
30.6% volumetric soil water content. (Adapted from Pardossi et al. [52]; Weng and Luo [53]).

3.2. MeJA and SA Enhanced Plant Growth

Drought stress decreased the root and shoot lengths of the French bean plants by
5% and 42%, respectively, and the decrease in shoot length was statistically significant
(Table 1, Figure S1A). The shoot and root lengths were longer in the drought-stressed
plants given hormone treatments than in the drought-stressed plants without hormone
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treatments (Table 1). Pretreatment of drought-stressed plants with MeJA or SA alone did
not result in statistically significant increases in shoot length compared to drought, but
the combined (MeJA + SA) application significantly increased the shoot lengths by 20%
(Figure S1B). Application of MeJA and SA also improved the plant phenotypic appearance
under drought conditions (Figure 2).

Table 1. Effect of methyl jasmonate (MeJA), salicylic acid (SA), and their combined application on the growth parameters of
French beans under drought stress.

Treatment Root Length
(cm)

Shoot Length
(cm)

Root Dry
Weight (g)

Shoot Dry
Weight (g)

Leaf Dry
Weight (g)

Total Dry
Weight (g)

Control 58.63 ± 3.45 a 36.49 ± 0.87 a 2.88 ± 0.26 a 9.04 ± 0.74 a 9.93 ± 0.77 a 21.86 ± 1.62 a

Drought (D) 55.69 ± 1.23 a 21.27 ± 0.65 c 1.38 ± 0.12 b 2.77 ± 0.21 c 2.61 ± 0.28 d 6.76 ± 0.35 c

D + MeJA 57.59 ± 2.13 a 22.10 ± 0.49 c 1.53 ± 0.17 b 3.55 ± 0.19 c 3.91 ± 0.37 b c 8.99 ± 0.64 c

D + SA 58.91 ± 2.55 a 22.46 ± 0.63 c 1.54 ± 0.18 b 3.69 ± 0.49 c 3.62 ± 0.13 c d 8.85 ± 0.65 c

D + MeJA + SA 59.81 ± 1.07 a 25.63 ± 0.55 b 1.86 ± 0.19 b 5.09 ± 0.28 b 4.89 ± 0.12 b 11.84 ± 0.23 b

Values represent the mean ± SE. Values in a column with distinct letter(s) were significantly different at p ≤ 0.05. Control—plants grown
under non-stress, well-irrigated conditions; drought—plants grown with a steady decline in moisture availability; D + MeJA—drought-
stressed plants pre-treated (seed and foliar) with 20 µM methyl jasmonate; D + SA—drought-stressed plants pre-treated (seed and foliar)
with 2 mM salicylic acid; D + MeJA + SA—drought-stressed plants pre-treated (seed and foliar) with a combination of 10 µM methyl
jasmonate and 1 mM salicylic acid.

Drought stress resulted in a substantial decrease in dry weights. Compared to the
unstressed control plants, the root, shoot, leaf, and total dry weights decreased by 52%, 69%,
74%, and 69%, respectively, due to the drought stress (Table 1 and Figure S1A). Exogenous
use of MeJA and SA, both alone and in combination, increased the dry weights under the
drought-stressed condition, but the increases induced by the combined treatment, except
for the root dry weight, were statistically significant. Increases of approximately 35%, 84%,
87%, and 75% in root, shoot, leaf, and total dry weight, respectively, were recorded in the
combined treatment compared to drought stress alone (Figure S1B).

3.3. Impact of MeJA and SA on Photosynthetic Pigments

The non-destructive chlorophyll index (SPAD) value significantly decreased (20%)
under drought stress compared to unstressed control plants (Table 2, Figure S1A). Single
and combined applications of MeJA and SA increased the SPAD value of drought-stressed
plants compared to untreated drought-stressed plants, but the increase due to the combined
treatment (22%) was highly statistically significant (Figure S1B).

Table 2. Effect of methyl jasmonate (MeJA), salicylic acid (SA), and their combination on SPAD value and leaf pigment
contents of French bean plants under drought stress.

