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Abstract: Nervous systems are comprised of diverse cell types that differ functionally and
morphologically. During development, extrinsic signals, e.g., growth factors, can activate intrinsic
programs, usually orchestrated by networks of transcription factors. Within that network, transcription
factors that drive the specification of features specific to a limited number of cells are often referred
to as terminal selectors. While we still have an incomplete view of how individual neurons within
organisms become specified, reporters limited to a subset of neurons in a nervous system can facilitate
the discovery of cell specification programs. We have identified a fluorescent reporter that labels
VD13, the most posterior of the 19 inhibitory GABA (y-amino butyric acid)-ergic motorneurons, and
two additional neurons, LUAL and LUAR. Loss of function in multiple Wnt signaling genes resulted
in an incompletely penetrant loss of the marker, selectively in VD13, but not the LUAs, even though
other aspects of GABAergic specification in VD13 were normal. The posterior Hox gene, egl-5, was
necessary for expression of our marker in VD13, and ectopic expression of egl-5 in more anterior
GABAergic neurons induced expression of the marker. These results suggest egl-5 is a terminal
selector of VD13, subsequent to GABAergic specification.
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1. Introduction

Nervous systems are organized into functional units comprised of diverse cells. Knowing a cell’s
identity enables us to trace its lineage, describe the architecture and connectivity of networks and
elucidate the physiology of organismal behaviors. The original attempt to systematically categorize
neurons was by Ramon y Cajal, who beautifully illustrated conserved, distinguishing neuronal
morphologies in different animals [1]. Today, neuroscientists categorize neurons using anatomical,
morphological, molecular or functional criteria, e.g., hippocampal, pyramidal, tyrosine hydroxylase or
motor neuron, etc., are different, but informative, labels for specific classes of neurons.

During development, neurons acquire differential features through iterative rounds of specification
in a hierarchical fashion. These rounds are driven by both extrinsic cues, which provide spatial
information to the cells, and intrinsic transcriptional programs orchestrated by transcription factors
and terminal selectors. For example, motorneurons (MNs) within the vertebrate spinal cord are
initially specified by Olig2 [2,3], after which they organize into discrete motor columns along the
anterior-posterior axis [4,5], and then into subtypes or motor pools, which correspond to specific
muscle regions within the limbs. Many different transcription factors exhibit selectivity for the different
sub-divisions along the A/P axis and within the functional regions (for review see [6,7]). Of these, Hox
genes play a critical role in multiple events of MIN specification along the A/P axis (for review see [8]).
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Caenorhabditis elegans (C. elegans) have both excitatory (cholinergic) and inhibitory (y-amino butyric
acid/GABA-ergic) MNs. These MNs collaborate to control body wall muscles to produce smooth
sinusoidal locomotion. MNs can be categorized based on when they form, the specific body regions
innervated and their function. The loss of GABAergic MN function results in a “shrinker” phenotype,
which enabled screens for genes that regulate GABAergic specification and function [9]. Two of those
genes—unc-25, which encodes glutamatergic acid decarboxylase, the final biosynthetic step in GABA
synthesis, and unc-47, which encodes the vesicular GABA transporter—have provided differentiation
markers that have also been used to further understand GABAergic specification [10,11].

There are several genes that have been identified to play a role in GABAergic specification. cdn-1 is
necessary for the proper specification and differentiation of both GABAergic and cholinergic MNs [12].
unc-30 functions downstream of cdn-1 to specify the fate of the D-type GABAergic MNs [13,14]. The
Aristaless homolog, arl-1, unc-62 and unc-55 repress DD-like fates and promote the specification of VD
fates [15-18]. Together, these provide a small subset of the genes that are involved in the specification
of GABAergic MNs in C. elegans.

Here, we report a new marker specific for the most posterior GABAergic D-type MN, VD13, and a
pair of bilaterally symmetrical neurons that we have tentatively identified as the LUA neurons, LUAL
and LUAR. Using this marker, we observed developmental defects in the morphology of VD13 in
animals with mutations in Wnt signaling genes, including animals where expression of the marker
was lost from VD13, but not the LUAs. Expression was completely lost in VD13 in animals lacking the
B-catenin, bar-1, and the Hox gene, egl-5. Additionally, we found redundant function in regulating
expression for two disheveleds (dsh-1 and mig-5) and two Wnt ligands (lin-44 and egl-20). Our results
indicate that Wnt signaling promotes egl-5 to function as a terminal selector for the VD13 fate.

