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Abstract: Modelling the complex nature of regional knowledge creation is high on the research agenda.
It deals with the identification of drivers for regional knowledge creation of different kinds, among
them inter-regional networks and agglomeration factors, as well as their interplay; i.e., in which
way they influence regional knowledge creation and accordingly, innovation capabilities—in the
short- and long-term. Complementing a long line of tradition—establishing a link between regional
knowledge input indicators and knowledge output in a regression framework—we propose an
empirically founded agent-based simulation model that intends to approximate the complex nature
of the multi-regional knowledge creation process for European regions. Specifically, we account
for region-internal characteristics, and a specific embedding in the system of region-internal and
region-external R&D collaboration linkages. With first exemplary applications, we demonstrate
the potential of the model in terms of its robustness and empirical closeness. The model enables
the replication of phenomena and current scientific issues of interest in the field of geography of
innovation and hence, shows its potential to advance the scientific debate in this field in the future.

Keywords: regional knowledge creation; geography of innovation; collaboration networks;
agent-based modelling; spatial simulation; Europe

1. Introduction

Understanding and explaining the complexities of regional knowledge creation constitutes an
ongoing challenge for empirical scholars in regional science. Specifically, the literature has long been
concerned with the spatial distribution of knowledge creation and innovation, concluding that these
kinds of activities are not equally distributed in space but rather tend to be spatially clustered [1,2].
With knowledge being not easily accessible at every point in space, the location of knowledge creation,
as well as the processes of knowledge diffusion, become a crucial point in understanding regional
development and growth [3,4]. In this respect, attention has been shifted to the investigation and
modelling of regional knowledge creation processes as an interplay between (i) geographically localised
knowledge interactions within the region, and (ii) the embedding of the region in inter-regional R&D
collaborations (see e.g., [5]), in particular by means of region-internal and region-external knowledge
interactions in the form of R&D collaborations (see [6] for an overview).

Modelling regional knowledge creation follows a long line of research tradition, often applying
the Knowledge Production Function (KPF) framework to model determinants of regional knowledge
creation and innovation [7–9]. These studies typically attempt to establish a direct link between some
kind of regional knowledge input, such as industrial and university R&D, and knowledge outputs
measured in terms of patents, innovation or publication counts (see e.g., [7,10–12]) In this context, the role
of knowledge spillovers [8,13,14], spatial proximity [15–17], and nonspatial forms of proximity [18–20]
on regional knowledge creation and innovation are widely studied. However, all these studies are
done at an aggregate regional level, and accordingly do not account for the regions’ underlying
micro-structure, for instance by assuming that each regional organisation benefits in the same way
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from inter-regional knowledge spillovers. However, a better approximation and understanding of the
real-world complexity of regional knowledge creation processes requires models accounting for the
heterogeneity of the agent population, for the non-linearity of the interactions between agents, and for
the complexity of the environment. Considering these aspects allows the observation of emergent
phenomena such as specialisation and concentration tendencies in regional knowledge creation driven
by the structure of R&D collaborations.

Recent contributions to the discussion on knowledge creation have been made by adding
a dynamic perspective using computer simulation techniques, especially agent-based modelling
(ABM; the abbreviation ABM is used for ‘agent-based models’ and ‘agent-based modelling’
consecutively), but are mainly implemented at an abstract, theoretical level: for instance, from a
spatial perspective, theoretical contributions by Batty [21], and Crooks et al. [22] propose general
spatial modelling frameworks and pose key challenges in geo-spatial modelling (see [23] for overview),
whereas, Ausloos et al. [24] discuss simulating spatial interactions in ABM. From a conceptional
viewpoint, Dawid [25], and Gilbert et al. [26] target innovation and technological change, and knowledge
dynamics in innovation networks, respectively. Moreover, Vermeulen and Pyka [27] address the spatial
distribution of knowledge in the setting of regional innovation policy. Whereas, theoretical models
are built as tools for theory-building, very recently, a few empirical models of regional knowledge
creation have aimed at analysing real-world scenarios; Wang et al. [28], use an agent-based model for
analysing the diffusion of technologies across Chinese regions, while Beckenbach et al. [29] present an
agent-based simulation of regional innovation dynamics including agents with explicit and implicit
knowledge endowment, and Paier et al. [30] focus on the evolution of a single region’s technological
profile in a context of policy analysis (in the Viennese biotechnology sector). However, so far, the limited
simulation studies following this research path, are either of a purely theoretical and conceptual
nature, lacking empirical foundation and hence, real-world applicability, e.g., in a (regional) innovation
policy context (e.g., [27,31]), have only a limited geographical and/or sectoral scope (e.g., [30,32]),
neglecting the theoretical fundamentals of regional knowledge creation, and/or deal in a quite narrow
way with network formation (e.g., [33,34]), as well as knowledge transfer and diffusion [28,35,36].

