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Abstract: Transcription factor (TF) networks define the precise development of multicellular or-
ganisms. While many studies focused on TFs expressed in specific cell types to elucidate their
contribution to cell specification and differentiation, it is less understood how broadly expressed TFs
perform their precise functions in the different cellular contexts. To uncover differences that could
explain tissue-specific functions of such TFs, we analyzed here genomic chromatin interactions of the
broadly expressed Drosophila Hox TF Ultrabithorax (Ubx) in the mesodermal and neuronal tissues
using bioinformatics. Our investigations showed that Ubx preferentially interacts with multiple yet
tissue-specific chromatin sites in putative regulatory regions of genes in both tissues. Importantly,
we found the classical Hox/Ubx DNA binding motif to be enriched only among the neuronal Ubx
chromatin interactions, whereas a novel Ubx-like motif with rather low predicted Hox affinities
was identified among the regions bound by Ubx in the mesoderm. Finally, our analysis revealed
that tissues-specific Ubx chromatin sites are also different with regards to the distribution of active
and repressive histone marks. Based on our data, we propose that the tissue-related differences in
Ubx binding behavior could be a result of the emergence of the mesoderm as a new germ layer in
triploblastic animals, which might have required the Hox TFs to relax their binding specificity.
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1. Introduction

The development of multicellular organisms is coordinated by distinct sets of tran-
scription factors (TFs) that work in networks to initiate cell fate decision, specification,
cell localization and tissue differentiation [1–3]. TFs functions are mostly defined by their
expression patterns, which can be cell-type specific, broad, or ubiquitous, and by their
mode of action as activators, repressors, or modulators. Cell-type specific TFs accomplish
their function in a highly specific manner restricted to defined cell types, whereas broadly
and ubiquitous TFs function in multiple and different cell types at the same time to regulate
various regulatory networks [4]. Even through the function of cell-type specific TFs is
under constant investigation and thus rather well established [1,5–7], it is less understood
how broadly expressed TFs perform their diverse yet precise functions in different cell and
tissue types. To dissect the specificity of a broad TF, the Drosophila Hox TFs provide an
ideal model.

Hox genes are evolutionary conserved and specify the segment identity along the
anterior-posterior axis of the developing embryo [8–11]. Thus, they are required in the
different cell and tissue types of a defined segment. Despite their highly specific function
in vivo, Hox proteins are characterized by a rather unspecific binding behavior in vitro,
a phenomenon known as the Hox paradox [12–14]. For decades, this paradox has been
intensively investigated, which resulted in deep insights from in vitro experiments en-
riching for DNA sequences with which Hox proteins (and their cofactors) interact [15],
or from in vivo studies testing the binding abilities of different Hox proteins to selected
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(ectodermal/neuronal) enhancers [16,17]. All of these studies led to several working mod-
els explaining how Hox TFs active in different body parts perform specific functions in
each segment. One of the most prominent models is that regional specificity in the interac-
tion of different Hox proteins with their regulatory regions is achieved via Hox-specific
low-affinity binding sites [16]. Despite these major advancements, several questions with
regards to Hox specificity are still unsolved. In particular, it is completely unclear how one
Hox protein can act with such high specificity in the different cell and tissue types within
one segment.

To contribute to the field and tackle this question in a global fashion, we used the
Hox TF Ultrabithorax (Ubx) and bioinformatic approaches to analyze the binding behavior
and preferences of Ubx in two tissues, the mesoderm and the neuronal system. These
investigations showed that Ubx binds preferentially multiple chromatin sites within single
genes, and interacts with the same genes in different tissues but mostly via tissue-specific
chromatin sites. In order to identify the origin of these differences, we investigated the
chromatin landscape and the Ubx binding motifs within these regions, which revealed that
Ubx interacts primarily with non-canonical Hox/Ubx motifs in the mesoderm, while it
preferentially uses the classical Hox/Ubx motif for chromatin interactions in the neuronal
system. Intriguingly, these novel binding motifs were predicted to have lower binding
affinities for Ubx than the classical Hox/Ubx motif. Finally, we also found that the dis-
tribution of histone marks at Ubx chromatin sites is different in the mesoderm and the
neuronal system

In sum, our analysis of Ubx binding behavior in two tissues identified important
differences with regards to underlying sequence patterns, binding affinities and binding
site distributions, which we hypothesize to be a consequence of mesoderm development
and evolution.

