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Abstract: The spatial plan program for Makassar City and the surrounding area called Mamminasata
(Makassar, Maros, Sungguminasa, and Takalar) was created by the Indonesian Government.
The program regulates the proportion of land cover, but predictions about land cover changes
were not considered. Therefore, in this study, we predict what the land cover may be in 2031 using
the multi-layer perceptron neural network and the Markov chain methods. For this purpose, image
composite, support vector machine classifier, and change detection were applied to a time series of
satellite data. Visual validation showed the hot-spots of land cover changes related to population
density, and statistical validation scored 0.99 and 0.78 in no information kappa and grid-cell level
location kappa, respectively. The model was performed to predict land cover in 2031, and the
predicted result was then compared with the spatial plan using an overlapping method. The results
showed that built-up area, dryland agriculture, and wetland agriculture occupied two, twenty,
and eight percent of the protected zone, respectively. Meanwhile, fifteen percent of the development
zone was covered by forest, mainly in the eastern part of Mamminasata. The result can be used to
help the Government decide future plans for the Mamminasata area.

Keywords: land cover changes; spatial plan; Mamminasata; sustainable development; multi-layer
perceptron neural network; markov chain; composite method; support vector machine;
change detection

1. Introduction

The concept of sustainable development was established at Agenda 21 in Rio de Janeiro [1], leading
to many countries, especially developing countries, striving to achieve the goals of the concept. The core
concept comprised of three pillars, namely, social, economic, and environmental [2]. Many issues that
affect sustainable development are geospatially interrelated and can be analyzed, modeled, and mapped
within a geographic context [3]. Indonesia, as a developing country and a newly industrialized country
that flourished in the mid-1990s [4], has applied the concept of sustainable development in spatial plan
programs. These programs contain regulations related to the proportion of land cover area in a region.
In the Mamminasata area, South Sulawesi province, the local government has established the spatial
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plan since 2006. Several issues related to the condition of land cover and spatial plan in this area had
been addressed [5], such as: (a) the existing spatial plan was paying less attention to its implementation,
especially for the conservation, protection and hazardous areas; (b) balance between the current land
cover and future development were not fully taken into account under the existing spatial plan; and (c)
lack of coordination among government agencies and institutions. Another important issue was that
the land cover prediction has not been considered in the spatial plan.

Several researchers have studied the relationship between sustainable development and land
cover change. García-Ruiz et al. [6] linked the effects of land use change on sustainable development
in the Pyrenees mountain areas, Spain. Musa et al. [7] modeled the development of cities based on
land cover changes for sustainable development in the Niger Delta Region, Nigeria. Salazar et al. [8]
combined urban planning, natural conservation, and risk areas to build a prediction model for land
use change as a guide for sustainable development in the Quito Metropolitan District, Ecuador. Land
cover change is an important part of achieving sustainable development.

To simulate and predict land cover changes, a variety of models have been applied, mainly by
combining remote sensing (RS) and a geographic information system (GIS) [9,10]. Losiri et al. [11]
classified those models into four types: (a) empirical and statistical models such as the Markov chain
and logistic regression; (b) dynamic models such as cellular automata, agent-based model, genetic
algorithm, artificial neural network, and system dynamic; (c) integrated models such as conversion of
land use and its effects at small regional extent (CLUE-S) and Dyna-CLUE; and (d) hybrid models
such as Metronamica, land transformation model, land change modeler (LCM), and slope, land use,
exclusion, urban extent, transportation, and hill-shade (SLEUTH).

The multi-layer perceptron neural network and the Markov chain (MLPNN + MC) in LCM was
found to produce a considerably higher prediction accuracy than other models [11–15]. This higher
prediction accuracy stems from neural networks being able to express changes in various land cover
types more adequately than single probabilities such as the weights of evidence method [13]. The three
layers (input, hidden, output) in MLPNN are used to express complex non-linear relationships between
land cover changes and driving factors that produce transition potential, while the transition potential
matrix is calculated by using MC to predict future land cover changes [10]. Based on the work of
Pickard et al. [16], LCM has four specific characteristics and advantages: (a) flexible input data in
pre-processing and the data collection process; (b) probability surface, exclusion layer, and regional
stratification in the calibration process; (c) stochastic modeling to generate the model projections
process; and (d) dynamic variables allowed and scenario analysis in extrapolating future scenarios.
This model has been used in several studies on urban growth simulation [14,17,18], spatial dynamics
of deforestation and fragmentation [19], land use changes following green infrastructure policies [20],
and so on.

To obtain land cover classification, the support vector machine (SVM) with its non-linearity and
multidimensional capabilities is a good choice because this method has a powerful image classification
technique for handling multispectral satellite imagery [21]. For two or more periods, change detection
can be applied to monitor land cover dynamics. Change detection methods are grouped into two
categories: unsupervised direct comparison (UDC) and supervised post-classification comparison
(SPCC) [22]. UDC is relatively simple and straightforward, and does not require a manually labeled
training set [23], whereas SPCC uses an image object as the basic unit in change analysis and
simultaneously detects the area and type of change [24]. Another simple change detection method is
change vector analysis (CVA), which computes spectral change vectors using given multi-dates and
compares their magnitudes with a specified threshold criterion [25]. Land cover classification is an
important part of predicting land cover change, and is a common research tool that is often used for
determining actual [26], previous [27–30], and future [9,31,32] land cover. Land cover classification and
change detection are also supported by availability and access, as well as its continuity and affordability
of medium- to low-resolution remote sensing data that can be provided free of charge [33].
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The purpose of this research was to predict land cover in 2031 in the Mamminasata area, Indonesia,
by using the multi-layer perceptron neural network and the Markov chain. The support vector machine
and change vector analysis were used to obtain land cover classification in 2006, 2011, and 2016. Seven
vector maps made by the Government were used as driving factors. The prediction model was validated
using visual and statistical methods. The predicted land cover in 2031 was compared and evaluated
with the Government’s spatial plan for the period from 2011 to 2031 using the overlapping method.