Hence, we propose an empirically founded agent-based simulation model for regional knowledge
creation in Europe. It intends to better approximate the complex nature of the multi-faceted regional
knowledge creation processes by specifically accounting for (i) region-internal characteristics, (ii) agent
heterogeneity in the knowledge creation process, and (iii) a specific embedding in the system of
region-internal and region-external interdependencies in the form of R&D collaboration linkages.
By this, we particularly reflect the idea of geographical and relational aspects of the knowledge
creation process, which is driven by the debate on ‘local buzz’ and ‘global pipelines’ as two forms of
interactive knowledge creation [37]. This allows us to model local dynamics, such as learning and
knowledge transfer, as well as structural evolution in the form of inter-regional network formation
and transformation on a global level. The strong theoretical, and explicitly empirical, foundation
enables us to apply the model to real-world contexts, such as simulation experiments referring to
Research, Technology, and Innovation (RTI) policy measures at the European, the national as well
as the regional levels (e.g., smart specialisation, mission-oriented public funding). In this study we
present a comprehensive model overview, providing details on the model elements and processes,
as well as technical specifications and robustness checks. The potential of the model is demonstrated
by small example applications on currently debated research issues in the geography of innovation
literature, namely regional concentration and specialisation patterns, as well as the role of networks as
drivers for regional knowledge creation.

The remainder of this study is organised as follows. In Section 2, we shortly outline the agent-based
modelling approach and give a detailed presentation of the proposed simulation model of multi-regional
knowledge creation, subsuming a description of the model elements and processes, as well as the
empirical foundations. In Section 3, we demonstrate the potential of the simulation model by small
example applications to current scientific debates. In Section 4, we conclude with a discussion of the
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model results and a critical assessment of the functionality of the model. Moreover, future development
steps of the model are outlined and ideas for further fields of application are presented.

2. Materials and Methods

This section is dedicated to the description of the proposed multi-region agent-based model of
knowledge creation and the specification of its empirical foundation, including the agent initialisation,
calibration and output evaluation. The model description is deliberately kept brief; details on model
elements and processes are given in Appendix A.

Generally, ABMs are developed to discover emergent properties from a bottom-up perspective
and—in an attempt to replicate real-world concepts, actions, relations or mechanisms—are used to
anticipate future developments and outcomes [38]. In this respect, ABM is particularly suited to
examine the complex and adaptive nature of regional innovation systems, as it provides a framework to
model and simulate the behaviour of heterogeneous agents, and to investigate the complex dynamics
of system-wide interactions amongst them. Hence, the aim of this simulation model is to investigate
inter-regional knowledge creation across European regions. In doing so, we adopt an empirically
driven agent-based modelling (ABM) approach, utilising large-scale data sets on regional knowledge
creation and research collaboration activities.

2.1. Model Description

The model conception closely follows state-of-the-art theoretical and conceptual contributions,
as well as empirical findings in the fields of regional science, economic geography, and the geography of
innovation literature (in particular [39–42]). Moreover, we integrate ABM and advanced methodological
tools from social network analysis (SNA) and econometrics. The simulation model is implemented in
Java, drawing on elements of the MASON (Multi-Agent Simulator Of Neighborhoods) multi-agent
simulation environment. The proposed model comprises three key characteristics, (i) a set of interacting
agents, their attributes and behaviours, (ii) a set of relationships and methods of interaction, situated
within (iii) a model environment [43], that serve as cornerstones for the development of the model,
visually illustrated by Figure 1.
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In this conception, agents are modelled as research actors characterised by organisation-level
empirically-based attributes. Each agent is equipped with a knowledge profile representing the knowledge
endowment of the agent, indicative of the technology classes the agent is active in, as well as the
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expertise in the respective class. Hence, the knowledge endowment of agent i can be defined as a
vector of length k (with k being the number of technology classes included in the model)

κi = {κi1,κi2, . . . ,κik} (1)

where i = 1, 2, . . . , N with N being the total number of agents in the model, and the value of κik
determining the expertise in the respective technology class k (level of knowledge).