2. Results
2.1. Ubx Chromatin Interactions Are Highly Specific in Two Different Tissues

Hox proteins are active in most cell types within a segment. On example is the Hox
protein Ubx, which is expressed in the ectoderm and nervous system from para-segment
5 to 12 corresponding to the segments T3 to A6, while Ubx expression in the mesoderm
is found in A1 to A6 (Figure 1A–C). Intriguingly, Hox proteins perform highly specific
functions in the different cell types [4], although they bind rather unspecific DNA sequences
with a core sequence of T(A/T)AT(T/G)(A/G) [12,13,18]. Thus, one of the questions in
the field is how these two contradictory behaviors can be reconciled. One possibility is
that Hox proteins bind different and more specific sequences in different cellular contexts;
however, so far, binding preferences of Hox proteins in different cell or tissue types have
not been studied in a systematic fashion.

We aimed at closing this gap by using the Hox protein Ultrabithorax (Ubx) and its
chromatin interactions in two distinct tissues, the mesoderm and the neuronal system,
as a model. To this end, we re-investigated existing Ubx ChIP-Seq profiles retrieved
from neuronal and mesodermal cells at two developmental time points: embryonic stages
10–13 (4–9 h after egg lay (AEL), early time point, specification) and embryonic stages
14–17 (10–18 h AEL, late time point, differentiation) [4]. The used reads were generated
from chromatin, which was retrieved from nuclei isolated from each tissue separately via
the INTACT (isolation of nuclei tagged in specific cell types) method [19]. This method
relies on the cell-type specific biotinylating of the nuclei followed by streptavidin-based
pull-down. The ChIP was performed with a home-made Ubx antibody, which identified
13,551 Ubx-related mesodermal and 7148 neuronal peaks for the stages 10–13, as well as
9529 mesodermal and 1734 neuronal peaks for the stages 14–17. For the re-analysis, we
compared all mapped Ubx binding peaks in the two different tissues and at the different
time points using DiffBind [20]. Cross-correlation heatmap analysis revealed that binding
of Ubx is highly distinct, as the overlap of binding events in the different tissues or
developmental stage was minor (Figure 1D). In the same line, principal component analysis
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(PCA) of the normalized read counts clearly separated all samples, in particular the early
neuronal profile (Figure 1E). Theses result showed that Ubx chromatin interactions in the
different tissues and developmental stages are mostly non-overlapping. One example
highlighting this differential binding behavior is found in the midline (mid) locus: Ubx
interacts with the mid promoter in both tissues, while the remaining interactions are distinct
(Figure 1F).
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Figure 1. Ubx chromatin interactions in the two tissues are highly specific. (A–C) Lateral views of Drosophila embryos
stained for Ubx (green), the muscle differentiation marker Mef2 (red) and the pan-neuronal marker Elav (blue). (A–C) Focus
is on the mesoderm, (A’–C’) focus is on the neuronal system. (A”–C”) 3D image reconstruction, region highlighted with the
box, illustrates the overlap of Ubx and the tissue-specific markers with **. MB: myoblast, NB: neuroblast, ED: ectoderm,
SM: somatic mesoderm, CNS: central nervous system, PNS: peripheral nervous system. Ubx expression is detectable in
the ectoderm and very weakly in the nervous system at stage 9. The expression overlaps with tissue-specific markers at
stage 11 and 14. (D) Cross-correlation heatmap of the called Ubx peaks, indicating a clustering of the replicates and clear
separation of the different tissues and time points. (E) PCA analysis of the normalized read counts shows that mesodermal
and late neuronal samples are more similar than the early neuronal replicates. (F) Example showing differential Ubx binding
in the midline gene locus (mid). Green: Ubx mesodermal reads stages 10–13 (scale 1–150), purple: Ubx neuronal reads
stages 10–13 (scale 1–150), gray boxes: respected accepted peaks, blue: coding region.
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Taken together, the differential binding analysis revealed that Ubx interacts with
different chromatin sites in the mesoderm and the nervous system of Drosophila embryos.

