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Abstract: As reflected by the term morphogen, molecules such as Shh and Wnts were identified
based on their role in early development when they instruct precursor cells to adopt a specific cell
fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo
studies indicated that morphogens direct axons during their navigation through the developing
nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect
on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly
and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is
cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on
the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
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1. Introduction

The best known function of Shh (Sonic hedgehog) is its role as a morphogen in the developing
spinal cord [1–6]. Cells in the developing neural tube adopt a different cell fate depending on their
position along the dorsoventral axis. Each position is specified by opposing gradients of morphogens.
In the dorsal spinal cord, neurons are mainly influenced by Bone Morphogenetic Proteins (BMPs) and
members of the Wnt family, secreted by the roof plate [7–10]. In the ventral spinal cord, the floor plate
is the source of the ventralizing morphogen Shh.

Shh signaling affects cell differentiation by binding to the surface receptor Patched1 (Ptc1).
In the absence of Shh, Ptc1 represses Shh signaling by keeping Smoothened (Smo) out of the primary
cilium. Upon Shh binding, Smo translocates to the cilium, allowing for the processing of Gli from
a repressor to an activator form, which in turn regulates the transcriptional program of the cell
(Figure 1). Canonical Shh and Wnt signaling pathways converge in this process, as Gli expression and
activation is also affected by Wnt signaling [11]. Thus, Shh and Wnt are important for the differentiation
of neurons early on.

The role of Shh in axon guidance was identified much later than its function in cell differentiation
and tissue patterning [12]. Initially, Shh was shown to inhibit the axon growth of retinal ganglion
cells [13]. Later, Shh was implicated in commissural axon guidance in the spinal cord [14–18]. This role
was extended to other populations of neurons [19–23].
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Figure 1. Canonical Shh signaling requires translocation of Smo into the primary cilium. Canonical 
Shh signaling depends on the de-repression of the G-protein-coupled receptor-like molecule 
Smoothend (Smo) by a mechanism involving the multiple-pass transmembrane receptor Patched1 
(Ptc1). In the absence of Shh, Ptc1 represses Smo activity by preventing its translocation to the cilium. 
Shh binding to Ptc1 relieves this repression, allowing Smo to translocate to the primary cilium, where 
it activates intracellular signaling pathways. This activation of Smo culminates in transcriptional 
activity, via its regulation of Gli transcription factors that can activate or repress Shh target genes. 
Gli1 is always an activator of gene expression, whereas Gli2 and Gli3 (Gli3FL) need to be processed 
from a repressor (Gli3R) to an activator form (Gli3A) in a Smo-dependent manner.  

2. Shh in Commissural Axon Guidance 

Commissural neurons in the dorsal spinal cord have been used as a model to study molecular 
mechanisms of axon guidance mainly due to their accessibility to experimental manipulations and 
their stereotypic trajectory [24–27]. The dI1 subpopulation of commissural neurons [28] extends their 
axons towards the floor plate, which forms the ventral midline of the developing spinal cord. Axons 
cross the midline and turn rostrally towards the brain [29] along the contralateral floor-plate border. 
Axons navigate through the developing neural tissue based on the interaction of receptors expressed 
on the growth cone surface with guidance molecules in the environment [30]. Guidance cues can be 
classified into four different groups: long- and short-range cues, which can either be attractive or 
repulsive. By definition, long-range cues are released from a source and either attract growing axons 
towards the source (long-range attractants) or repel them from the source (long-range repellents). 
Due to their diffusible nature, long-range guidance cues outline the overall direction towards the 
target of the extending axons but they cannot specify the actual pathway. This is done by the 
integration of signals derived from the interaction between short-range guidance cues and receptors 
on the growth cone surface. Attractive short-range guidance cues pave the way to the target, 
whereas repulsive short-range cues inhibit axon growth.  

Figure 1. Canonical Shh signaling requires translocation of Smo into the primary cilium. Canonical Shh
signaling depends on the de-repression of the G-protein-coupled receptor-like molecule Smoothend (Smo)
by a mechanism involving the multiple-pass transmembrane receptor Patched1 (Ptc1). In the absence
of Shh, Ptc1 represses Smo activity by preventing its translocation to the cilium. Shh binding to Ptc1
relieves this repression, allowing Smo to translocate to the primary cilium, where it activates intracellular
signaling pathways. This activation of Smo culminates in transcriptional activity, via its regulation
of Gli transcription factors that can activate or repress Shh target genes. Gli1 is always an activator
of gene expression, whereas Gli2 and Gli3 (Gli3FL) need to be processed from a repressor (Gli3R) to
an activator form (Gli3A) in a Smo-dependent manner.