2. Materials and Methods

2.1. Strains and Genetics

N2 (var. Bristol) was used as the wild-type reference strain in all experiments. Strains were
maintained at 18-22 °C, using standard maintenance techniques as described [19]. Alleles used in
this report include LGI: lin-44(n1792), lin-17(n671); LGIL: mig-5(rh94), mig-5(tm2639), dsh-1(ok1445);
LGIIL: egl-5(n945); LGIV: egl-20(gk453010), egl-20(1g42) [20]. The following integrated strains were used:
LGIL: juls76 [Punc-25::fpl; LGV: wgls54 [Pegl-5::egl-5::¢fpl; LGX: [hls97 [Pplx-2::mCherry]. The following
extrachromosomal arrays were generated and used in this report: [hEx609, IhEx610 [Pplx-2::1fp], IREx555
[Punc-25::egl-5 cDNA]. The [hEx555 array was generated by injecting pEVL479 (Punc-25::egl-5) into
wild-type animals at 2 ng/uL, along with pBA183 (Pmyo-2::mCherry) at 5 ng/uL. The [hEx609, [hEx610
arrays were generated by injecting pEVL551 into wild-type animals at 5 ng/uL along with Pstr-1::gfp
at 20 ng/uL. [hEx609 was integrated into the genome using ultraviolet light and tetramethylpsoralen
(UV/TMP), to generate [hls97, and backcrossed to wild-type six times prior to use.

2.2. Plasmid Construction

PBA102 (Pplx-2::cfp::unc-54 3'utr) contains a segment of the plx-2 promoter (nucleotides -3863
to -871 with respect to the start of translation). pBA102 was digested with BamHI and religated
to create a shortened plx-2 promoter (contains nucleotides -1089 to -871, with respect the start of
translation, to create pEVL530 (Pplx-2::cfp::unc-54 3'UTR). pEVL387 (Punc-25::mCherry::unc-43 3' UTR)
was digested using Xmal and Spel and ligated to pEVL550 digested with Xmal and Spel to generate
pEVL531 (Pplx-2::mCherry::unc-43 3’ utr).

The egl-5 cDNA was amplified from total RNA that had been converted to cDNA using
random hexamer oligos and superscript IIl reverse transcriptase (Life Technologies). The cDNA
was amplified using the following primers, egl-5F1 5'-ttggaaagcagtgagagtgag-3’ and egl-5 R1
5’'-ggagggatcattgagaaacttgag-3’ and inserted into a vector with the unc-25 promoter and unc-54 3’'UTR
using LR Clonase (Life Technologies). All vector and plasmid sequences are available upon request.
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2.3. Fluorescence Microscopy

The complete set of GABAergic MNs was visualized using juls76, while VD13 and the LUAs
were scored using [hs97. Scoring and imaging were done using an Olympus FV1000 laser-scanning
confocal microscope with the Fluoview software. Animals with posterior neurites (Pdns) or spurious
Ih1s97 expression in DD6 were not included in the shape analysis of VD13. Images were exported to
Image] to be rotated and/or cropped for presentation. The Image] Image Calculator function was used
to make the image of the intersection between juls76 and Ihls97.

2.4. Statistics

Fisher’s exact test was used to evaluate statistical significance between genotypes, and calculated
with Prism GraphPad (5.0) or GraphPad QuickCalcs (http://www.graphpad.com/quickcalcs/). All
genotypes were scored on a minimum of two different days, and the results averaged between scoring
sessions. We set a threshold of P < 0.005 to determine significance to account for multiple testing.
The standard deviation of the population was used to calculate error bars for the reported VD13(+)
expression in the varying genotypes and was calculated using Microsoft Excel 2016.

2.5. Data Availability

All strains and plasmids presented are available upon request.
3. Results

3.1. Isolation of a VD13-Selective Marker

There are 19 GABAergic primary motorneurons (MNs) in the C. elegans locomotor circuit. The
six dorsal D-type (DD) neurons form during embryogenesis [21]. These neurons are presynaptic to
the ventral body wall muscles during the first larval stage (L1) [22]. However, during L1, the 13
ventral D-type (VD) neurons begin forming. The most anterior neuron, VD1, forms first, while the
most posterior, VD13, forms last. During the L1 stage the DD neurons remodel to innervate the dorsal
muscles, as VD neurons innervate ventral muscles [22-24].