2.2. Ubx Mostly Interacts with Multiple Chromatin Sites in the Different Tissues

We next wanted to characterize the differential binding behavior of Ubx in more detail.
To reduce the complexity of the data, we focused on the stages 10–13 for the subsequent
analyses. We first asked how many of the Ubx chromatin interactions occur in the same or
different genes in both tissues. To this end, we associated Ubx chromatin peaks to genes,
which revealed that 35% of genes were bound by Ubx in both tissues, which will be referred
to as “common genes” in the rest of the manuscript (3552 overlapping/common genes). The
remaining genes were specifically bound only in the mesoderm (mesoSpec, 29%, 2865 genes)
or the neuronal system (neuroSpec, 36%, 3596 genes) (Figure 2A, Supplementary Materials
Table S1). These differences between tissue specific Ubx peaks and the co-bound genes
(common genes) are statistically significant (Figure 2B). In a next step, we asked whether
the frequency of Ubx binding to these three categories of genes, common, mesoSpec,
and neuroSpec, is different. Thus, we calculated the number of Ubx chromatin peaks
occurring in the vicinity of gene bodies. This analysis revealed that genes in the “common”
category are in 90% of the cases bound by Ubx multiple times in both tissues, while one
Ubx chromatin interaction per gene and tissue occurred in only 10% of the common genes
(Figure 2C). Multiple binding events contain two and up to five peaks in most of the cases
(Figure 2C’). This relationship is shifted in the mesoSpec and neuroSpec category, as many
more genes (35–40%) are only bound once by Ubx in the respective tissue (Figure 2C). The
GO term analysis using higher order gene ontology clustering by the WEADE tool [21]
indicated that all three categories contain a defined signature: in the mesoderm, Ubx
preferentially interacts with genes playing a role in trafficking, transport and the cell cycle,
whereas in the neuronal system, it is mostly genes with stem cell related functions that are
bound by Ubx (Figure 2D).

Focusing on the “common gene” category, we wondered whether Ubx binding fre-
quency correlates with gene function. To more systematically analyze this relationship, we
compared GO term overrepresentations in the common genes separated in single peaks
(singlePeaks) and multiple peaks (multiPeaks) using the WEADE tool [21]. We found that
many genes coding for TFs, signaling pathways molecules, and trafficking transport pro-
teins are only once bound by Ubx, whereas genes coding for stem cell factors, cytoskeleton
and cell adhesion molecules, as well as growth-related proteins, are often bound multiple
times (Figure 2D). An example for a gene containing multiple peaks is teyrha-meyrha (tey),
an E3 ubiquitin ligase encoding gene that is multiply bound by Ubx peaks in the mesoderm
and neuronal tissue (Figure 2F), and an example for single peak gene is snail (sna), a tran-
scription factor encoding gene which is bound only once in both tissue contexts (Figure 2G).
Intriguingly, differences in Ubx binding frequencies also correlate with chromatin locations,
as Ubx chromatin interactions in singlePeaks genes are often at the promoter, while Ubx
interactions in multiPeaks genes are primarily found in intronic and intergenic regions
(Figure 2E).

In sum, this analysis showed that Ubx interacts at the same time with many genes in
the mesoderm as well as the neuronal system, and does so preferentially via multiple and
tissue-specific chromatin sites.
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Figure 2. Ubx interacts with multiple chromatin sites in the vicinity of genes. (A) Venn diagram of Ubx peaks associated
genes in the mesodermal and neuronal tissue, showing a substantial overlap of co-bound and potentially co-regulated
genes (common genes). (B) Box plot of the DiffBind analysis highlighting the significant difference between tissue specific
Ubx peaks and the co-bound genes (common genes). p-value **** is < 2.2 × 10−16 according to the Wilcox rank test. (C) Bar
diagram of the peak clustering, indicating that the majority of the common genes contain multiple Ubx peaks (multiPeaks)
as compared to the tissue specific peaks, 30–40% single bound genes (singlePeak). (C’) Detailed analysis of the common
mutiPeaks, showing the frequency of peaks appearing at a single gene (D) Heat map of higher order GO-term clustering
among the mesoSpec, common and neuroSpec genes. This analysis shows that single peaks are mostly found at genes
functionally related to transcription factors, trafficking transport, and signaling pathways, while multiple peaks are found
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at genes involved in stem cell functions, cytoskeleton cell adhesion polarity and growth. (E) Bar diagram of the Ubx peak
localization with respect to the gene body. Classified as promoters (−1000 to +10 bp from transcription start site (TSS),
5′ UTR); distal enhancers (−2000 to −1000 bp from TSS, 3′ UTR, downstream); and intron (intronic regions), intergenic
(distal intergenic), or other (including exons) regions. The plot shows that multiPeaks are found at enhancer regions,
whereas singlePeaks are preferentially associated with promoters. (F,G) Examples for genes that are bound by Ubx in
multiPeaks (tey, teyrha meyrha, F) and with a singlePeak (sna, snail, G). Green: Ubx mesodermal reads stages 10–13
(scale 1–150), purple: Ubx neuronal reads stages 10–13 (F: scale 1–150, G: scale 1–50), gray boxes: respected accepted peaks,
blue: coding region.