2. Research Site and Materials

2.1. Research Site

The Mamminasata Urban Area in Sulawesi Island, Indonesia, has an area of 247,000 ha and
consists of Makassar, Maros, Sungguminasa, and Takalar municipalities (Figure 1). The area was
established by a decree of the Governor of South Sulawesi province in 2003 because of the development
of Makassar City, the capital of the South Sulawesi province. Makassar City has grown rapidly,
resulting in agglomeration with the other three municipalities. In addition, the Mamminasata area is
the economic center area in Eastern Indonesia and contributes a significant proportion of the gross
regional domestic product of the South Sulawesi province: 39% in 2006, 44% in 2011, and 45% in
2016 [34–36].
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Figure 1. Research site: (a) Indonesia; (b) South Sulawesi province; (c) Mamminasata area.

The Government has created a spatial plan for 2011–2031 to make the Mamminasata Urban Area
the center of international-scale services in Eastern Indonesia with the aim of achieving sustainable
development. To bolster the plan, the Indonesian Government established the Mamminasata Urban
Area as a national strategic area, with the aims of having this area act as a model metropolitan area and
as an exemplar of urban development for Indonesia [37].

2.2. Materials

2.2.1. Satellite Data

Landsat 7 Enhanced Thematic Mapper plus (ETM+) and Landsat 8 Operational Land Imager (OLI)
were used in this study because of the availability of long-term data free of charge. The observation
dates are listed in Table 1. Two consecutives scenes, 116/63 and 116/64 for path/row, were downloaded
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from the United States Geological Survey (USGS) [38]. Six bands from 1 to 7 except band 6 were used
from Landsat 7 ETM+, and corresponding bands from 2 to 7 were used from Landsat 8 OLI. Map
projection was in the Universal Transverse Mercator (UTM) Zone 50 South, and spatial resolution was
30 meters. Data were converted into top of the atmosphere reflectance in 8 bits. We selected less cloudy
scenes from two seasons in Indonesia (wet season from November to May and dry season from June to
September). In addition, multiple scenes were used for each season to avoid the remaining cloud and
its shadows, and to fill the scan gaps in Landsat 7 ETM+.

Table 1. Observation dates of Landsat in three periods.

Year Satellite and Sensor Observation Dates

2006 Landsat 7 ETM+
15/05/2005 21/07/2006
11/02/2006 07/09/2006

2011 Landsat 7 ETM+

10/03/2010 21/09/2011
11/04/2010 31/03/2012
27/04/2010 09/10/2012
29/05/2010 18/03/2013
02/09/2010 22/06/2013
13/03/2011 08/07/2013
16/05/2011 25/08/2013
03/07/2011 26/09/2013
05/09/2011

2016 Landsat 8 OLI
15/02/2016 24/07/2016
05/05/2016 10/09/2016

2.2.2. Other Spatial Data

Vector data of capital, river and lake, road and settlement were used as driving factors; land use as
the training data; and administration area as a boundary map of Mamminasata. In addition, elevation
and slope were used based on a 30-meter resolution digital elevation model (DEM) generated by the
Shuttle Radar Topography Mission (SRTM). The population density of the Mamminasata area in 2011
was used to calculate a population density per pixel as a driving factor. All data were converted into
raster format at a resolution of 30 meters to apply LCM. These data were obtained from the database of
the Centre for Regional Development and Spatial Information (WITaRIS), Hasanuddin University [37].

3. Methods

The integrated method used in this research required three mains steps. In Step 1, a land cover
map for 2011 was derived using composite method and SVM classifier, and land cover maps for 2006
and 2016 were derived by change detection. In Step 2, land cover change was modeled by MLPNN +

MC using three land cover maps, several driving factors, and a parameter set. MLPNN was carried
out to obtain transition potential between 2006 and 2011, while MC was applied to predict land cover
in 2016 and 2031. In Step 3, predicted land cover in 2031 was overlaid with the Government’s spatial
plan. The result was used to evaluate the spatial plan and to help guide the future development
of Mamminasata.

3.1. Land Cover Mapping

We used two schemes to obtain the land cover classification maps (Figure 2). First, we generated
a land cover map for 2011 through image classification (left side). Second, land cover maps for 2006
and 2016 were generated through change detection with 2011 (right side). The right side of Figure 2
shows the case for 2011 and 2006, but the flow is the same for 2011 and 2016.
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3.1.1. Land Cover in 2011

Areas covered by cloud and shadow are obstacles in optical remote sensing. The cloud masking
method is an important solution to this problem [39]. We used cloud mask included in Landsat
data to detect cloud and its shadow. In addition, image processing is often necessary prior to land
cover classification, especially with the presence of striping scan gaps as occurred in the Landsat-7
ETM+ images [40] because of the failure of the Scan Line Corrector (SLC) since May 2003, which
causes systematic data gaps on the captured imagery and eliminated the capacity to provide spatially
continuous fields [41].