Treatments SPAD
Leaf Pigments (mg g−1 Fresh Weight)

Chl a Chl b Total Chl Carotenoids

Control 49.85 ± 0.49 a 1.39 ± 0.03 a 0.49 ± 0.02 a 1.97 ± 0.06 a 0.50 ± 0.03 a

Drought (D) 39.65 ± 1.18 c 0.65 ± 0.10 c 0.24 ± 0.05 c 0.98 ± 0.07 c 0.26 ± 0.01 c

D + MeJA 43.65 ± 0.93 b 0.87 ± 0.11 bc 0.29 ± 0.04 bc 1.25 ± 0.17 bc 0.34 ± 0.05 bc

D + SA 44.35 ± 1.52 b 0.91 ± 0.16 bc 0.30 ± 0.07 bc 1.30 ± 0.25 bc 0.33 ± 0.06 bc

D + MeJA + SA 48.18 ± 0.94 a 1.12 ± 0.06 b 0.39 ± 0.02 ab 1.61 ± 0.08 ab 0.42 ± 0.03 ab

Values represent the mean ± SE. Values in a column with distinct letter(s) were significantly different at p ≤ 0.05. Additional details are
listed in Table 1.

Drought stress significantly decreased the leaf levels of chlorophyll a, chlorophyll b, to-
tal chlorophyll, and carotenoids by 53%, 51%, 50%, and 48%, respectively, compared to the
control (Table 2 and Figure S1A). The exogenous applications of MeJA and SA, separately
or in combination, lessened the negative effects of drought stress. However, the increases
in pigment levels following application of MeJA or SA alone were not statistically signifi-
cant. On the contrary, the combined application of MeJA and SA significantly increased
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chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid contents by 72%, 63%, 64%,
and 62%, respectively, compared to the untreated drought-stressed plants (Figure S1B).

3.4. MeJA and SA Improved Physiological Traits

A profound and significant decrease in the mean canopy temperature depression
(CTD) was recorded due to the drought stress. The mean CTD decreased by 67% in the
drought-stressed plants compared to the control (Figures 3B and S1A), whereas the drought-
stressed plants treated with MeJA, SA, or MeJA + SA showed significant increases in mean
CTD (73%, 83%, and 127%, respectively) compared to the untreated drought-stressed plants
(Figure S1B). Plants treated with the combination of MeJA and SA maintained a greater
CTD throughout the course of the experiment compared to plants treated with either MeJA
or SA alone (Figure 3A,B).

Plants 2021, 10, x FOR PEER REVIEW 8 of 17 
 

 

Drought stress significantly decreased the leaf levels of chlorophyll a, chlorophyll b, 
total chlorophyll, and carotenoids by 53%, 51%, 50%, and 48%, respectively, compared to 
the control (Table 2 and Figure S1A). The exogenous applications of MeJA and SA, sepa-
rately or in combination, lessened the negative effects of drought stress. However, the 
increases in pigment levels following application of MeJA or SA alone were not statisti-
cally significant. On the contrary, the combined application of MeJA and SA significantly 
increased chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid contents by 72%, 
63%, 64%, and 62%, respectively, compared to the untreated drought-stressed plants (Fig-
ure S1B). 

3.4. MeJA and SA Improved Physiological Traits 
A profound and significant decrease in the mean canopy temperature depression 

(CTD) was recorded due to the drought stress. The mean CTD decreased by 67% in the 
drought-stressed plants compared to the control (Figures 3B and S1A), whereas the 
drought-stressed plants treated with MeJA, SA, or MeJA + SA showed significant in-
creases in mean CTD (73%, 83%, and 127%, respectively) compared to the untreated 
drought-stressed plants (Figure S1B). Plants treated with the combination of MeJA and 
SA maintained a greater CTD throughout the course of the experiment compared to plants 
treated with either MeJA or SA alone (Figure 3A,B).  

 
Figure 3. (A) Canopy temperature depression (CTD) throughout the experimental period; (B) mean CTD; (C) leaf relative 
water content (LRWC); (D) cell membrane stability; (E) proline content of French bean plants grown under control, 
drought (D), and drought-stressed plants treated with methyl jasmonate (D + MeJA), salicylic acid (D + SA), and their 
combination (D + MeJA + SA). Vertical bars represent +/− SE values. Different leĴer(s) denote a significant difference at p 
≤ 0.05. FW—Fresh weight. Additional details are shown in Figure 1. 

The leaf relative water content (LRWC) significantly decreased (29% over the control) 
by drought stress (Figures 3C and S1A). The drought-stressed plants treated with MeJA 
and SA and their combination showed increases of 14%, 14%, and 28%, respectively, com-
pared to untreated drought-stressed plants; however, the increase was significant only for 
the MeJA and the combined hormone treatments (Figure S1B). The cell membrane stabil-
ity (CMS) of leaves decreased by 42% under drought stress compared to control plants 
(Figures 3D and S1A). Exogenously applied MeJA and SA mitigated this effect by increas-
ing the CMS by 52% and 47%, respectively, compared to drought-stressed plants (Figure 
S1B). The protective effect of MeJA + SA was similar to that observed with application of 
either hormone alone. 