2.3. Novel Sequence Patterns Resembling Hox Motifs Are Enriched at Ubx Chromatin Sites in
the Mesoderm

So far, our analysis has focused on the “common genes” category. In a next step,
we wanted to elucidate whether Ubx binding to the same genes in different tissues is of
different quality. To this end, we focused on those genes bound by Ubx multiple times in
enhancer regions (intronic, intergenic, distal enhancer) in both tissues, and searched for
over-represented DNA motifs. To increase specificity of this search, we sub-divided the
Ubx peaks in these regions into three categories: (1) Ubx peaks within common genes that
are only present in enhancer regions in the mesoderm, meso_ONLYpeaks, (2) Ubx peaks
within the common genes that are only present in enhancer regions in the neuronal system,
neuro_ONLYpeaks, and (3) Ubx peaks within the common genes that are present in both
tissues within a 2 kb region, which we considered to be due to their close distance part of
the same regulatory control element and thus bound by Ubx in both tissues, 2kb_common.
Interestingly, this categorization of peaks uncovered that the majority of Ubx chromatin
peaks (around 75%), despite being present in both tissues in the same genes, are specific to
one of the two tissues, and only a smaller proportion was present at the same location in
both tissues (Figure 3B).
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Figure 3. Mesodermal and neuronal Ubx chromatin interactions are different. (A) Volcano plot of the selected DiffBind
results, the plot shows the distribution of common genes that contain multiPeaks in a tissue-specific manner. (B) Bar
plot representing the number of peaks tissue specifically associated from the DiffBind analysis used for sub-division in
three categories: 2kb_common (mesodermal and neuronal peaks are not as far away as 2 kb and combined in one group),
meso_ONLYpeaks, neuro_ONLYpeaks. (C) Motif search based on an Analysis of Motif Enrichment (AME within the MEME
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suit) using the sequences from three categories. The classical Ubx motif is not found in meso_ONLYpeaks. NA: not available.
(D) Bar plot showing the distribution of classical and novel motifs, which were identified using the Sensitive, Thorough,
Rapid, Enriched Motif Elicitation method (STREME) within the MEME suit, in the 2kb_common, neuro_ONLYpeaks,
meso_ONLYpeaks category. The plot displays a variance of motif location in meso_ONLYpeaks data set. (E) Predicted Ubx
binding affinities to selected genomic regions. The classical Hox motif in 2kb_common and neu-ro_ONLYpeaks, as well as
selected motifs for the meso_ONLYpeaks data set. The classical motifs show a high affinity, whereas the selected motifs in
the meso_ONLY data set have a low affinity. The analysis used model 6: Selex data for Ubx isoform Ia. p-value: * is < 0.05
and *** is < 0.001 according to the Wilcox rank test.