To fill-in the cloud and shadow areas and scan gaps in the Landsat ETM+ data, a two-step
composite was applied prior to the land cover classification as follows. In the first step, two cloudless
scenes were selected from images observed in the same season to minimize seasonal change (Table 2).
A pixel-based composite was created using these images and based on the following rules: (1) no data
were selected if both pixels were cloud, shadow, or scan gap; (2) if one of the two images was clear
data, it was selected; and (3) if both data were fine, the difference between the near infrared band (Band
4) and red band (Band 3) was calculated, and the pixel with the larger difference was selected. The last
rule was adopted to avoid a thin cloud and its shadow, and the smoothness of the image could be kept
by selecting neighboring pixels from the same image.

Table 2. List of composite scenes.

Scene 1 Scene 2 Scene 3

Step 1 11/04/2010
27/04/2010

03/07/2011
22/06/2013

05/09/2011
21/09/2011

Step 2

16/05/2011
13/03/2011
31/03/2012
10/03/2010
18/03/2013
29/05/2010

08/07/2013
02/09/2010
25/08/2013

09/10/2012
26/09/2013
02/09/2010
25/08/2013
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Although most of the pixels were filled-in during the first step, blank pixels remained if both
image pixels were cloud, shadow, or scan gap. Blank pixels are unfavorable for land cover classification,
so the second step was applied only to those blank pixels. Candidate images were selected from a
similar season, although these images were from longer range of observation dates compared with the
first step because fewer cloud-free scenes were available for our site. If the first composite image was a
blank pixel, it was filled-in using the following procedure: (1) the 5 × 5 pixel block with the blank pixel
at the center was selected from the composite image; (2) the sum of absolute difference between the
composite image and each candidate image for all bands was calculated by using clear data; and (3)
the pixel with the minimum difference was selected from the image.

The two-step procedure was adopted because a blank pixel has small patches, and a smooth
image was generated by using a pixel block for the comparison. We started with a small number of
candidate images and increased the number of images by checking the composite result. Using this
composite method, three scenes were generated for different seasons to achieve high classification
accuracy. We could not generate better images for other seasons because of heavy cloud cover and
fewer available images.

A support vector machine (SVM) was adopted as a land cover classifier because it has been
evaluated as a high-performance machine-learning algorithm and has been investigated in a number
of studies [26,30,42,43]. In this study, the pixel-based classification was applied using six bands of
three composite scenes. The pixel-based technique is generally used for land cover classifications with
medium-resolution imagery at the regional level [44]. In addition, SVM is better at recognizing subtle
patterns in complex datasets compared with other machine-learning methods [45]. This classifier is a
kernel-based supervised-learning algorithm, which combines machine-learning theory, optimization
algorithms from operations research, and kernel techniques from mathematical analysis [46].

The training area was extracted from the land use map that was produced by the Government in
2011 [37]. The original map contains 29 land use types, which we merged into six land cover types
(built-up area, dryland agriculture, forest, shrub, waterbody, and wetland agriculture) for our purpose
to apply the land cover map for spatial prediction modeling. The 30-meter-wide boundary of land use
polygons in the training map was excluded to eliminate mixture of land cover in the training samples.
Spectral reflectances of Landsat data (6 bands x 3 scenes) were extracted with respect to each land cover
by overlapping the training map and Landsat images. These processes were carried out using ArcGIS
software (ESRI, Redlands, CA, USA). The reflectances of all land cover types were subsequently input
to the Statistic and Machine Learning Toolbox of MATLAB software (MathWorks, Natick, MA, USA).
All the available samples were used as training data for the SVM classifier.

Because almost the whole area except the boundary was covered by the training data, the
classification map was similar to the Government map. Therefore, accuracy was assessed only in
areas that had different land cover types between the training data and the SVM classification. We
picked 100 check points for each land cover class from a Google Earth image. A confusion matrix was
generated and producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), agreement of
chance (AoC), and kappa coefficient (KC) were calculated using the following formulas [47]:

PA =
Ca

Cg·sum
(1)

UA =
Ca

Ci·sum
(2)

OA =
Cc·sum
C·sum

(3)

AoC =
PM

(C·sum)2 (4)

KC =
OA−AoC

1−AoC
(5)
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where
Ca : number of points where classification is correct,
Cg·sum : total ground truth points per class,
Ci·sum : total classification points per class,
Cc·sum : total number of points where classification is correct,
C·sum : total number of points,
PM : sum of the multiplication of ground truth points and classification points with respect to each

land cover.

3.1.2. Land Cover in 2006 and 2016

Land cover classification maps in 2006 and 2016 were obtained through change detection with
2011, and land cover was identified only in the pixels where change was detected. Asokan and
Anitha [48] classified the change detection approach into five types: algebra based, transform based,
classification based, GIS, and an advanced model. Hussain et al. [44] summarized the differences
between several change detection techniques into three types: pixel based, object based, and spatial
data mining. Based on these studies, we used a pixel-based technique through an algebra-based
approach (image differencing). This technique is based on the direct comparison between two images;
the advantages are simple and easy to interpret [44]. In addition, this technique is suitable for use in
medium-resolution imagery such as that from Landsat [44]. A common procedure in algebra-based
change detection is the threshold selection to find the changed area [48].