The agents’ location is specified by the European NUTS-2 region [44] the agent is located in—in total,
283 regions in the EU-27 countries plus the United Kingdom and Norway are covered. Since there
are no large-scale firm-level data on location, industry association, size and R&D intensity available
in a systematic way for European regions, such data are constructed based on region and industry
characteristics. Hence, in the process of empirically assigning the industry firm agents to regions,
their industry sector, size (number of employees) and R&D intensity is specified as well. The primary
objective for the agents in the model is to be representative for each region with respect to its
characteristics (see Section 2.2 for details on agent initialisation). In addition to empirical attributes,
agents are also characterised by model-inherent attributes: research strategy, collaboration memory,
and network position indicating external networking capability.

The agents’ relationships and interactions are defined within the knowledge creation process
subsuming the total of agents’ actions in creating new knowledge. This process is designed as a
learning process along a specified research path, that each agent decides upon individually according
to its mode of knowledge creation—exploitative or explorative (following the concept brought forward by
March [45])—and with respect to its current knowledge and research target. Knowledge creation is
based on the concept of technology space, which is defined as a network comprising a set of technology
classes (TCs), with weighted links indicating the technological proximity between these classes
(see Figure A3 in Appendix A for an illustrative example). Formally, the technology space S can be
defined as symmetric matrix

S =


p11 p12

p21 p22

· · · p1k
. . . p2k

...
...

pk1 pk2

. . .
...

· · · pkk


kxk

(2)

where p.. denote the Jaccard coefficients as a measure of proximity (empirically-based), and k is the
number of technology classes considered in the model.

The technology space S serves as framework for the agents to gain new knowledge as they move
along their research paths. Each research path comprises selected technology classes, indicating the
way and direction of learning. Generally, a research path P is defined as a subset of all technology
classes in the technology space

P = {τ1, τ2, . . . , τL} ∈ T = {τ1, τ2, . . . , τk} (3)

where l = 1, 2, . . . , L with L being the length of the research path and T the set of all technology classes.
The agent’s individual knowledge creation process follows a predefined sequence of actions

(see Figure 2 for simplified flow chart); however, it still implies many degrees of freedom, allowing for
heterogenous interactions and processes that result in varying outcomes. In total, the agent’s knowledge
creation process includes selecting a mode of knowledge creation, setting a research path, selecting a research
strategy, and a learning and research success evaluation process. The single processes follow two different
periodicities: whereas, the subprocesses in the learning process and output evaluation are carried out at
each model step (periodicityω), setting a research agenda and research strategy occurs at every other
step after completing the learning process (periodicity Lω); whereω denotes one simulation step and L
an integer value indicating the length of the agent’s research path. To initiate the process at the beginning
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of the simulation, a one-time-only initiation of a starting technology class for the research process takes
place; i.e., a random technology with non-zero expertise of the agent’s knowledge endowment.
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Setting the research path depends on the agent’s mode of knowledge creation: exploitative or
explorative; where exploitative knowledge creation reflects a direct and targeted, commercially oriented
way of performing research, and exploration expresses a non-targeted and more indirect path selection
for knowledge creation. In a next step, the agent decides on the research strategy—i.e., whether to follow
this path by means of internal research, i.e., perform in-house research, or by looking for a suitable research
partner to perform collaborative research. Hence, a core element of the collaborative research process
is the agent’s choice of a suitable collaboration partner. The partner choice relies on collaboration
probabilities resulting from the estimation of a Spatial Interaction Model (SIM) considering the
geographical distance between the regions, and variables indicating a neighbouring region and country.
Spatial distance as well as country and region borders are generally acknowledged to be among the most
important determinants to explain inter-regional R&D collaborations (e.g., [46,47]). Despite increasing
globalisation and new information and communication technologies, spatial proximity is (still) a crucial
factor in establishing and maintaining R&D network links. Especially, more complex knowledge
requires the exchange of tacit knowledge elements via face-to-face interaction [48,49].

The probabilities resulting from the SIM are complemented by collaboration shares based on
statistical data. A final criterion for a suitable partner is cognitive proximity, as in the presence of a
certain overlap of knowledge endowments. In collaborative research, a further distinction is made
between two modes of collaboration, (i) research-mode and (ii) service-mode. Whereas, the first mode
is aimed at representing basic and applied research projects, primarily focused on the creation and
deepening of knowledge, the second mode exemplifies commission projects, usually characterised by
an efficient and straight-forward research agenda.