2. Shh in Commissural Axon Guidance

Commissural neurons in the dorsal spinal cord have been used as a model to study molecular
mechanisms of axon guidance mainly due to their accessibility to experimental manipulations and
their stereotypic trajectory [24–27]. The dI1 subpopulation of commissural neurons [28] extends
their axons towards the floor plate, which forms the ventral midline of the developing spinal cord.
Axons cross the midline and turn rostrally towards the brain [29] along the contralateral floor-plate
border. Axons navigate through the developing neural tissue based on the interaction of receptors
expressed on the growth cone surface with guidance molecules in the environment [30]. Guidance cues
can be classified into four different groups: long- and short-range cues, which can either be attractive
or repulsive. By definition, long-range cues are released from a source and either attract growing
axons towards the source (long-range attractants) or repel them from the source (long-range repellents).
Due to their diffusible nature, long-range guidance cues outline the overall direction towards the target
of the extending axons but they cannot specify the actual pathway. This is done by the integration of
signals derived from the interaction between short-range guidance cues and receptors on the growth
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cone surface. Attractive short-range guidance cues pave the way to the target, whereas repulsive
short-range cues inhibit axon growth.

For dI1 commissural axons, both long- and short-range guidance cues have been identified [24].
Axons are directed to the ventral spinal cord by the long-range repellents BMP7 and Draxin derived
from the roof plate, the dorsal midline [31–33]. At the same time, they are attracted by long-range
attractants derived from the floor plate. The major chemoattractant is Netrin1 [34,35]. Netrin1 is
sufficient to attract pre-crossing axons toward their intermediate target, the floor plate, as shown
recently in mice that express no Netrin1 at all [36,37]. The originally analyzed mice were hypomorphic
for Netrin1, as they were generated by insertion of a marker into the Netrin gene (gene trap line)
rather than its deletion resulting in reduced but still detectable Netrin protein expression [35].
However, the role of Shh as a long-range attractant for pre-crossing axons was only identified thanks
to the fact that the hypomorphic Netrin mice were analyzed before the full knockout was available.
In the hypomorphic Netrin mouse line, some axons still extended toward the floor plate, prompting
the question of whether the residual levels of Netrin protein were responsible for their navigation,
or whether additional long-range attractants would be released from the floor plate. Shh appeared
to be a good candidate due to its strong expression in the floor plate during the time of commissural
axon navigation.

2.1. Shh Is a Chemoattractant for Pre-Crossing Commissural Axons

Indeed, the analysis of Shh in a hypomorphic Netrin background resulted in the characterization
of Shh as an additional long-range chemoattractant for dI1 axons [14]. The axons were attracted
by Shh binding to its well-known receptor Ptc1 and the immunoglobulin superfamily member Boc
(Brother of Cdo; Figure 2 [38]). Interestingly, the attractive effect of Shh on pre-crossing commissural
axons was not mediated by canonical Shh signaling [16]. Axons were still attracted to Shh in
the presence of transcriptional inhibitors. Instead, Shh was found to activate Src family kinases in dI1
neurons. In the presence of a Shh gradient, Src and Fyn are rapidly phosphorylated and distributed
asymmetrically in the growth cone. Since Src family kinases can regulate cytoskeletal dynamics [39,40],
the polarized distribution of phosphorylated Src and Fyn affects growth cone turning locally without
affecting transcription.

2.2. Shh Is a Repellent for Post-Crossing Commissural Axons

Interestingly, in vivo studies in chicken embryos indicated a role of Shh in the guidance of
post-crossing axons [15]. Because chicken embryos are readily accessible for manipulations in vivo
in a precisely temporally controlled manner, Shh’s role on pre- and post-crossing axons can be
analyzed separately [25–27]. Silencing Shh after its role in cell differentiation and its effect on
pre-crossing axons indicated that Shh was a repellent for post-crossing commissural axons [15,18].
Initially, these results seemed to be at odds with the finding that Shh can attract pre-crossing
commissural axons. However, the difference between the responses of pre- versus post-crossing
commissural axons was shown to be the level of 14-3-3 protein expression [41] and the expression
of Hhip (Hedgehog-interacting protein) as a Shh receptor [15,18]. In vitro experiments with rat
commissural neurons exposed to a Shh gradient indicated a requirement of increasing levels of
14-3-3 proteins to explain the observed repulsion of axons by high Shh levels [41].