Figure 3. (A) Canopy temperature depression (CTD) throughout the experimental period; (B) mean CTD; (C) leaf relative
water content (LRWC); (D) cell membrane stability; (E) proline content of French bean plants grown under control, drought
(D), and drought-stressed plants treated with methyl jasmonate (D + MeJA), salicylic acid (D + SA), and their combination
(D + MeJA + SA). Vertical bars represent +/− SE values. Different letter(s) denote a significant difference at p ≤ 0.05.
FW—Fresh weight. Additional details are shown in Figure 1.

The leaf relative water content (LRWC) significantly decreased (29% over the control)
by drought stress (Figures 3C and S1A). The drought-stressed plants treated with MeJA
and SA and their combination showed increases of 14%, 14%, and 28%, respectively, com-
pared to untreated drought-stressed plants; however, the increase was significant only
for the MeJA and the combined hormone treatments (Figure S1B). The cell membrane
stability (CMS) of leaves decreased by 42% under drought stress compared to control
plants (Figures 3D and S1A). Exogenously applied MeJA and SA mitigated this effect by
increasing the CMS by 52% and 47%, respectively, compared to drought-stressed plants
(Figure S1B). The protective effect of MeJA + SA was similar to that observed with applica-
tion of either hormone alone.

Drought stress triggered a profound increase of 436% in the proline content in French
bean leaves (Figures 3E and S1A). Application of MeJA, SA, and MeJA + SA to drought-
stressed plants lowered the proline content by 23%, 16%, and 36%, respectively, compared
to the drought-stressed plants (Figure S1B).

3.5. MeJA and SA Suppressed the Generation of Oxidative Stress Indicators

Oxidative stress due to the drought stress in French bean plants was determined
by measurements of the O2

•− generation rate, the H2O2 and MDA levels, and the LOX
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activity. A sharp increase in O2
•− generation (270%) was observed in drought-stressed

plants compared to unstressed controls (Figures 4A and S2A). Application of MeJA, SA,
and MeJA + SA significantly lowered (31%, 36%, and 51%, respectively) O2

•− generation
(Figures 4A and S2B). The H2O2 levels also significantly increased by 55% in drought-
stressed plants compared to the unstressed controls (Figures 4B and S2A). Treatment with
MeJA, SA, and MeJA + SA lowered the H2O2 levels by 14%, 13%, and 19%, respectively,
compared to untreated drought-stressed plants (Figure S2B).
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Figure 4. (A) superoxide (O2
•−) generation rate; (B) hydrogen peroxide content (H2O2); (C) malondi-

aldehyde content (MDA); (D) lipoxygenase (LOX) activity of French bean plants grown under control,
drought (D), and drought-stressed plants treated with methyl jasmonate (D + MeJA), salicylic acid
(D + SA), and their combination (D + MeJA + SA). Vertical bars represent +/− SE values. Different
letter(s) denote a significant difference at p ≤ 0.05. FW—Fresh weight. Additional details are shown
in Figure 1.

Compared to unstressed controls, the levels of MDA and the LOX activity increased
by 60% and 76%, respectively, due to the drought stress (Figures 4C,D and S2A). However,
MeJA, SA, and MeJA + SA treatments restrained the production of MDA and the LOX
activity in drought-stressed plants. Combined MeJA + SA reduced MDA content and LOX
activity by 15% and 33%, respectively.