Knowledge creation is defined as a learning process along the specified research path, i.e., performing
research along trajectories of technology classes. To determine whether a new step (i.e., new technology
class) on the research path is reached, the research success is evaluated. This is a necessary intermediate
step for every transition from one to another technology class. The research success is a scaled
composite indicator (interpretable as success probability) depending on (i) agent-specific characteristics
(overall expertise, R&D quota, internal and external capability) and (ii) technological proximity between
the involved technology classes. In the case of successful research, the level of expertise is updated
in the respective technology class. If the research is evaluated as not successful, the agent either
chooses a new, but similar research path or stays on the original path. For collaborative research,
the process of research success evaluation is dependent on the collaboration partners’ expertise.
Moreover, possible knowledge transfer in the collaborative knowledge creation process is based on the
cognitive distance (knowledge distance) between the two collaborating agents. The actual knowledge
gain depends on the absorptive capacity—representing the trade-off between novelty value and
understandability of new knowledge. Specifically, it is assumed that the amount of knowledge gain
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corresponds to an inverted u-shaped relationship, i.e., both low and high knowledge complementary
results in low knowledge gains, indicating the presence of an ‘optimal distance’ entailing a trade-off

between ‘learning something new’ and ‘mutual understanding’ (e.g., [50,51]).
The environment defines the space in which the agents operate; accordingly, it contains all the

information external to the agents used in the decision-making processes and provides a structure
or space for agent interaction [38]. From the perspective of a regional innovation system, we see
national and international research actors, and other regions, as external elements of the specific
region. Especially, studies in the vein of regional innovation systems (RIS) stress the importance of
such external factors on the knowledge creation of individual research actors located within a certain
region, e.g., universities and public research organisations that conduct basic and applied research,
and regional policy institutions that implement regional innovation policies [41]. External to the
whole system of regions and interrelated agents, national and European policy interventions may
also affect the region-specific knowledge creation processes. Evidently, these external factors are by
no means isolated from the region-internal processes and dynamics, but rather strongly interrelate
with agent-specific capabilities. In an ABM, this fact is reflected in the relationship between agent
behaviour and its environment comprising external factors—steered by the modeller by means of
exogenous parameters.

2.2. Empirical Foundations

While theoretical models need to be less concerned with methods for initialising the simulation with
empirical data, practical applications and policy analyses do require such methods [52]. The empirical
foundation is one of the crucial aspects in which the proposed simulation model differs from purely
theoretical and conceptual models of regional knowledge creation. A thorough empirical foundation is
essential for the representation of real-world processes, practical applications, and policy analyses since
it increases their integrative strength and liability. The empirical foundations of the model complement
the conceptual model as presented in the previous section. In particular, in this model three central
elements are driven by empirical data: agent initialisation, calibration of model parameters, and output
evaluation. In addition, throughout the model, agents’ decision-making processes are empirically
driven by means of statistical figures.

Agent initialisation using spatial microsimulation. The empirical agent initialisation focuses
on the generation of a representative agent population for each region. Since detailed micro-level data
on an organisational level is not available for European regions in a comprehensive way, model agents
are created based on region-level empirical data. Agent-level data has been constructed in an elaborate
process of drawing samples from empirical distributions of industry sectors, R&D intensity and number
of employees (determined from the Eurostat Structural Business Statistics for an initialisation period
corresponding to the years 2012 to 2014), while considering feasible combinations of characteristics
for each agent based on the characteristic’s empirical correlations using Cholesky decomposition.
Cholesky decomposition can be used to create correlations among random variables by decomposing
the correlation matrix of empirically observed correlations between agent characteristics [53].

To generate a representative agent population for each region, we employ spatial microsimulation
techniques. Spatial microsimulation is a method to allocate individuals (organisations) to zones
(regions), by combining individual (organisation-level) and geographically aggregated data [54].
Here, we opt for Iterative Proportional Fitting (IPF) as a statistical technique for combining individual
and geographical data to allocate the primarily specified agents to European NUTS-2 regions using
reweighting algorithms, resulting in maximum likelihood values for each zone-individual combination
represented in a weight matrix (see e.g., [54] for details on spatial microsimulation and IPF). Since the
overall aim of this model is the simulation of knowledge creation, a special focus lies on the initialisation
of the agents’ knowledge profiles. Each agent is endowed with a unique set of technological
fields—empirically represented by patent classes—representing their knowledge profile. The patenting
records are extracted from the PATSTAT database, the Worldwide Patent Statistical Database by the
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European Patent Office, which is the most important data source for scientific research on patent
activities and patent data. We use patent classes on a three-digit subclass level (e.g., A61K) as specified
by the International Patent Classification (IPC) that are assigned to the agents based on their industry
sector (NACE classification) using the table of concordance proposed by [55]. In total, over 21,000 agents
are included in the model, which is a fraction of 1000 of the actual number of local firm entities located
in the NUTS-2 regions of interest (based on the Eurostat Structural Business Statistics).