In vivo experiments in chicken embryos indicated that Shh itself triggered the expression of Hhip,
its receptor mediating the repulsive response, by binding to Glypican1 expressed on pre-crossing
axons [18]. As Glypican1 is not a transmembrane protein but rather a glycosylphosphatidyl-inositol
anchored proteoglycan, it is unclear how Shh binding to Glypican1 triggers a change in transcription
(Figure 2). The most likely explanation is that Glypican1 interacts with another molecule in the plane
of the growth cone membrane. Whether this molecule is one of the known Shh-binding molecules Ptc1
or Boc remains to be shown. The induction of Hhip expression requires canonical Shh signaling [18].
Additional experiments will be required to identify the regulatory mechanisms in more detail and to
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show if and how the induction of Hhip and the increase in protein 14-3-3 levels are linked. The analysis
of Hhip knockout mice did not indicate a requirement for Hhip in post-crossing commissural axons [41].
However, genetic redundancy can obscure the role of a particular protein in axon guidance, as has
been shown in other cases. For instance, a role of Neuropilin2 in post-crossing commissural axon
guidance was identified in mice, which could explain why post-crossing axons still turn rostrally in
Hhip knockout mice [41,42].
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initially express low levels of protein 14-3-3 (left). High levels of 14-3-3 were required for the 
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would affect intracellular signaling. The most straightforward explanation would be that Hhip could 
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an unidentified signal-transducing component. Alternatively, Hhip might modulate Shh signaling 
by sequestering it away from other receptors [44]. Consistent with this idea, Hhip has been reported 

Figure 2. Non-canonical Shh signaling in commissural axon guidance. In vivo and in vitro studies
have implicated Shh in commissural axon guidance. Shh is attractive for pre-crossing but repulsive for
post-crossing commissural axons. On pre-crossing commissural axons Shh binds to Boc (Brother of
Cdo) and Ptc1 (Patched1), thus de-repressing Smo (Smoothened). However, in contrast to canonical
signaling (see Figure 1), binding of Shh results in the phosphorylation of Src family kinases (SFKs).
Shh itself induces expression of Hhip (Hedgehog-interacting protein), its receptor for post-crossing axon
navigation, by binding to Glypican1 (Gpc1) and Ptc1. The de-repression of Smo results in transcription
of Hhip via the canonical signaling pathway. How Shh binding to Hhip on post-crossing commissural
axons mediates repulsion is not yet known. In vitro (lower panel), protein 14-3-3 levels have been
linked to the transition from attraction to repulsion. Pre-crossing axons initially express low levels
of protein 14-3-3 (left). High levels of 14-3-3 were required for the repulsive response to Shh (right).
It is unknown how 14-3-3 is linked to the precise switch from attraction to repulsion. Protein 14-3-3
can reduce the activity of PKA (Protein Kinase A), but no changes in the levels of cAMP were found
between pre- and post-crossing axons. Furthermore, it is unknown if (and which) surface receptors
could be linked to the function of protein 14-3-3.

At present it is unknown how Hhip transmits the Shh signal that results in repulsive axon
guidance. Although Hhip is a type I transmembrane protein that can bind directly to all vertebrate
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hedgehog proteins [43], it does not contain an intracellular domain. Thus, it is unclear how Hhip
would affect intracellular signaling. The most straightforward explanation would be that Hhip could
mediate repulsive axon guidance by acting as a Shh-binding unit in a receptor complex containing
an unidentified signal-transducing component. Alternatively, Hhip might modulate Shh signaling
by sequestering it away from other receptors [44]. Consistent with this idea, Hhip has been reported
as a negative regulator of Shh signaling [43], by competing with other Hedgehog receptors for Shh
binding, including Cdo [45] and possibly Ptc [46].