3.6. Antioxidant Enzyme Activities and MeJA and SA Pre-Treatment

Drought stress promoted a substantial increase in SOD activity by 54% compared to
the unstressed control (Figures 5A and S2A). Exogenous application of MeJA or SA further
enhanced SOD activity compared to untreated drought-stressed plants, while the combined
MeJA + SA treatment caused a statistically significant 83% rise in SOD activity compared to
the untreated drought-stressed plants (Figure S2B). Unlike SOD, the activities of CAT and
POD substantially decreased (42% and 54%, respectively) in the drought-stressed plants
compared to the controls (Figures 5B,C and S2A). Application of MeJA or SA alone to
drought-stressed plants did not show any remarkable effect on these enzyme activities
compared to the activities in the untreated drought-stressed plants; however, the combined
MeJA + SA treatment significantly increased the activities of CAT and POD (79% and 144%,
respectively) compared to activities in the untreated drought-stressed plants (Figure S2B).
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Figure 5. Specific activity of (A) superoxide dismutase (SOD); (B) catalase (CAT); (C) peroxidase (POD); (D) ascorbate
peroxidase (APX); (E) glutathione peroxidase (GPX); (F) glutathione reductase (GR); (G) glutathione-S-transferase (GST);
(H) dehydroascorbate reductase (DHAR); (I) monodehydroascorbate reductase (MDHAR) of French bean plants grown
under control, drought (D), and drought-stressed plants treated with methyl jasmonate (D + MeJA), salicylic acid (D + SA),
and their combination (D + MeJA + SA). Vertical bars represent +/− SE values. Different letter(s) denote a significant
difference at p ≤ 0.05. Additional details are shown in Figure 1.

A slight increase was noted in APX and GST activities in the drought-stressed plants (36%
and 11%, respectively) compared to the unstressed control (Figures 5D,G and S2A). Application
of SA alone to drought-stressed plants did not change the APX and GST activities substan-
tially, while MeJA significantly increased the activity of APX only (Figure 5D,G). However,
the combined application of MeJA + SA significantly increased the APX and GST activities
(73% and 128%) compared to untreated drought-stressed plants (Figures 5D,G and S2B). A
marked increase in GPX activity (126%) was recorded in the drought-stressed plants com-
pared to the unstressed controls, but no significant increases were noted for GR activity
(Figures 5E,F and S2A). Treatment with MeJA or SA alone did not cause any marked increases,
whereas the combined MeJA + SA treatment significantly increased both GPX and GR activities
(105% and 134%, respectively) compared to the untreated drought-stressed plants (Figure S2B).

Compared to the unstressed controls, the activities of DHAR and MDHAR decreased
(45% and 58%, respectively) in the drought-stressed plants (Figures 5H,I and S2A). Treatment
of drought-stressed plants with MeJA or SA alone did not significantly increase these enzyme
activities, whereas the combined MeJA + SA treatment resulted in a statistically significant
increase in the activities of both DHAR and MDHAR by 59% and 115%, respectively, compared
to the untreated drought-stressed plants (Figures 5H,I and S2B).

3.7. Comparative Assessment of Responses across Treatments

A comparative heatmap analysis revealed three distinct groups among the parameters
measured in this study (Figure 6). Group 1 consisted of most of the antioxidant enzymes
(SOD, APX, GPX, GR, and GST), root length, and CMS. Oxidative stress indicators and
proline content were placed in group 3, and the rest of the parameters, including CAT,
POD, DHAR, and MDHAR, were in group 2. A distinct categorization of the growth,
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physiological processes, and antioxidant scavenging machinery was observed, as drought-
stressed plants without pre-treatment and with pre-treatment with either MeJA or SA alone
were grouped in a cluster (Figure 6). However, the plants given the combined MeJA + SA
treatment showed significantly higher amelioration of drought stress-induced damage and
were grouped in the same cluster as the unstressed control plants (Figure 6). A contrasting
response between the unstressed controls and the plants receiving the combined MeJA + SA
treatment was observed for the ROS scavenging machinery, whereas the ROS levels and
other growth and physiological responses were aligned in the same direction in both plant
groups (Figure 6).
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Figure 6. Heatmap and cluster analysis of the growth and physiological attributes, oxidative stress
indicators, and antioxidant enzymes in French bean plants grown under control, drought (D), and
drought-stressed plants treated with methyl jasmonate (D + MeJA), salicylic acid (D + SA), and their
combination (D + MeJA + SA). Additional details are shown in Figure 1.

3.8. Principal Component Analysis (PCA)

The PCA of the responses of the French bean plants to different treatments depicted a
total of four principal components (PCs), but only two PCs exhibited eigenvalues > 1 and
were significant. Both the PCs explained approximately 97% of the variability in drought
response (Figure 7 and Table S2). A PCA biplot showed that PC1 exhibited approximately
75% of the total variability and contributed positively via morpho-physiological traits, CAT,
POD, DHAR, and MDHAR; it contributed negatively via proline, SOD, H2O2, MDA, and
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LOX (Figure 7, Table S2). The second PC accounted for approximately 22% of the total
variation and contributed principally by SOD, APX, GPX, GR, GST, and RL and partly by
SPAD, CAT, POD, and MDHAR.
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4. Discussion