In this change detection, the same method was applied to two periods (2011–2006 and 2011–2016)
individually using four pairs of images listed in Table 3. The degree of change was calculated using
the following equation:

Dn(i, j) =

√√√√√
1

P× 6

P∑
p=1

6∑
b=1

Dp,b(i, j) −Dp,b

σDp,b


2

(6)

where
Dn(i, j) : normalized difference for the image pixel at location i (line) and j (column),

P : number of valid image pair (maximum is 4 but it is decreased in case of cloud, shadow,
and scan gap),

Dp,b(i, j) : difference in digital number between 2011 and 2006 (or 2016) at pixel (i, j) (b and p are index for
band and image pair, respectively),

Dp,b : average of Dp,b(i, j) for all pixels in a scene,
σDp,b : standard deviation of Dp,b(i, j) for all pixels in a scene.

Table 3. List of image pairs.

2006 2016

12/02/2012–11/02/2006
16/05/2011–15/05/2005
03/07/2011–21/07/2006
05/09/2011–07/09/2006

12/02/2012–15/02/2016
16/05/2011–05/05/2016
03/07/2011–24/07/2016
05/09/2011–10/09/2016

For Band (b), we used six bands from 1 to 7 except band 6 from Landsat 7, and Bands from 2
to 7 from Landsat 8. This equation means that the same weight was given for all bands because the
variation in difference by band was normalized using average and standard deviation of the pixel
difference by each band. It should be noted that the difference could be calculated if both image
pixels have valid data. If one of the pair is cloud, shadow, or scan gap, the pixel is excluded from the
calculation of Dn(i,j). In order to minimize the difference of TM and ETM+ spectral responses, the
normalized difference was calculated using top of the atmosphere reflectance, not the digital number
of the image. In addition, the residual difference could be eliminated by subtracting the average
of difference (Dp,b) in normalization process. After calculating this normalized difference, the land
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cover change was detected by applying the threshold, which was selected manually by comparing the
detected area with a time series of Google Earth fine-resolution satellite images.

The new land cover was identified for the changed area based on the following method: (1)
sample data (20,000 pixels) were selected from unchanged areas in 2006 (or 2016) images for all six land
cover types; (2) for each changed pixel, the differences with the above sample data were calculated
using Equation (7); (3) these differences were sorted in ascending order; and (4) by evaluating the first
20,000 samples, land cover was identified by the most common land cover among the six types.

D(c, s) =

√√√√
1

P× 6

P∑
p=1

6∑
b=1

Rp,b −Rc,s,p,b

σRc,p,b

2

(7)

where
D(c, s) : normalized difference for the image pixel at location i(line) and j(column),

P : number of valid image pair (maximum is 4 but it is decreased in case of cloud, shadow, and scan
gap),

Rp,b : digital number of changed pixel (b and p are index for band and image pair, respectively),
Rc,s,p,b : digital number of sample data as same band and period with Rp,b for sample data s in land

cover class c,
σRc,p,b : standard deviation of Rc,s,p,b for all samples.

This method assigns the changed pixel to the nearest class based on the spectral reflectance of each
land cover sample extracted from an unchanged area. Therefore, the method allows change between
the same classes, e.g., from dryland agriculture to dryland agriculture, even if the pixel was regarded
as a changed pixel. We adopted this “change detection and classification” scheme in order to cope
with the variations of spectral reflectance due to sensor and season. These biases were compensated by
comparing the reflectance of changed pixel with samples extracted from same scene. Change detection
and subsequent determination of land cover type were carried out using self-coded software.

3.2. Land Cover Change Model

The land change modeler (LCM) module embedded in TerrSet software (Clark Labs, Worcester,
MA, USA) was used in this study. The module developed by Clark Labs analyzes land cover changes,
evaluates driving factors, calculates transition potential from one class to another, and builds a model
prediction of land cover changes empirically, which can be tested for accuracy [10,18,49,50]. This module
has been recognized as an effective tool in predicting land use change, with an easy-to-understand
user interface [10].

To model land cover change, LCM requires three maps: maps from two previous periods are
used to optimize the prediction model for the third period by comparing with the map of the third
period [51]. We used the 2006 and 2011 maps to build the model by referring to the 2016 map. Figure 3
shows a land cover change modeling flowchart. Land cover maps in 2006 and 2011 were used to
predict land cover in 2016 by applying the MLPNN method coupled with driving factors. Predicted
land cover for 2016 was generated by applying the MC method, and the prediction result was validated
visually and statistically. If the accuracy value is acceptable, the model can be applied to the prediction
for 2031. Consequently, land cover prediction for 2031 was overlaid with the Government’s spatial
plan map for 2011–2031. The result was used as an evaluation map for future development of the
Mamminasata area.
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3.2.1. Driving Factors

A driving factor is a variable that forces a change in land cover. Seven driving-factor maps
(distance from capital, distance from river and lake, distance from road, distance from settlement,
elevation, slope, and population density per pixel) were used to model land cover prediction. These
driving factors were selected due to the availability of these data. The slope was calculated in the
Slope module using DEM. The four distance maps were processed in the Distance module using vector
maps of capital, river and lake, road and settlement, respectively. The population density per pixel
was obtained using the following formula:

Kp = p×A× P×C (8)

where

Kp: population density per pixel,
p: population density of Mamminasata (= 981.29 people/km2 [52]),
A: population distribution area (= 3.14 × (2 km)2 = 12.56 km2),
P: population proportion expressed by Equation (8),
C: conversion factor, from 1 km2 to 1 pixel

(= 30 m × 30 m = 900 m2 = 9 × 10−4 km2 = 9 × 10−4 pixels).