Calibration of model parameters. The calibration process aims at finding values for the
input parameters that make the model reproduce patterns observed in reality sufficiently well [56].
Parameter fitting must span the entire set of parameters, which rapidly increases the number of
possible parameter combinations to be tested. To reduce the dimension of parameter combinations
that have to be tested, we employ Latin hypercube sampling, which is a technique that considers
the entire set of parameters to get the most representative subset of the space in a relatively efficient
(and computationally saving) manner by means of uniform sampling of the scenario space given a
certain parameter space and with a limit of a specified number of experiments [57].

The core of the empirical calibration is the fitting of model parameters in a way that the resulting
output variables fit best; here, they lie within a range of the selected empirical measures. Thiele et al. [56]
point out two different strategies for fitting model parameters to observational data: (i) best-fit and
(ii) categorical calibration. Whereas, best-fit calibration aims at finding the parameter combination that
best fits the observational data (i.e., there exists one exact value as a quality measure to evaluate the fit
of the parameter values), using categorical calibration, not a single value is obtained, but a range of
plausible values is defined for each calibration criterion. As proposed by Thiele et al. [56] a hybrid
approach by transforming the categorical criteria to a best-fit criterion is followed here. This is done
by means of conditional equations and the specification of a cost function, evaluating the cost for a
parameter value of not being in the acceptable value range (which is defined externally)

criteriumr (xr) =

 0 i f xmin ≤ xr ≤ xmax(
mean(xmin,xmax)−xr

mean(xmin,xmax)

)
else

 (4)

cost(xr) =
R∑

r=1

criteriumr (xr), r = 1, . . . , R (5)

where xr are corresponding simulation results of criterium r, xmin and xmax denote the respective
minimum and maximum value, and R is the total number of calibration criteria included. For each
selected empirical measure, an acceptable value range is defined. If the simulated value lies within this
interval, no costs incur. If this is not the case, a cost factor based on the squared relative deviation to
the mean value of the acceptable range is assigned. The final cost function is the sum of the individual
costs of each criterion. Finally, the parameter combination with the lowest cost is chosen as the one
that best fits the real-world system. Applying this cost function approach enables combining multiple
calibration criteria to one single decision criterion [56].

Empirically, four measures are chosen as criteria for the cost function: (i) the total number of
patents in the agent population, (ii) the patenting profile across regions, (iii) the patenting profile
across technological fields (as defined by Schmoch [58]), and (iv) the regions’ degree centralities,
i.e., number of collaboration partners in the collaboration network. The empirical reference datasets
are the patent data on European regions, as well as—for the centrality measure—data on collaborative
research projects in EU framework programmes that are widely used to proxy inter-regional R&D
collaboration in Europe (see e.g., [59,60]). The empirical measures are calculated as aggregate values
over the years 2014 to 2018; the calibration is performed with the simulated output after 60 time steps
(12 time steps representing one year; see Appendix A for calibrated system parameters). The calibrated
parameter set defines the so-called baseline scenario, as a reference for the simulations presented in the
results section.
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Output evaluation. Successful research efforts by agents result in knowledge gains (see Appendix A
for details), which furthermore can result in patents. In the simulation model, we use the number
of patents as a proxy variable to capture knowledge outputs and to establish a link between a
rather generic knowledge gain—as a pure result of learning processes in the model—and patents.
Patents are considered a suitable indicator to measure the ability to create commercially relevant
new knowledge; specifically, as output of industrial innovation efforts in firms (see e.g., [61,62]).
This allows for an interpretation closer to empirical observations. Whether or not a patent emerges
from a knowledge gain follows an independent evaluation criterium. To that, we implement an
empirical output filter, by means of econometrically estimated coefficients, that determines the patenting
propensity of an individual agent based on a region-specific probability that itself depends on regional
characteristics (human resources, GRP per capita, R&D per capita, degree centrality). Due to the lack
of organisation-level data, the regression model is estimated on the regional level. We estimate a
Poisson regression model to account for the true integer nature and the distributional assumptions of
the number of patents as the dependent variable (see Appendix A for details).