Using GFP (green fluorescent protein) reporters under the control of GABA-specific promoters,
several labs have investigated the development of the GABAergic MNs. Briefly, the D-type GABAergic
MNs share a common morphology, a sideways H shape, with the cell body on the ventral midline.
During development, the cell body extends an axonal-like process anteriorly, from which a commissural
process forms, and bifurcates at the dorsal nerve cord, where anteriorly and posteriorly directed
processes extend [25]. In general, the processes reach to the next D-type neuron of the same class to
ultimately become tiled along the body (Figure 1).

We serendipitously isolated a reporter transgene active in VD13 and the bilaterally symmetrical
LUA neurons. This transgene uses a fragment of DNA upstream of the plx-2/Plexin gene [26]. We
created an integrated transgene, lhls97, with this promoter fused to mCherry (Figure 1). In conjunction
with a pan-GABAergic MN marker juls76 (Punc-25::GFP) [27], mCherry and GFP overlapped uniquely
in VD13 (Figure 1). The cell-selective expression of the [h1s97 transgene suggested VD13 was undergoing
developmental events separate from other GABAergic MNs.
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Figure 1. [hls97 is a VD13-selective GABAergic motorneuron (MN) marker. (A) A schematic of the
19 GABAergic MNs. DD1 and VD1 are the most anterior and VD13 is the most posterior. (B) The
characteristic tiled H shape of the VD neurons is illustrated. (C) A schematic of the plx-2 locus. The
region upstream of the plx-2 first exon contains two egl-5 binding sites [28]. RN ASeq experiments have

identified an intron in the 5’ region (indicated by the branched line). The segment of the promoter used
to generate the [hIs97 marker is indicated in red. (D-G) The posterior region of an Ihls97 wild-type
animal showing GABAergic GFP (D), [hIs97-expressed RFP (E), the merge of the two channels (F) and
the overlap of the GFP and RFP channels, which is exclusive to VD13 (G).

In wild-type animals, we found that, rather than being “H” shaped, VD13 was most frequently
“C” shaped (82 + 1% of animals observed) (Table 1, Figure 2). In approximately 9% of animals, the cells
had either a T shape where the cell extended an additional, anteriorly directed process in the dorsal
nerve cord, or only an anterior process (“P” shaped). Interestingly, we also found that in 9% of animals
no VD13 commissural process was visible (“N” shaped), or it formed, but failed to reach the dorsal
nerve cord (“O” shaped). We subsequently grouped these as either polarity defects (“T” or “P” shaped)
or formation defects (“N” or “O” shaped).

Next, we examined animals with the starting extrachromosomal array, [hEx609, to determine
whether these altered morphologies were caused by the insertion of the transgene. We found that the
proportion of morphologies was largely consistent. That is, 73% of animals had a C shape. In total, 10%
of animals lacked a visible VD13 commissure (“N” shaped), while a minority of animals had misrouted
VD13 axons (“O” shaped). Failure of VD13 to form a commissure or to be misrouted is extremely rare
in wild-type juls76 animals. Thus, we conclude that the Pplx-2 transgene itself can have a small effect
on VD13 development. Overall though, none of the animals we examined had an “H” shaped VD13,
which is typical of the other GABAergic MNs. These data argue that the morphology of VD13 could be
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slightly variable but is principally “C” shaped in wild-type animals. The cell-selective expression of
[hs97 also suggested that VD13 exhibits characteristics different from the other GABAergic MNs.

Juls76 Ihls97 Merge Overlap

T Shape

P Shape §

Figure 2. Different VD13 morphologies observed. The most common shape of VD13 in juls76; Ihls97

animals was a C shape. Aberrant morphology categories observed were either in the dorsal cord
polarity (“T” or “P” shaped) or commissural outgrowth and guidance (“O” or “N” shaped). Note, the
“C”,“T”, and “O” shaped morphology examples are wild-type animals, “N” shaped, dsh-1 mutants,
and “P” shaped from eg/-20 mutants.

3.2. VD13 Morphology is Dependent on Wnt-Signaling

Previous work has shown that canonical Wnt signaling regulates the development of posterior
GABAergic neurons [29]. In C. elegans, there are five genes encoding Wnt ligands (cwn-1, cwn-2, egl-20,
lin-44 and mom-2). Of those, mom-2, egl-20, and lin-44 are expressed in the posterior of the animal where
they are in a position to influence VD13 [30].

We visualized VD13 in animals lacking either lin-44 or egl-20. We found that animals lacking
lin-44 or egl-20 frequently had VD13 axons that grew past the normal termination point for VD13,
similar to previous reports [29]. We also observed VD13 with posteriorly directed neurites (Pdns)
emanating from the cell body, confirming these can come from VD13 [31]. Based on these observations
we concluded that [h1s97 was enabling us to confidently observe previously characterized defects in
GABAergic neurons.