The population proportion formula is as follows:

P = 0.2402× exp
(
−0.9464×

(
distance f rom settlement

1000

))
(9)

The map for population density per pixel was created assuming the population spreads radially
with a 2 km radius from settlements, and the population increases as it approaches the center of its
distribution [53].

3.2.2. Parameter Setting

Land cover maps for 2006 and 2011 were used as the basic maps to predict land cover. In this study,
the cross-tabulation method in the change analysis stage was applied to 2006–2011 and 2011–2016.
This method was used to identify and quantitatively assess the change in land cover from one class to
another by producing a gains and losses graph.

In parameter setting, the basic maps (2006 and 2011) and the seven driving-factor maps were first
fed into the model to produce a transition potential map, which indicates the probability of change
from one class to another by using the MLPNN method [10]. We determined the land cover change
by choosing a transition sub-model, which can consist of a single land cover transition or a group
of transitions that are thought to have the same underlying driving factors [50]. In this study, we
chose seven sub-models with a high transition potential and actual condition of our research site: from
“dryland agriculture to built-up area”, “shrub to built-up area”, “wetland agriculture to built-up area”,
“shrub to dryland agriculture”, “shrub to forest”, “waterbody to wetland agriculture”, and “wetland
agriculture to dryland agriculture”. The selection of these sub-models could regulate the land cover
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changes unnecessary for the evaluation purpose, that is, we could remove the natural changes such as
seasonal change in water surface.

As the second step in parameter setting, each driving-factor map was determined as a static or
dynamic type. Both types are based on their behavior of change over time [10]. A static variable is
a constraint or inhibiting factor for the transition, and does not change over time, while a dynamic
variable, such as a development program and infrastructure [10,50], is the driver for transition and
is updated during the model run. In this study, distance from the road was considered a dynamic
variable and the other six driving factors as static variables.

Cramer’s V was used to test the relationship between the seven driving factors and land cover
changes in 2006–2011. Cramer’s V is a common chi-square-based measure of nominal association,
the most suitable measure of association, and a complete agreement formula between two nominal
variables [11,19]. Values range from 0 to 1 and a higher score is better [10,49,54].

As the final step, we ran the model using the above-mentioned parameter setting. For other
parameters, we used default values. In this process, the model generates transition potential maps
based on the procedure that half of the pixel samples are used to run the model and the other half are
used to validate the performance in predicting land cover changes [10,11]. This method is sophisticated,
especially for complex problems and non-linear relationships [17].

The MC method was applied to predict land cover in 2016. The potential land cover transition is
used by MC to describe actual changes and to predict the change in the following year [55]. The land
cover prediction map for 2016 was validated with the actual land cover map. We used two validation
methods: visual and statistical. Visual validation shows the prediction result using four categories: hit,
null success, false alarm, and miss. Hit and null success represent the correctness of the model; false
alarm and miss represent errors that result from the model as disagreement between predicted map
and actual map [49].

To strengthen the accuracy test, the prediction result was validated statistically. Kappa index
statistics were calculated for two types of target area: whole research site and different areas. For
different areas, only areas that experienced changes between actual and predicted land cover maps
for 2016 were tested. The accuracy result was evaluated using four kappa indices: kappa for no
information that indicates the overall accuracy of the simulation run [56], kappa for grid-cell level
location that indicates how well the grid cells are located on the landscape, kappa for stratum-level
location that indicates how well the grid cells are located within the strata, and kappa for standard that
indicates the proportion assigned correctly versus the proportion that is correct by chance [57]. These
kappa values range from 0 to 1; the greater the value obtained, the more successful the prediction of
land cover change. After the accuracy of land cover prediction in 2016 was accepted, the model can be
used to predict land cover changes in 2031 with the same parameter settings.

3.3. Comparison with the Spatial Plan

The Indonesian Government created a spatial plan that consists of a spatial pattern map for
2011–2031. The spatial pattern map was constructed based on the actual land cover (when the map
was made), the number and needs of the people (actual and future), Government policies, and analysis
of the carrying capacity of the region. A spatial pattern is the distribution of land allocation in an area
that includes a development zone and a protected zone [58]. A development zone is designated to be
developed based on the conditions and potential of natural, human, and artificial resources, while
a protected zone is designated to protect environmental sustainability, which includes natural and
man-made resources [59].