We next performed motif enrichment analysis in all three categories using MEME [22,23].
We found some known motifs to be over-represented in all three categories, in particular
the motif for the ubiquitous factor Trithorax-like (Trl), while other known motifs were
found to be over-represented only in a sub-set. For example, the motif for the meso-
dermal specification factor Tinman (Tin) was over-represented in the meso_ONLYpeaks
and the 2kb_common category, while the motif for Intermediate neuroblasts defective
(Ind), a TF important for nervous system development, was only over-represented in the
neuro_ONLYpeaks category (Figure 3C). Strikingly, although the classical Ubx/Hox DNA
motif was found over-represented in the neuro_ONLYpeaks and 2kb_common categories,
it was not found among the mesoderm specific Ubx peaks (meso_ONLYpeaks) (Figure 3C).
This finding raised the possibility that Ubx interacts with a non-canonical Hox motif in the
mesoderm. Thus, we used the STREME (Sensitive, Thorough, Rapid, Enriched Motif Elici-
tation) sub-routine within the MEME suite to discover novel sequence patterns within the
meso_ONLYpeaks category, and identified several novel motifs [24]. Intriguingly, some of
them were deviations of the classical Hox/Ubx motif (Supplementary Materials Figure S1),
which could represent so far unknown mesoderm-specific Ubx binding motifs. However,
all of them contained at least one -AT- rich region. As a control, we also performed the
STREME analysis on the neuro_ONLYpeaks and 2kb_common categories. Although we
identified novel motifs, none of them showed a comparable resemblance to the classical
Hox motifs to the motifs identified in the meso_ONLYpeaks category (Supplementary
Materials Figure S1B). Thus, we assumed that Ubx interacts with regulatory regions via the
classical Hox/Ubx motif in the nervous system and in the mesoderm via non-canonical,
mesoderm-specific Hox/Ubx motifs. To further confirm these results, we performed the
same analysis on Ubx binding regions identified in later stages of development, when
muscles and neurons are differentiated. Preliminary results indicated that Ubx-related
chromatin binding in the neuronal system is associated with the classical Hox/Ubx binding
motif, while this motif cannot be found in mesodermal binding peaks (Supplementary
Materials Figure S2).

After having identified novel sequence patterns within Ubx-bound chromatin re-
gions, we asked whether the known and novel Hox/Ubx motifs are different with respect
to predicted affinity or location in the gene loci. Our analysis of peak distribution in
regulatory regions revealed that the classical Hox/Ubx motif, which was the one found
over-represented among the neuron-specific Ubx chromatin interactions, was located pref-
erentially in intronic regions. In contrast, Ubx binding in the mesoderm is different, as most
of the novel, STREME-identified Hox/Ubx binding sequences were more or less evenly
distributed in intronic or intergenic (upstream, downstream) regions (Figure 3D). Using the
No Reads Left Behind (NRLB) algorithm, we next calculated the affinities of all (known and
novel) Ubx/Hox binding sites located within neuro_ONLYpeaks, meso_ONLYpeaks and
the 2kb_common regions. In line with our finding that the classical Hox/Ubx motif was
enriched in the neuro_ONLYpeaks regions (Figure 3C), we found the predicted affinities
of the Hox sites located in these regions to be the highest, while the affinities of the novel
Hox/Ubx sites located in the meso_ONLYpeaks regions were estimated to be very low
(Figure 3E).
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Taken together, the analysis indicated that Ubx primarily binds to the classical Hox
motif in the neuronal system, while it interacts with novel, low affinity sequences in
the mesoderm.