The findings from this study revealed how exogenous application of MeJA, SA, and
their combination can help to reduce the adverse effects of drought in French bean by
maintaining cellular water levels, membrane stability, photosynthetic pigment levels, and
antioxidant defenses to ultimately improve morpho-physiological growth. The growth
parameters of French bean (shoot and root lengths and dry weights) were reduced under
drought stress but were less affected following application of MeJA and SA, separately or
in combination. An improvement in drought stress tolerance by the combined application
of MeJA and SA has recently been demonstrated in maize by Tayyab et al. [27]; however,
the present report is the first to demonstrate similar effects in French beans by significant
activation of the plant antioxidant defense system. Previous studies have demonstrated
an effective minimization of the damaging effects of drought by exogenous application of
MeJA or SA alone in mustard [18] and wheat [28] and by the combination of MeJA and SA in
maize [27] through enhancement of various biochemical, morphological, and physiological
responses [54] including cell elongation, cell expansion, and cell differentiation [55].

The chlorophyll index, including Chl a, b, and total Chl, and the carotenoid content
measured in the same leaves were reduced by drought stress (Table 2 and Figure S1A).
Drought stress is known to lower the levels of photosynthetic pigments, including chloro-
phylls and carotenoids, in various crop plants due to the oxidation and impaired biosyn-
thesis of the pigments [56,57]. The observed decrease in chlorophyll concentration under
drought stress could represent a suppression of chlorophyll biosynthesis and/or decreased
synthesis and assembly of the PSI and PSII light-harvesting complexes to suppress excess
absorption and ROS production [6,58]. The negative impacts on pigments were partly ame-
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liorated in French bean plants treated with MeJA or SA, but the effects were consistently
statistically significant for the combined MeJA + SA treatment, and the plant growth and
physiology were similar to those of the unstressed control plants (Table 2 and Figure S1B).
Increases in leaf chlorophyll and carotenoid contents in drought-stressed plants treated
with MeJA, SA, and their combination have been reported previously in soybean [59],
soybean [60], and maize [27], respectively.

Canopy temperature depression, LRWC, and CMS are considered effective indicators of
drought stress tolerance [6,61–63]. Our findings provide support for earlier results showing
that French beans under drought stress have significantly lower CTD, LRWC, and CMS;
however, these reductions were suppressed by the application of MeJA or SA and statistically
significantly suppressed by the combined MeJA + SA treatment Figures 3 and S1B). CTD is
regarded as a reliable indication of plant water status, and a positive CTD means the canopy is
cooler than the surrounding air [64].

An improved LRWC was reported in drought-stressed plants following MeJA treat-
ment of soybean [59], SA treatment of soybean [60] and Ctenanthe setosa [65], and a com-
bined MeJA and SA treatment of maize [27]. The enhanced CTD, LRWC, and CMS in
the drought-stressed French bean plants treated with MeJA and SA in the present study
indicates that these hormones, particularly when supplied in combination, have the po-
tential to reduce the harmful effects of drought by maintaining cellular water status and
maintaining a cooler leaf temperature.

Proline has been considered an osmotic stress mediator, stabilizer of macromolecules,
compatible solutes to preserve enzymes, and capable of storing carbon and nitrogen for
usage during drought and other stresses [66]. Proline accumulation in plants is also a
marker of stress induction [67]. Although proline content profoundly increased under
drought stress in French beans, the MeJA, SA, and MeJA + SA treatments markedly reduced
the proline content in drought-stressed plants (Figures 3E and S1B). This was due to the
reduction in osmotic stress following the application of hormones [18,24,26].

The effect of exogenous MeJA and SA on the drought-induced oxidative stress was
investigated by determining O2

•− generation and the H2O2 and MDA levels as well as the
specific activity of LOX. Drought stress significantly increased the levels of O2

•−, H2O2,
and MDA and LOX activity compared to the unstressed control plants, indicating that
the plants were under severe oxidative stress (Figures 4 and S2A). The drought-induced
increases in oxidative stress indicators in our study were consistent with results from
previous studies on soybean [60], mustard [24], and maize [27]. Exogenous application of
MeJA or SA suppressed the production of the oxidative stressors, while MeJA + SA showed
statistically significant effects in drought-stressed French bean plants Figures 4 and S2B).
These findings are in accordance with previous studies showing that combined treatments
with MeJA and SA reduced the levels of oxidative stress indicators in maize seedlings
under drought [27] and in Eureka lemon under chilling stress [30].