The land cover prediction approach was not included in the spatial plan by the Government.
Therefore, the land cover prediction for 2031 was overlaid with the Government’s spatial pattern map
to provide a detailed land cover distribution in both the development and protected zones. This result
could be helpful to the Government in considering future development in the Mamminasata area.
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4. Results

4.1. Land Cover Maps of 2006, 2011, and 2016

Figure 4 shows the three composite images used for the classification in 2011, together with
single-date images before the composite. Cloud, shadow, and scan gaps before the composite were
reduced, and smooth and clear scenes were produced by the composite.
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Figure 4. Landsat 7 ETM+ 2011: (a) scene 1 (11/04/2010), (b) scene 2 (03/07/2011), and (c) scene 3
(05/09/2011) before composite; (d) scene 1, (e) scene 2, and (f) scene 3 after composite. Note: red circles
indicated no-data; bands 3, 4, and 2 were used for red, green, and blue, respectively.

Most of the pixels were composed of two base scenes that have the smallest seasonal change
in step 1, and a small fraction of the pixels were filled by other scenes in step 2 (based on Table 2).
Therefore, the appearances were smoother than the simultaneous composite of all the scenes. However,
there were still white areas (no-data, marked by red circles) because there was no valid data in any of
the scenes due to the clouds and scan gaps.

The center panel in Figure 5 is the land cover in 2011 generated by SVM classifier, showing that
the obstacles (cloud, shadow, and scan-gap areas) can be overcome because the differences in the
reflectance were small and dissolved through statistical grouping by the SVM classifier.



ISPRS Int. J. Geo-Inf. 2020, 9, 481 12 of 23

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 23 

 

 

Figure 4. Landsat 7 ETM+ 2011: (a) scene 1 (11/04/2010), (b) scene 2 (03/07/2011), and (c) scene 3 

(05/09/2011) before composite; (d) scene 1, (e) scene 2, and (f) scene 3 after composite. Note: red circles 

indicated no-data; bands 3, 4, and 2 were used for red, green, and blue, respectively. 

Most of the pixels were composed of two base scenes that have the smallest seasonal change in 

step 1, and a small fraction of the pixels were filled by other scenes in step 2 (based on Table 2). 

Therefore, the appearances were smoother than the simultaneous composite of all the scenes. 

However, there were still white areas (no-data, marked by red circles) because there was no valid 

data in any of the scenes due to the clouds and scan gaps. 

The center panel in Figure 5 is the land cover in 2011 generated by SVM classifier, showing that 

the obstacles (cloud, shadow, and scan-gap areas) can be overcome because the differences in the 

reflectance were small and dissolved through statistical grouping by the SVM classifier. 

 

Figure 5. Land cover classification: (a,c,f) 2011 using a support vector machine (SVM) classifier; (b,e)
2006 using change detection; and (d,g) 2016 using change detection.

Table 4 shows the overall accuracy of land cover classification in 2011 was 0.83 with 600 points of
total sample. The result indicated that the accuracy of land cover classification in 2011 was acceptable
and can be used for land change modeling.

Table 4. Confusion matrix.

Classification Class
Total Row PA

BU DA Fo Sh Wb WA

G
ro

un
d

Tr
ut

h BU 82 2 0 1 1 0 86 0.95
DA 7 67 0 0 1 0 75 0.89
Fo 11 22 98 25 3 4 163 0.60
Sh 0 7 2 63 0 2 74 0.85
Wb 0 2 0 5 93 2 102 0.91
WA 0 0 0 6 2 92 100 0.92

Total Column 100 100 100 100 100 100 600

UA 0.82 0.67 0.98 0.63 0.93 0.92
OA 0.83
AoC 0.17
KC 0.79

Note: BU—built-up area; DA—dryland agriculture; Fo—forest; Sh—shrub; Wb—waterbody; WA—wetland
agriculture; PA—producer’s accuracy; UA—user’s accuracy; OA—overall accuracy; AoC—agreement of chance;
and KC—kappa coefficient.

The land cover maps in 2006 and 2016 were obtained based on the change detection with 2011.
The thresholds of change for normalized difference were 2.5 and 3.5 for respective years, determined by
the visual comparison using a time series of Google Earth fine-resolution satellite images. As a result,
total change areas were 4556 ha during 2006 to 2011, and 1301 ha during 2011 to 2016. The typical
changed area of the final images can be seen in Figure 5. On the left side, some waterbody and wetland
agriculture changed into built-up area; on the right side, some waterbody and shrub changed into
dryland and wetland agriculture.
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4.2. Land Cover Change Model

4.2.1. Land Cover Change Analysis

Figure 6 shows the gains and losses of land cover for two periods from 2006 to 2011 and from 2011
to 2016. In the analysis, there was no possibility of transition from built-up area to other classes, whereas
other types of land cover had transitions between one another. Between 2006 and 2011, around 195 ha
of wetland agriculture changed into built-up area, while dryland agriculture increased mainly from
wetland agriculture (893 ha), shrub (746 ha), and waterbody (122 ha). In the same period, forest area
increased, which was mostly obtained from shrub (347 ha). It can be seen that around 1472 ha shrub,
620 ha waterbody, and 1394 ha wetland agriculture changed into other types. However, there was an
increase of around 843 ha of wetland agriculture from dryland agriculture, shrub, and waterbody. In
the period between 2011 and 2016, the built-up area increased by 295 ha from wetland agriculture,
194 ha from dryland agriculture, and 130 ha from waterbody. This change is most likely because the
Government program started during this period.
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area; DA—dryland agriculture; Fo—forest; Sh—shrub; Wb—waterbody; and WA—wetland agriculture.