2.3. Shh Collaborates with Wnts in Post-Crossing Commissural Axon Guidance

In addition to its direct effect on post-crossing commissural axons, Shh has an indirect effect [47].
Shh was shown to induce the expression of Sfrp1 (Secreted frizzled-related protein1), an endogenous
antagonist of Wnt signaling, in an anteriorlow to posteriorhigh gradient in the floor plate of chicken
embryos in vivo. According to its expression pattern, Sfrp1 was shown to form a Wnt activity gradient
along the anteroposterior axis of the developing neural tube. In mice, Wnt4 was shown to be expressed
in an anteriorhigh to posteriorlow gradient in the floor plate [48]. No such Wnt expression gradient
was found in chicks, but the attractive effect of Wnt5a and Wnt7a due to the activity gradient shaped
by Sfrp1 confirmed the role of attractive Wnt signaling on post-crossing commissural axons [47,48].
More detailed analyses of Wnt signaling in commissural axons indicated a complex network of
components and receptors originally assigned to either the canonical or the planar cell polarity
pathway of Wnt signaling [49–51]. Based on these studies, it is clear that the traditional segregation of
Wnt signaling into distinct pathways is not valid for axon guidance, a conclusion also drawn for Wnt
signaling in other contexts [52–55].

In addition to the indirect effect of Shh on Wnt activity, the two pathways also converge on
Gli activation. In vertebrates, three Gli transcription factors (Gli1-Gli3) have been described [56–62].
Gli2 and Gli3 both have transcriptional activator and repressor activities, whereas Gli1 acts only
as a transcriptional activator (reviewed by Ruiz i Altaba et al., 2007 [63]). Each Gli family member
responds differently to Shh [64]. In the absence of Shh, Gli2 is fully degraded, while Gli3 is converted to
a repressor of transcription (Gli3R). When Shh is present, Gli1 expression is induced and proteolysis of
Gli2 and Gli3 is inhibited, allowing Gli activator forms to accumulate (Figure 1). In turn, in a feedback
loop, Gli transcriptional activators then induce the expression of Shh target genes [65–67].

Shh and Wnt signaling cooperate via regulation of Gli3 [68]. Gli3R, the transcriptional repressor
form of Gli3, is generated in the absence of Shh. Gli3R was shown to interact directly with β-Catenin
and thus influence its role in Tcf3/4-mediated control of transcription, although the precise mechanism
is currently unknown [69].

In addition to its direct effect on axon guidance and its indirect effect as a modulator of the axon
guidance activity of Wnts, Shh was also suggested to regulate growth cone responsiveness via local
intracellular mechanisms. Shh was shown to influence levels of cyclic nucleotides, which are important
for signaling in response to guidance cues [13,70]. The ratio of cAMP to cGMP determines attractive
versus repulsive axonal responses [71]. High levels of cAMP and low levels of cGMP favor attraction,
whereas the opposite ratio of cAMP to cGMP favors repulsion. Since Shh can influence cyclic nucleotide
levels by reducing the activity of protein kinase A (PKA), it may influence the responsiveness of axons
to additional guidance cues, such as semaphorins [13,17].

3. The Role of Shh in Other Neuronal Populations

In contrast to the role of Shh in commissural axon guidance in the spinal cord, much less is known
about the effect of Shh on other populations of neurons. Shh was also shown to be repulsive for
serotonergic neurons forming the raphespinal tract in a Ptc1- and Smo-dependent manner [23] and for
axons of enteric neurons in a Gas1-dependent manner [21].

Other effects of Shh were explained by an effect on axon growth rather than guidance. For instance,
Shh was shown to inhibit the growth of retinal ganglion cell axons [13]. This effect was shown to
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involve intracellular levels of cAMP. A more recent study revisiting the role of Shh on retinal ganglion
cell axons concluded that the effect was mediated by protein kinase Cα and integrin-linked kinase
(ILK) [72].

In an in vitro model, Shh was found to positively affect regenerative neurite growth [73].
Shh added to the medium enhanced neurite lengths of cortical neurons exposed to reactive astrocytes.
Similar to its effect on pre-crossing commissural axons [16], Shh was concluded to activate Src
family kinases [73]. This is in contrast to a report on the effect of Shh on hippocampal neurons [74].
Hippocampal axon elongation was found to be stimulated by Shh in an Smo- and Gli1-dependent
manner. Interestingly, Shh did not act directly on the axon but rather via the somatodendritic
compartment, where the Shh-mediated Gli1 activation induced higher intracellular Profilin activity
that induced axon elongation.