3. Results

In this section, we demonstrate the potential of the simulation model by means of three small
example applications derived from current scientific debates. We evaluate the knowledge creation
exclusively from an aggregate regional perspective, since the model itself is designed to be representative
on a regional level (e.g., representativity of agent population). Nevertheless, agent-level processes
are reflected in the regional knowledge creation output via local and structural dynamics. On a local
level, knowledge is transferred between agents through collaborative knowledge creation processes,
which subsequently results in an update of the agents’ knowledge profiles. On a network structural
level, changes in the agents’ knowledge status as well as knowledge creation performance affect
their network embeddedness and the global network structure as a whole. To ensure empirical
interpretability and allow for empirical calibration, a link between the model’s knowledge gains,
and patenting, as an empirical knowledge output, is established (see Section 2.2 on output evaluation).
Note that the simulation results presented in this section are averages over five model runs to ensure
robust findings and hence, limit the possibility of artefacts occurring by variability in the results
(see Appendix B for robustness checks). The three small example applications for demonstrating
the potential of the model are on regional concentration patterns, regional specialisation dynamics,
and networks as drivers for regional knowledge creation, all of them intensively debated in the
geography of innovation literature.

(i) Spatial distribution and concentration of knowledge creation

The first application aims at the phenomenon of spatial concentration of knowledge creation.
To a large extent, knowledge creation is driven by geographically localised knowledge flows,
especially in the case of learning processes that are driven by tacit and region-specific knowledge
elements. This highlights the facilitative role of spatial proximity for knowledge creation [3,63–65];
however, recent findings also suggest a decreasing effect of distance [59,66]. As described in the
previous section, we use patents as an empirically-based measure of the model’s knowledge output.
Figure 3 illustrates the spatial distribution of the simulated patents as main model outputs resulting
from the agents’ individual knowledge creation processes, aggregated to a regional level.

It can be seen that some typical regions, such as e.g., Île-de-France (FR), Madrid (ES), Catalunya (ES),
Oberbayern (DE), Rhône-Alpes (FR), and Northern regions of Italy such as Lombardia, clearly stand
out in terms of their patent outcome, whereas, the majority of regions exhibit only a fair number of
patents; we can, however, observe (almost) no distinct spatial clusters of multiple regions showing
high patenting activity (except Northern Italy and South-East France). In terms of demonstrating the
potential of the model, these results are quite promising. Clearly, the model and the implemented
processes (see Sections 2 and 3) are able to approximate the empirically observed spatial distribution of
knowledge (see [65]).
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(ii) Specialisation of regional knowledge creation

The second application focuses on the debate of the relative importance of sectoral specialisation
versus diversification for a region’s knowledge created [67,68]. This dichotomy is rooted in the two
concepts of localisation and diversity economies, as originally put forward by Marshall [69] and
Jacobs [70], respectively. In this example, we use not only the total counts of simulated patents by region
as in the previous example, but also their technological field, to calculate the degree of technological
specialisation of regions based on the simulated patents. We use the Index of Specialisation to assess
the degree of specialisation of each region relatively to the other regions (see Appendix C for the
index definition). The spatial distribution of regional technological specialisation is given in Figure A8
(see Appendix C), while the relation between technological specialisation and simulated knowledge
output is illustrated in Figure 4. The relationship between the degree of specialisation and number
of patents—as shown in Figure 4a—shows no significant correlation. Hence, there is no direct link
between the regions’ sectoral specialisation and their respective knowledge output in the model.