4.2.2. Land Cover Change Modeling

The seven driving factors are shown in Figure 7. Based on the relationship between driving factors
and land cover in 2006–2011 using Cramer’s V test (Table 5), the highest and lowest influential factors
were population density per pixel and distance from river and lake, respectively. It is reasonable that
population density has a greater effect on land cover change, especially for agricultural and residential
types of land cover. It is also natural that distance from water has less effect because many small rivers
densely covered this area (as shown in Figure 7b), and enough water is available throughout the site.
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Figure 7. Driving factor maps: (a) distance from capital, (b) distance from river and lake, (c) distance
from road, (d) distance from settlement, (e) elevation, (f) slope, and (g) population density per pixel.
Distances and elevation are in meters, slope is in degrees, and population density per pixel is in
people/km2.

Table 5. Cramer’s V values of driving factors.

Variable Overall Cramer’s V

Distance from Capital 0.3230
Distance from River and Lake 0.1103
Distance from Road 0.1965
Distance from Settlement 0.2542
Elevation 0.3263
Slope 0.2888
Population Density per Pixel 0.4920

The transition potential was obtained with 33.56% accuracy by running the MLPNN method from
a combination of the basic maps (2006 and 2011) and the seven driving factors. This transition potential
was used to simulate the land cover prediction for 2016 by using the MC method, and the resulting
map is shown in Figure 8b.
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Figure 8. Actual land cover derived by satellite data (a); predicted land cover by multi-layer perceptron
neural network and the Markov chain (MLPNN + MC) (b); comparison of land cover area (c).

After the land cover for 2016 was predicted, the resulting map was compared with the actual land
cover map of 2016. Figure 8 shows the actual and predicted land cover for 2016 and the comparison of
land cover classes between the two maps expressed as percentages. The two maps had almost the
same values for all classes. The area of different land cover was 3125 ha.

Figure 9a shows the visual validation of the land cover prediction for 2016, displaying the four
types of correctness and error: 0.00% hits, 98.89% null successes, 0.86% false alarms, and 0.25% misses.
The correctness value (hits and null successes) indicated the same type of land cover between the
actual map and the prediction map for 2016 (98.89%). Conversely, the error value (false alarms and
misses) indicated the different types of land cover between the two maps (1.11%).
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Statistical validation was carried out by comparing the whole area and different areas (areas of
false alarms and misses). Table 6 shows the kappa values for the validation of the whole area and
different areas. Pontius and Millones [60] revealed that the values of kappa for no information and
grid-cell level location were somewhat more helpful than the values of kappa for stratum-level location
and standard. Based on that, the results of accuracy can be accepted, and the model can be run for land
cover prediction for 2031.

Table 6. Accuracy test of change prediction.

Type of Kappa Kappa Value

Whole Area Different Areas

No information 0.9961 0.9973
Grid-cell level location 0.9974 0.7821
Stratum-level location 0.9974 0.7821

Standard 0.9925 0.6544
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4.2.3. Land Cover Prediction for 2031

Figure 10a is the predicted land cover for 2031. The MC method was used with the same rules,
seven driving factors, and basic maps (2006–2011) to predict land cover changes for 2031. Figure 10b
shows the increases predicted for built-up area (252 ha), dryland agriculture (5578 ha), and forest
(73 ha), and the decreases for shrub (2829 ha), waterbody (1282 ha), and wetland agriculture (1791 ha).
Based on this prediction model, all types of land cover would have a transition potential between one
another, including the built-up area, which did not experience a transition to other types of land cover
in the period 2006–2016.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 17 of 23 
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4.3. Comparing with the Spatial Plan

In the spatial pattern map from the Government, the total area of Mamminasata is divided into
80% development zone and 20% protected zone (Figure 11a). This map was overlaid with the land
cover prediction map for 2031 to evaluate the Mamminasata spatial pattern (Figure 11b). The result
shows that agricultural areas and waterbody occupy 70 and 7% of the development zone, respectively
(Figure 12a), while 2% of the protected zone would become built-up area (Figure 12b).

The evaluation map also shows the small islands of Mamminasata called Spermonde, which are
in the protected zone predicted to become built-up area (Figure 11c). Figure 11d shows waterbody in
the development zone. The forest area occupies 15% of the development zone, mainly in the eastern
and north-eastern parts of Mamminasata (Figure 11e,f). These areas are distant from the developed
center, so special care is necessary to achieve sustainable development. Each land cover type in the
development zone has a high possibility of changing into another land cover type in the future because
the development zone is designed to be developed [59].
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5. Discussion

In this section, we would like to address a few points based on our research aims. First, we
have described a simple composite method to overcome the SLC problem of Landsat ETM+ coupled
with the presence of cloud and shadow areas. This method proved to be useful in overcoming those
obstacles in image processing. The land cover classification using the SVM classifier produced a precise
land cover map with acceptable accuracy. The land cover classification map for 2011 using the SVM
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classifier in this study was helped by the availability of land use maps from the Government. We used
this data as a training sample with the purpose of creating a land cover classification map without
making new training data based on the visual interpretation of Landsat images.