We then characterized the different neuronal morphologies in the Wnt ligand mutants (Table 1).
We found that, in general, when lin-44 was compared to the wild-type, the same distribution of shapes
was found, with no significant differences. The loss of egl-20 resulted in a significant increase in polarity
defects, but not in the formation or completion of commissural outgrowth.

We next analyzed loss of function mutations in lin-17/Frizzled, dsh-1/Disheveled and mig-5/Disheveled,
and we categorized the penetrance of the different shapes of VD13 neurons in these mutants (Table 1).
In the lin-17, mig-5 or dsh-1 mutants, we found a significant increase in the penetrance of dorsal polarity
defects, (“T” or “P” shaped neurons), suggesting the polarized growth of neurites in the dorsal nerve
cord relied on the function of these proteins. Loss of function in lin-17 or dsh-1 had no discernable
effect on commissure formation, while there was a significant increase in formation and outgrowth
defects in animals lacking mig-5. Thus, we confirmed that loss of Wnt signaling genes affected VD13
development, where mutations in ligands versus downstream effectors can be distinct, as has been
previously reported [29].
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Table 1. VD13 morphology by genotype.

60f 11

Genotype N C Shape Polarity (T/P) Outgrowth (N/O)

wild type (Ih1s97) 161 82% 9% 9%

lin-44(n1792) 88 77% 18% 5%
(P = 0.0446) (P =0.3135)

egl-20(gk453010) 159 64% 23% 14%
(P = 0.003) (P = 0.0769)

lin-17(n671) 40 48% 50% 3%
(P < 0.0001) (P =0.6961)

mig-5(rh97) 85 36% 52% 12%
(P < 0.0001) (P = 0.0339)

dsh-1(ok1445) 177 24% 71% 5%
(P < 0.0001) (P =0.2113)

3.3. Expression of IhIs97 in VD13 is Dependent on Certain Wnt Pathway Genes

In the course of examining the morphology of VD13 in Wnt signaling mutants, we discovered
that mutations in lin-44, egl-20, lin-17 or mig-5, but not dsh-1, resulted in an occasional loss of RFP
expression in VD13. These animals continued to exhibit expression in the LUA neurons, and VD13
was still present (as labeled by juls76), indicating the neurons were still being specified as GABAergic
MNs (Figure 3). The penetrance of the [hls97 “off in VD13” phenotype was 22% in lin-44, <1% in egl-20,
30% in lin-17 and 54% in mig-5 animals (Figure 3).

Animals Expressing RFP in VD13

Wiid type |
hEx610 —
lin44 —
egl-20 |
lin-17 _
mig-5 —
dsh-1 |
bar-1 IbEx609 —
el-5
dsh-1mig-5
lin-44¢9l-20 —i
0% 20% 40% 60% 80% 100%
Overlap

Figure 3. Expression of [hls97 is selectively lost in VD13 in Wnt loss of function animals. Animals
were scored for the presence or absence of RFP in VD13. The percentage of animals (mean + s.d.)
that expressed RFP in each genetic background is presented in the graph. Below are examples of RFP
expression being present in VD13 in dsh-1 mutants, but absent in the majority of mig-5 single mutants
and all dsh-1mig-5 double mutants.

To determine whether dsh-1 was compensating for the absence of mig-5, we analyzed dsh-1mig-5
double mutants. We found that in this background, [hIs97 expression in VD13 was lost in 100% of
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animals analyzed (Figure 3). We next generated lin-44; egl-20 double mutants, and these animals
also exhibited a synergistic decrease, with only ~2% positive for RFP (98% lost expression) (Figure 3).
These data indicate that lin-44 and egl-20 contributed to VD13 specification in parallel. Finally, we
tested the dependence of RFP expression on bar-1, which encodes a (3-catenin ortholog that functions
downstream of lin-44 in many contexts. We found that [h[s97 was integrated on the X chromosome,
near bar-1, and thus, we used the [hEx610 transgene to examine bar-1 mutants. Animals lacking bar-1
also failed to demonstrate expression of the Pplx-2 transgene in VD13, with 96% losing RFP expression
in VD13 (Figure 3). Again, the LUA neurons were grossly unaffected and juls76 expression was intact.
Overall, these results indicate that the canonical Wnt signaling pathway is critical for VD13 identity,
subsequent to GABAergic MN specification.