2.4. Tissue-Specific Ubx Sites Show Differences in Histone Mark Distributions

In the next step, we examined whether the genes commonly bound by Ubx in the
mesoderm and neuronal system are characterized by other features than differences in the
underlying Hox/Ubx sequence motifs. Regulatory regions and their activity are defined
by the chromatin status. Thus, we analyzed the distribution of two histone modifications,
H3K27ac and H3K27me3, at tissue-specific Ubx peaks located in enhancer regions of gene
loci in the two different tissues. Both histone marks are key modifications of the nucleosome
component Histone H3, with H3K27me3, represents a mark associated with repressive
chromatin [25,26], while H3K27ac is associated with active promoters and enhancers [27,28].
We found that chromatin sites bound by Ubx specifically in the mesoderm, which harbor a
H3K27ac mark, also show a high coverage of this chromatin mark in the neuronal system
(Figure 4A, Supplementary Materials Figure S3A). GO-term analysis of the genes associated
with these regions showed that they function primarily in the neuro-ectodermal tissue
(wing disc, appendage, neuron projection morphogenesis). In contrast, mesoderm-specific
Ubx chromatin sites, which carry the repressive H3K27me3 mark, harbor neither the
active (H3K27ac) nor the repressive (H3K27me3) mark in the neuronal tissue (Figure 4B,
Supplementary Materials Figure S3B). Genes associated with these regions were annotated
to function primarily in the neuronal system (cell morphogenesis involved in neuron
differentiation, locomotion, neuron system development). This is in line with previous
findings [4], and indicates that these regions very likely play a role in the repression of
alternative fates to ensure proper mesoderm development. Analysis of the chromatin
sites bound specifically by Ubx in the neuronal system revealed a different picture: Ubx
sites, which harbor a H3K27me3 mark in the nervous system, also did so in the mesoderm
(Figure 4D, Supplementary Materials Figure S3C), while nervous system-specific Ubx sites,
which carried the H3K27ac mark, were devoid of both histone marks in the mesoderm
(Figure 4C, Supplementary Materials Figure S3D).
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Figure 4. Histone modification at tissue-specific Ubx chromatin sites are different. (A,B) Ubx bound mesoderm-specific
enhancers from the meso_ONLYpeaks data set were analyzed with respect to histone mark distribution. (A) The focus is
on mesodermal, Ubx-bound regions covered with H3K27ac marks (dark green). These genomic regions are also covered
with acetylation marks in the neuronal system (neuro H3K27ac, light green). Bar diagram: GO-term analysis of the selected
data (dark green). (B) The focus is on mesodermal, Ubx bound regions covered with H3K27me3 marks (dark green), these
regions do not contain any other histone mark studied. Bar diagram: GO-term analysis of the selected data (dark green).
(C,D) Ubx bound neuronal-specific enhancers from the neuro_ONLYpeaks data set were analyzed with respect to their
histone mark distribution. (C) The focus is on neuronal, Ubx-bound regions covered with H3K27ac marks (dark purple),
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these regions contain no other mark in a different tissue. Bar diagram: GO-term analysis of the selected data (dark purple).
(D) The focus is on neuronal, Ubx-bound regions covered with H3K27me3 marks (dark purple), these genomic regions are
also covered with methylation marks in the mesoderm (meso H3K27me3, light purple). Bar diagram: GO-term analysis of
the selected data (dark purple).

Taken together, these results showed that the chromatin sites bound by Ubx specifically
in one of the two tissues behave differently with regards to two histone marks. Our finding
that mesoderm-specific Ubx sites marked by H3K27ac carry the same histone mark in the
nervous system was surprising, in particular as the associated genes primarily correlated
with epidermal/neuronal tissue development.

3. Discussion

The evolutionary conserved Hox proteins perform very specific functions in vivo;
however, in vitro, they bind rather generic and frequently occurring DNA sequences. This
raises two important questions related to Hox specificity: first, how do different Hox
proteins control segment-specific features, and second, how does a single Hox protein
regulate the development of different cell and tissue types present in one segment in a
specific manner. The first question is related to all Hox proteins and has been extensively
studied in the last decades [29–31]. However, so far a comprehensive analysis of the
tissue-specific function of individual Hox proteins has been missing.

To close this gap, we investigated the binding behavior of the Hox protein Ubx in
the Drosophila mesoderm and neuronal system. We found that Ubx interacts with highly
specific and non-overlapping chromatin sites even when interacting with the same gene
locus. Most genes were bound by Ubx at multiple sites located in putative regulatory
regions (introns, intergenic regions), while single Ubx binding events were less frequent.
Analysis of the Ubx sites identified the classical Hox/Ubx binding motif to be enriched
in regions bound by Ubx in the neuronal system, but not the mesoderm. In this tissue,
a variety of sequences with similarities to the classical Hox motif were found, which we
assume to represent divergent Ubx binding motifs specifically related to the mesoderm.
Finally, tissue-specific Ubx sites were not only different in the underlying sequence patterns
but also in the distribution of active and repressive histone marks. In sum, these results
revealed for the first time that Ubx binding in different tissues is highly specific with
regards to the location, sequence patterns and underlying chromatin marks.