In plant cells, SOD renders key protection against O2
•− by converting it to H2O2 and,

subsequently, neutralizing it to H2O by CAT and peroxidases (POD, APX, and GPX) [15,16,68].
The plant GSTs are a large and diverse group of enzymes that catalyze the coupling of
electrophilic xenobiotic substrates with GSH and are linked with the induction of tolerance to
different abiotic stresses [69]. The four enzymes of the ascorbate–glutathione cycle (i.e., APX,
MDHAR, DHAR, and GR) played a pivotal role in the systematic detoxification of cellular
H2O2 produced due to the oxidative stress in wheat [41].

In the present study, increased activity of SOD, APX, GPX, GST, and GR and decreased
activity of CAT, POD, DHAR, and MDHAR were observed in drought-stressed plants
compared with unstressed the control plants (Figure 5), which is in agreement with earlier
findings of similar drought-stress effects in rapeseed [70], mustard [18], and mung bean [71].
Exogenous MeJA, SA, and their combination augmented the antioxidant enzyme activities
in French beans under drought stress and reduced drought-induced oxidative damage
(Figures 5 and S2B). However, MeJA (20 µM) and SA (2 mM) applied independently did not
consistently improve the antioxidant enzyme system under drought; this may be because of
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a reliance on other stress signals that can activate antioxidant enzymes’ activities [55]. MeJA
or SA induced an upregulation of the antioxidant enzyme system under drought stress
in Ctenanthe setosa [65], Cucumis melo [72], mustard [18,24], jatropha [22], and Verbascum
sinuatum [26]. However, a combined MeJA and SA treatment (10 µM + 1 mM) was more
effective in this upregulation of the antioxidant enzymes (Figures 5 and S2B). These results
are in agreement with Tayyab et al. [27], who observed a synergistically positive role of
MeJA + SA in increasing antioxidant enzyme activity under drought-induced oxidative
stress in maize seedlings. Our results suggest that the signaling routes of MeJA and
SA would operate similarly to trigger defensive responses in French bean plants under
drought stress. However, investigating additional mechanisms that lead to an increased
effectiveness by combined hormone applications on minimizing drought stress is an
intriguing area for future research.

Taken together, our results demonstrated that MeJA or SA reduced oxidative stress
by upregulating antioxidant enzyme activities, improving the physiological functions of
French bean plants under drought stress; however, the alleviation was further boosted by
combined hormone application. Heatmap and PCA biplot analyses clearly showed that
the combined application of MeJA and SA mitigated drought-induced oxidative stress
principally by the upregulation of SOD, APX, GPX, GR, and GST and partly by CAT, POD,
and MDHAR activities (Figures 6 and 7). The results presented in this study add new
insights into oxidative stress defense mechanisms triggered by MeJA and SA in French
bean plants.

5. Conclusions

French beans pre-treated with exogenous MeJA and SA showed reductions in drought
stress responses including improved photosynthetic performance, membrane stability,
water status, leaf temperature control, and antioxidant enzyme activities. Interestingly, the
combined application of MeJA (10 µM) and SA (1 mM) was more efficacious at alleviating
the adverse effects of drought-induced oxidative stress by upregulating antioxidant enzy-
matic activities. The combined treatment also improved the physiological activities and
increased plant biomass compared to drought-stressed plants. Seed and foliar treatment of
French bean with a combination of MeJA and SA significantly improved drought stress
tolerance by augmenting antioxidant systems. The findings from this study provide the
rationale for future research related to the defense signaling pathways employed by French
bean plants pre-treated with MeJA and SA to aid in the development of new cultivars with
improved adaptation to future drier scenarios.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10102066/s1, Table S1: Daily weather data at the experimental site during the study
period, Table S2: Extracted Eigenvalues and latent vectors of studied traits associated with the first
two principal components, Figure S1: Variations in the studied growth and physiological parameters
of French bean plants. A. Percent change due to drought over control and B. percent change over
drought due to the application of methyl jasmonate (D + MeJA), salicylic acid (D + SA) and their
combination (D + MeJA + SA) on drought-stressed plants, and Figure S2: Variations in the oxidative
stress indicators and antioxidant enzymes activity of French bean plants. A. Percent change due to
drought over control and B. percent change over drought due to the application of methyl jasmonate
(D + MeJA), salicylic acid (D + SA) and their combination (D + MeJA + SA) on drought stressed plants.
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