3.4. egl-5 is Necessary for IhIs97 Expression in VD13

The severe perturbation of lhls97 expression in the dsh-1mig-5 and lin-44; egl-20 doubles led us to
look at potential transcriptional targets of the Wnt pathway. Here, Hox genes were obvious candidates.
C. elegans have an abbreviated Hox cluster with three genes: lin-39, mab-5 and egl-5. Of these, egl-5
is the most posterior. The plx-2 promoter was found to contain an EGL-5 binding site by chromatin
immunoprecipitation (ChIP) [28] (Figure 1). We found that egl-5 was expressed in VD13 and the LUA
neurons using an EGL-5::GFP translational fusion (wgls54) (Figure 4). We noted that there were many
cells that expressed EGL-5 but were not RFP positive in [h[s97 animals. Thus, egl-5 is not sufficient to
activate RFP expression, but cells that express RFP also express egl-5.

EGL-5GFP

Figure 4. egl-5 is expressed in VD13 and the LUA neurons. (A) EGL-5::GFP, under the control of the
egl-5 promoter, was observed in the posterior of the animal. (B) [h1s97 expresses RFP in VD13 and the
LUAs. (C) The signal is co-incident in both cells, suggesting that egl-5 is expressed in both VD13 and
the LUAs. (D) A transmitted light image of the region. (A-D) A z-projection through the entire animal.
(E-H) A single plane image through the center of VD13. The arrow indicates VD13.

We crossed [hs97 into a loss of function mutation in egl-5, 1945, and found that it led to total loss
of expression of RFP in VD13 (Figure 5). As with the Wnt mutants, RFP expression was maintained in
the LUA neurons and VD13 was still GFP positive by juls76 in egl-5 mutants. Thus, despite the fact
that egl-5 was expressed in the LUAs, it was not essential for expression of RFP in these neurons.

We attempted to rescue [hls97 expression in VD13 by expressing egl-5 using a GABAergic-specific
promoter, unc-25. We found that, in addition to recovering RFP in VD13, expression of RFP was
ectopically activated in all 19 of the GABAergic MNs (Figure 5). Overall, these results indicate that egl-5
is both necessary and sufficient for activating the plx-2 promoter in the GABAergic MNs. However,
in non-GABAergic neurons, we do not find that the presence of egl-5 is sufficient to activate RFP
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expression from [hIs97. Finally, despite the ectopic egl-5-dependent expression of RFP in the anterior
GABAergic MNs, we did not specifically note that these cells now adopted a C shape. This is not
uncommon for Hox transformations, where it is apparently more frequently observed that posterior
cells can be transformed to more anterior-like fates by misexpression of Hox genes, but rarely vice versa.

juls76 hIs97 Merge Overlap

Figure 5. egl-5 is necessary and sufficient for [hls97 expression in GABAergic neurons. Top row,
egl-5(n945) mutants have lost RFP in VD13 (arrow). Bottom row, ectopic expression of egl-5 in all
GABAergic neurons results in RFP expression in these cells.

4. Discussion

In C. elegans, the loss of a single transcription factor can result in a complete loss of specific
behaviors. For example, ttx-3 results in thermotaxis defects, while the loss of che-1 results in chemotaxis
defects. Subsequent work has found that these transcription factors contribute to the unique identities
of individual neurons that regulate these behaviors, which has led to the term “terminal selectors”
being applied to these proteins [16,32]. Terminal selectors bind to specific regions of promoters,
activating gene expression in only a select set of cells. Part of the goal of understanding the acquisition
of neuronal identity is to map terminal selectors to their responsive DNA segments.

Here, we have found a relatively short segment of DNA that is upstream of the plx-2/Plexin gene.
This 218 bp fragment, when placed upstream of an mCherry reporter gene, results in the expression
of RFP in only three of the 302 neurons in the C. elegans nervous system. Of these neurons, one is a
GABAergic MN, VD13, and two are bilaterally symmetric interneurons (LUAL and LUAR). VD13 and
the LUAs are apparently only related by their proximity to one another in the tail of the animal.