On the one hand, according to the concept of localisation economies, a high degree of sectoral
specialisation of regions points towards considerable advantages of these regions due to economies
of scope when making use of local and specialised R&D infrastructure and local and dense R&D
networks that facilitate the exchange of knowledge at relatively low costs. Looking at Figure 4b,
which displays the centralised number of patents and specialisation indices (i.e., deviation from the
respective mean values), this applies in the model simulation to the regions Rhône-Alpes (FR71) and
Oberbayern (DE21) that exhibit relatively high technological specialisation and knowledge output.
This may signal importance of sectoral specialisation to gain a higher output—a finding in the vein of
Marshall [69,71]. On the other hand, the regions Lazio (ITI4) and Andalucía (ES61), for example, suggest
that a relatively low degree of specialisation (i.e., diversification) and knowledge output are positively
related—supporting diversity economies as put forward by Jacobs [70]. Hence, although there is no
clear relationship between knowledge output and degree of technological specialisation of regions,
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(iii) Networks as drivers for regional knowledge creation

In the third application, attention is shifted towards networks—viewed as inter-organisational
arrangements in R&D—that are widely considered as essential for increasing a region’s knowledge
creation capability (e.g., [8,9,37,72]). In this study, the network under consideration is defined as a
regional knowledge network comprising a set of regions as nodes, inter-linked via edges that represent
the knowledge flows resulting from collaborative R&D efforts [46,73]. Figure 5 displays the simulated
regional knowledge network showing the collaboration links between the agents (when following the
collaborative mode of knowledge creation) aggregated to a regional level. As for the spatial distribution
in the first example, the model is able to re-create observed spatial network patterns in the literature
using project collaboration with the European Framework Programmes (see. e.g., [74]). The European
regions seem quite strongly engaged in research collaborations; however, only a few network hubs
(in terms of their number of network partners) stand out: first, Île-de-France (FR), leading to the
characteristic star-shaped network formation that is also known from empirical studies [46], followed by
Oberbayern (DE), Madrid (ES), Lombardia (IT), and Rhône-Alpes (FR). These regions also exhibit the
highest knowledge output in the model, suggesting a positive relationship between a region’s network
connectivity and knowledge output (as measured by patents).

In Figure 6, we further reflect on the relation between the regions’ numbers of simulated
collaborations and knowledge output. Figure 6a shows a positive and slightly exponential relationship
between the number of collaborations and quantity of knowledge output (as measured by the number of
patents), implying that the more collaborations the agents—located within the regions—have, the higher
are the regions’ knowledge outputs. Note that these findings only reflect the quantity of network links
(number of collaborations of regions), not their quality, which would identify certain regions as hubs
with authoritative positions in the collaboration network.

However, looking at the relationship between the number of collaborations and patent growth in
Figure 6b, we cannot observe that a high number of collaborations also coincides with high patent
growth. Hence, a high number of inter-national collaborations is not a driving force for high patent
growth (i.e., growth in knowledge output) in the model. Evidently, regions starting from a relatively
high level of patent output exhibit lower rates of patent growth.
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4. Discussion and Concluding Remarks

In this study, we introduce an empirical agent-based model of multi-regional knowledge creation
and demonstrate its potential for applications to current research issues intensively debated in the
geography of innovation literature. By employing an agent-based simulation approach, we intend
to complement the prevailing research tradition of econometrically modelling regional knowledge
creation, focusing on regional characteristics and determinants of knowledge creation and diffusion.
ABM offers several benefits compared to these conventional modelling techniques, which allow
for new perspectives and insights in the process of regional knowledge creation. In particular,
agent heterogeneity, underlying micro-structures of the regions, and network dynamics as an interplay
between region-internal and region-external interdependencies in the form of R&D collaboration
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linkages, can be explicitly considered. Moreover, the possibility to conduct simulation scenarios allows
the direct comparison of system behaviour within a controlled environment.

However, the ABM approach is, up to now, rarely used in the context of geography of innovation.
In our understanding, this is to a large extent due to the lack of credibility and lack of empirical closeness
and hence, lack of applicability to real-world questions. We react to this by drawing on large-scale data
sets and applying state-of-the-art methods to empirically initialise and calibrate the simulation model.
Moreover, we support the ABM by additionally employing well-established econometric tools and
concepts of network science; and, by this, using ‘the best of each world’, which we believe changes the
perception of methodological critics regarding simulation models being a black-box.

The example applications of the model show quite promising results in terms of robustness and
empirical approximation, speaking for the representativity of the model. We are able to show spatial
concentration of knowledge creation, illustrate the mechanisms of the ambiguity of the effect of sectoral
specialisation versus diversification on knowledge created, as well as to confirm the driving role of
networks for regional knowledge creation. The replication of real-world phenomena, supported by
empirical findings in related studies, is an essential step of the model validation. Hence, we conclude
that the proposed simulation model indeed shows potential to advance the scientific debate in the field
of geography of innovation in future applications making use of simulation experiments.