4. Shh at the Synapse

Upon reaching their appropriate target cell, axons initiate and stabilize contacts, by remodeling
the growth cone into synaptic boutons and assembling pre-synaptic vesicle release machinery.
Similarly, the post-synaptic cell must recruit receptors for neurotransmitters. Recent studies have
demonstrated contributions of Wnts to synapse formation, plasticity, and maintenance in both
vertebrates and invertebrates (reviewed by Salinas and Zou, 2008 [75]; Budnik and Salinas, 2011 [76]).
Wnt7a was demonstrated to promote synapse assembly via its effector Dishevelled-1 (Dvl1) [77,78].
In pre-synaptic hippocampal neurons, this activity of Wnt7a was mediated by the receptor Frizzled5
(Fzd5) [79]. The expression of Dvl1 has been demonstrated to increase the stability of microtubules
through a signaling pathway that inhibits GSK3β but does not require transcription [80]. Inhibition of
GSK3β reduces phosphorylation of the microtubule-associated protein MAP1B, thus linking Wnt
signaling to the regulation of microtubule stability and growth cone remodeling [81,82].

Wnt5a was demonstrated to stimulate post-synaptic assembly [83], suggesting that different Wnts
might regulate synapse formation by promoting protein assembly in either pre- or post-synaptic cells.
In the post-synaptic cell, Wnt5a does not act via GSK3β, but instead leads to clustering of the scaffold
molecule PSD95.

Wnt signaling has also been demonstrated to promote synaptic plasticity. The expression
and release of Wnt proteins is enhanced by depolarization [84,85]. High-frequency stimulation
of hippocampal neurons increased the level of cell-surface Fzd5 and its localization to synapses,
in a Wnt-dependent manner [79]. In addition, the remodeling of hippocampal circuits in response to
an enriched environment was repressed when Wnt signaling was blocked [86]. Together, these studies
link Wnt activity to synaptic remodeling in response to behavioral experience and activity.

In contrast to these roles of Wnts at synapses, there is currently only limited evidence that Shh
signaling is directly involved in synaptogenesis or synaptic plasticity [87,88]. Shh and its receptors are
appropriately expressed to support such activities. In the retina, Shh-N was shown to be transported
along the optic nerve to the superior colliculus in vivo [89]. Similarly, Shh is distributed intracellularly
in regulated secretory vesicles and on the extracellular surface of the soma, dendrites, and axons
of rat retinal ganglion cells (RGCs). Shh secretion can be induced by depolarization of RGCs,
suggesting a link between neuronal activity and Shh release [90]. Ptc and Smo were localized to
dendrites and spines of mature rat hippocampal neurons, suggesting that Shh signaling may influence
synaptic transmission [91]. Indeed, in a follow-up study, Shh was found to increase presynaptic
terminal size in hippocampal neurons in vitro [92]. Furthermore, the addition of Shh to these cultured
neurons increased the frequency, but not the amplitude, of mEPSCs (miniature excitatory postsynaptic
currents) [93]. In an earlier study, Smo was also localized to the presynapse [94]. These findings match
what was found in the only in vivo study done for the analysis of Shh function in synaptogenesis so
far [88]. In cortical circuit formation, Shh and its receptor Boc were found in a layer-specific manner.
The analysis of mouse brains lacking either Shh or Boc due to gene silencing by in utero electroporation
revealed that connections between layer 2/3 axons and layer 5 dendrites require Boc in the presynaptic



J. Dev. Biol. 2017, 5, 2 7 of 11

and Shh in the postsynaptic partner. These studies indicate that Shh most likely also acts during
the last steps of neural circuit formation, synaptogenesis, and synaptic plasticity. However, many more
studies will be required to elucidate the molecular mechanisms of Shh’s effect.

5. Conclusions

Taken together, in vitro and in vivo studies have clearly indicated the multifaceted role of Shh in
development. In the nervous system, Shh and Wnt signaling are involved in all aspects of neural circuit
formation, from cell differentiation to synaptic plasticity. During most of these steps, Shh and Wnt
signaling cooperate and influence each other. The cross-talk occurs at different levels, from shaping
extracellular activity gradients to the regulation of common downstream effectors. No other class of
molecules has been identified that was shown to affect the development of neural circuits throughout
the entire process from cell differentiation to the regulation of synaptic plasticity.
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