Interestingly, we found that mutations in genes in the Wnt signaling pathway, most specifically, the
posterior Hox gene, egl-5, resulted in a loss of RFP expression, specifically in VD13, but not the LUAs.
Importantly, this loss of identity was not associated with a loss of the GABAergic identity, as these cells
still expressed the post-differentiation marker, unc-25. And, if we expressed egl-5 in all GABAergic
neurons, we observe robust RFP expression throughout the GABAergic MNs. Animals lacking egl-5
did not exhibit any alteration in RFP expression in the LUAs, nor was RFP expressed everywhere
egl-5 is found in the animal. This suggests that the DNA segment contains a separate element that is
activating expression in the LUAs, dependent on a different terminal selector. Altogether, these results
suggest that within VD13, EGL-5 is activating transcription from that DNA segment, suggesting this is
a terminal selector and DNA segment pair, and that this was occurring after VD13 was specified as a
GABAergic MN.

This new marker will help us to better understand how GABAergic MNs develop and become
individualized during development. Whether VD13 is unique in having another level of specification,
or if other DD and VD neurons undergo additional layers of differentiation remains to be seen. In
addition, using this promoter, we have shown that this combination of Wnt signaling is instructional for
the morphology of VD13. The [hIs97 reporter illuminates a “C” shaped neuron, versus the sideways H
shape typical of the other D-type GABAergic MNs. The lack of anterior processes from the commissure
in most of the animals examined suggests that the pattern of axon outgrowth in VD13 is distinct.
Loss of egl-20/Wnt, lin-17/Frizzled and mig-5 or dsh-1/Disheveled resulted in an increase in anterior
projections along the dorsal cord. These results suggest that Wnt signaling is normally promoting
growth in VD13 toward the posterior direction or inhibiting anterior growth. This is interesting in as
much as Wnt ligands have been previously discovered as promoters of GABAergic axon termination
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in the posterior. This adds yet another layer of complexity in how this signaling pathway might affect
neuronal development. The ectopic expression of egl-5 throughout the GABAergic neurons did not
obviously result in the adoption of the VD13 morphology, which suggests that either the morphology
is independent of the egl-5 program, or that anteriorizing factors, which instruct the formation of the H
shape, are able to overcome ectopic egl-5 expression.

This is not the only context where egl-5 functions in this manner. Notably, egl-5 functions in the
touch receptor neurons (TRNSs) to induce further morphological changes to define the PLM neuron,
which differentiate them from the standard touch receptor AML neuron [33]. We do not see expression
of our egl-5-dependent RFP reporter in the touch neurons, suggesting that EGL-5 is regulating this via
a different DNA contextual element in the TRNs. Thus, Wnt signaling and egl-5 are used as terminal
selectors in multiple neuronal developmental contexts to differentiate neurons within established
classes (e.g., mechanosensory, GABAergic, etc.).

Going forward, it is important to continue to define the interactions of the Wnt signaling pathway
and egl-5 in their role as terminal selectors. Namely, our results are in agreement with previous
work showing that the Wnt pathway can have some contradictory results when analyzing neural
development. With regard to the expression of [h1s97 in VD13, loss of the ligands and effectors appear
to act equivalently. Conversely, with regard to the morphology of VD13, loss of the ligands is somewhat
discrete when compared to the effectors. The consequences on morphology are consistent with other
observations that Wnt ligand mutations result in axon termination errors, specifically observed as
axon overgrowth. When analyzed, lin-17/frizzled receptor mutants had both under and overgrowth,
and the disheveled adaptors, as well as the 3-catenin bar-1, are exclusively undergrown [29]. In our
hands, loss of Wnt ligands had only a modest effect on dorsal process polarity, while lin-17, mig-5 and
dsh-1 had very strong effects. Within the specification of VD13, lin-44; egl-20 double mutants were
stronger than loss of lin-17 alone, suggesting there are other Wnt receptors involved in this process.
However, those double mutants were the same as removing bar-1, suggesting that bar-1 is working
downstream of both lin-44 and egl-20 in this event. Wnt signaling may then, somehow, be activating
bar-1 during early events (VD13 specification) but may function via a different mechanism during axon
termination. Further defining this relationship and exploring factors downstream of egl-5 will allow us
to better define the manner in which these terminal selectors function to modulate gene expression
during neural development.

Overall though, our observations suggest that Wnt signaling is contributing to many different
aspects of neuronal development for these neurons. The ability to use a cell-selective marker to
interrogate those functions will enable new mechanistic questions to be asked. Unfortunately, due to
the fact that loss of function in some Wnt signaling genes renders our single cell marker unusable,
we cannot examine the morphology of VD13 alone in egl-5 mutants or the dsh-1mig-5 or lin-44; egl-20
double mutants. However, knowing that there is an additional layer of specification that occurs in
VD13 may enable us to find other markers that may be transcriptionally independent of Wnt signaling
and permit us to visualize VD13 in those backgrounds.
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