As explained by Hussain et al. [44], the pixel-based technique using an algebra-based approach
(image differencing) in this study has proven to be simple and easy to interpret. This technique is
suitable for medium-resolution images such as those provided by Landsat. Based on the land cover
maps of 2006 and 2016 shown in Figure 5 and the statistics in Figure 8, this technique helped us
to detect an appropriate change in land cover. Our change detection method could be applied for
another geographic scales and spatial resolutions if multispectral satellite data are available because the
methodology is quite simple and general. Land cover is considerably complex with small patches in
Asian countries, hence finer spatial resolution is preferable in order to reduce the mixture of land cover
within a pixel. MultiSpectral Instrument (MSI) onboard the Sentinel-2 satellite would be a possible
alternative because it has been operated continuously since 2015.

Although MLPNN showed a lower accuracy of transition potential than 80%, which is proposed by
several researchers [10,11,50], our land cover prediction model for 2016 using the MC method showed
the acceptable accuracy validated visually and statistically. Therefore, we would like to emphasize
that MLPNN is a powerful method for modeling transition potential of land cover. It should be noted
that our model only used current population and physical factors as driving factors. The economic
factor was not included due to the unavailability of this data. Several researchers have proposed the
economic factor in their land cover change model [11,61,62]. For further research, the economic factor
should be selected into the model. All type of driving factor data (physical and socio-economic factors)
could be included in the LCM. Furthermore, the influence order of driving factors will be determined
using Cramer’s V.

Land cover prediction is not included in the current spatial plan in the study area. Therefore, the
result of this study might be informative for current and future perspectives of the site. The importance
of our result lies in the evaluation of the spatial pattern plan based on the land cover prediction.
The evaluation map helped us to generate the detailed land cover distribution in both the development
zone and the protected zone for 2031. Our model predicted that 30% of the protected zone would
become built-up and agricultural areas, while forest accounted for 15% of the development zone.
These conditions should be controlled by regulations in consideration of an unpredictable increase
in population.

In reality, investment in land plots by both companies and individuals is also increasing rapidly with
the establishment of Mamminasata as a national strategic area. Many agricultural, shrub, and waterbody
(pond) areas have been converted into built-up areas, mainly residential and industrial areas, to meet
the needs of the increasing population. Although the increase in built-up area cannot be avoided,
adequate density and distribution should be considered together with environmental conservation.

Some regulations have already been enacted, for example, Indonesian Regulation No. 41 in 2009
(Protection for Sustainable Agriculture Land). Such regulations are needed because as an agrarian
country, Indonesia needs to guarantee the provision of sustainable agricultural land as a source of
work and decent livelihood for people by promoting the principles of togetherness, sustainability,
environmental insight, etc., together with maintaining balance, progress, and national economic
unity [63]. Indonesian Regulations (such as No. 41 in 1999 for Forestry, No. 17 in 2019 for Water
Resources, and No. 26 in 2007 for Spatial Planning) are worthwhile and should be effectively put into
practice. The evaluation map of the spatial pattern in this research could be used as guidance for the
Government to apply these regulations to protect the conservation and hazardous areas.

In addition, local governments of the four municipalities in Mamminasata could cooperate to
achieve common goals for development by balancing the development and the protected zones.
Moreover, the National Government should strictly control investment in land plots to avoid the
negative effects of the expansion of built-up areas. Managing the use of the Mamminasata area must be
directed by zoning regulations, licensing, setting incentives and disincentives, and imposing sanctions
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for violations committed by any party. These actions should help to achieve sustainable development
of the Mamminasata area.

6. Conclusions

Land cover of Mamminasata, Indonesia, in 2031 was predicted by the land cover change model
using remote sensing and other geospatial data, and the resulting map was used to evaluate the
spatial plan. The combination of predicted land cover and spatial plan helped to create a detailed map
of future land cover in the development and protected zones. Significant land cover changes were
expected in all four municipalities along with the increase in population density. The built-up area in
the protected zone accounts for 2% of the total and agricultural areas would be 28% in 2031.

In terms of methodology, we found that the composite and change detection methods were simple
and easy to follow. In addition, we showed that SVM is a powerful land cover classifier and useful
even for medium-resolution images such as those provided by Landsat, and MLPNN + MC provides a
good result in modeling land cover change prediction. It should be noted that the lower accuracy of
transition potential in MLPNN could produce a good prediction of land cover, which was shown by
the acceptable accuracy from the MC method (land cover prediction for 2016) validated by the actual
land cover in 2016. This result is likely because the number of sub-models can affect the accuracy.
Moreover, the transition potential accuracy in MLPNN should work well in most instances using
default setting. As a suggestion, by experimenting the number of hidden layer nodes and the learning
rate values in MLPNN as the two most critical parameters, it will affect the accuracy substantially.

Another topic that should be considered in further research is the prediction of population because
land cover change is related to the needs of increased population, and the number of people can affect
the carrying capacity of a region. These three topics are important in a spatial plan.

From our research, we suggest that the protected zone should be maintained or evenly expanded
because Mamminasata is the economic center area in Eastern Indonesia coupled with its function
as a national strategic area, which could result in an increase in population. Therefore, land cover
prediction should be helpful in formulating a spatial plan, especially a spatial pattern plan to achieve
goals for sustainable development.
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