One puzzling result was our finding that regions marked as “active” and specifically
bound by Ubx in the mesoderm were also in the “active” chromatin configuration in the
nervous system, in particular as the genes associated with these regions were predicted to
function primarily in the nervous system. This distribution of chromatin marks at tissue-
specific Ubx sites indicates that the Hox control of nervous system is more restricted and
fixed, as active marks at Ubx sites are related to and exclusive for the tissue, which is not
the case in the mesoderm. How could such divergent and more “relaxed” binding behavior
of the Hox TF Ubx in the mesoderm be explained? Several aspects related to mesoderm
development might be helpful to formulate a hypothesis. First of all, the mesoderm is one
of the three germ layers present in Bilateria, while a “true” mesoderm, which arises as
a result of gastrulation, is absent in Cnidaria, a group of dipoblastic, radially symmetric
organisms [32,33]. Thus, in evolutionary terms, the mesoderm is “younger” and has
emerged later than the ectoderm and the endoderm [34–36]. In contrast, Hox proteins,
which define the identity of body parts in animals, are present in both groups, Bilateria and
Cnidaria, as shown for the sea anemone Nematostella [37], highlighting that Hox genes
are relatively “old”, and were present before the emergence of a true mesoderm. Thus, the
evolution of a new tissue might have required already existing TFs such as the Hox proteins
to exploit new binding sequences to enable a clear separation of the old and fixed germ
layers from the new and evolving one. In line, we found that Ubx interacts in the mesoderm
with many divergent, low-affinity Hox/Ubx binding motifs, while its interaction in the
neuronal system is restricted to the classical, high-affinity Hox motif. Intriguingly, low-
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affinity sites have been shown to be critical for Hox segment/regional specificity [16,17],
which might be also the case for Hox tissue specificity. Second, the separation of tissues
during animal development is controlled by major changes in the chromatin landscape [38],
which could leave “footprints” of the already existing tissue in the newly formed one. For
example, the Drosophila mesoderm emerges from the neuro-ectoderm and is determined
when the predominantly active histone marks (H4K8, H3K18, and H3K27ac) set at gene
regulatory regions during the activation of the zygotic gene program are complemented
or replaced by repressive histone marks (H3K27me3) [39–41]. Thus, the mesoderm might
keep “active” histone marks related to nervous system development in the course of its
emergence, and rely on “repressive” histone marks to guarantee a clear separation of
the mesoderm from the neuro-ectoderm. In line, we found such remnants of neuronal
transcriptional activity in the mesoderm, while this was not the case in the nervous system.

Based on these assumptions, we hypothesize that the emergence of a new tissue,
the mesoderm, might have required the Hox TFs, which define different body parts and
thus need to be active in all tissues, to “relax” their molecular properties, such as their
binding behavior and preferences, to enable this major transition from diploblastic to
triploblastic organisms, and this change in binding preferences seems to be co-adapted for
Hox tissue specificity.

4. Materials and Methods
4.1. Fly Stocks and Antibody Staining

The w1118 fly line served as a wildtype and embryos were prepared for staining and
stained as described in [42], and the following antibodies were used: Rb-Mef2 (1:1500, Gift
from H. Nguyen, distributed by K. Domsch), Rat-Elav (1:50, DSHB, ELAV-9F8A9), gp-Ubx
(1:500, [4]). The embryos were images with the SP5 Leica Confocal microscope and the
images further processed with Fiji [43].

4.2. Bioinformatic Analysis and Visualization

The data used in the manuscript was deposit on NCBI Gene Expression Omnibus:
GSE121752, and annotated against genome dm6. The data sets contained Ubx ChIP-Seq
peaks and histone mark disruptions of H3K27ac and H3K27me3 from the mesoderm and
neuronal system, as well as of embryonic stages 10–13 and 14–17. Bioinformatics analysis
was performed as described in [4]. The Ubx genomic data was used in a DiffBind [20]
analysis under standard setting to determine die different bindings in the two tissues
and time frames. The following tools were used for downstream analysis: SAMtools [44],
BEDtools (intersect and coverage, [45]), motif search by MEME suite web-tool (Frith et al.,
2008), deepTools [46] and visualized with IGV, PANTHER (GO biological function complete,
Binomial), Bonferroi correction [47–49], Higher order GO-term enrichment [21], R tool [50]:
ChIPseeker [51], ChIPpeakAnno [52] and NLRB [53], plots were performed in R [50].
Promoter and enhancer definition is related to [54] and [55]. More details concerning single
tools can be found in [4,56].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jdb9040057/s1, Figure S1: Novel motifs identified among different Ubx data sets, Figure S2:
Analysis of the Ubx binding behavior during the differentiation stage (stage 14–17), Figure S3:
Genome view of selected examples to Figure 4, Table S1: Characterization of the three different
categories in Figure 2.
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