In addition to contributing to the scientific debate on regional knowledge creation, the proposed
simulation model is also of high relevance in the field of research, technology and innovation (RTI)
policy. Taking into account technological, institutional, as well as geographical aspects of knowledge
creation in the model allows for simulation experiments referring to RTI policy measures at the
European, the national as well as the regional levels. Such policy interventions may, for instance,
refer to regional specialisation policies, the coordination of regional policies, increased incentives
to engage in R&D collaborations or to mission-oriented public funding of specific thematic areas.
One particular field of application, in this respect, is the use of the ABM for ex-ante impact assessment of
policy interventions, such as public R&D programs. In particular, the evolutionary and forward-looking
perspective of ABMs considers the openness of socio-technical development, and the micro-perspective
on agent systems may help to understand the complexity of public policy interventions.

For both scientific research issues as well as policy aspects, the current model is sufficiently flexible
to be easily tailored to new research issues of interest, while relying on the robustness of the core model
elements and processes. Admittedly, the proposed model also has its limitations that the modeller has
to be aware of: First, the knowledge creation process is tailored to Europe as a geographical entity.
On the one hand, this is the case in terms of the data used for the empirical initialisation and calibration.
On the other hand, this also applies implicitly with respect to the model elements and processes
since the model conception is driven by the European spirit of performing R&D within the European
Framework Programmes that connect regions all over Europe via collaborative, publicly funded
research projects. It remains to be examined if the model is also suited for other regional, national and
supra-national innovation systems, such as China or the US. Second, the aim of the model is to simulate
regional knowledge creation in sufficient detail. We deliberately exclude any considerations on the
valuation of the newly created knowledge, and its measurement. Hence, one has to be aware that
respective statements cannot be made. Nevertheless, to have some kind of approximation, we include
the distinction between simple knowledge gains, and patents that can result in a knowledge gain in
the model (based on econometrically estimated probabilities using empirical information on region
characteristics). Third, regarding the representativity of the model, it is explicitly adapted to a regional
level. Although the agents are modelled at an organisational level and hence, also their knowledge
creation and learning processes, the model’s initialisation and calibration are targeted at model results
that are representative for regions. This entails that we need to refrain from any analyses at the agent
level, such as observing a single agent’s behaviour, to ensure credibility of the results.

In this study, we demonstrated the potential of the proposed simulation model with first
application examples. However, many possibilities and model features have not been exploited so
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far (e.g., knowledge gain, learning processes), allowing for many future applications and simulation
experiments. Specifically, characterising the influence of inter-regional R&D collaboration on regional
knowledge creation, disentangling local effects from global network effects on regional knowledge
creation, and the analysis of technological specialisation and geographical concentration tendencies,
come to mind. In particular, scenario analyses referring to specific RTI policy measures are of interest
to shed light on the mechanism of policy interventions at the European, the national and the regional
level. Moreover, the application of the model to other geographical areas, such as China, is of great
interest to gain an exceptional comparative perspective of regional knowledge creation in innovation
systems showing different development paths, different overall socio-economic characteristics and
conditions, different approaches in policy making and societal systems as a whole.
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Appendix A. Technical Appendix—Glossary of Model Elements and Processes

In Alphabetical Order

Collaboration memory. The collaboration memory is specified as a vector of length s (steered
by external model parameters) containing entry pairs of the last s former collaboration partners ai,
with respective probability value γs representing how successful the past collaboration has been.

Γ =

{(
ai
γ1

)
, . . . ,

(
ai
γs

)}
for i ∈ N (A1)

where N is the set of total agents. The collaboration memory vector is renewed, in a way that new
collaboration partners are ranked first in the vector, while the partner ranked last (i.e., the one longest
in the collaboration memory) drops out. To determine the degree of success of a collaboration,
the share of the actual collaborative knowledge gain over the whole research path with respect to the
maximum possible knowledge gain is evaluated; this share is interpreted as probability for a repeated
collaboration. Within the process of partner choice, a random entry pair is selected, and the respective
probability evaluated. Whereas, a positive return leads to a repeated collaboration between the two
agents, a negative return initiates the remaining process of partner choice.

Knowledge creation process. The knowledge creation process subsumes the total of the agents’
actions in creating new knowledge, including the setting of the knowledge creation mode, setting of the
research path, selection of the research strategy, learning process, and research success evaluation (see also
Figure 2 in main text for simplified process diagram). In Figure A1, the agent’s knowledge creation
process is illustrated in more detail.

Knowledge endowment/profile. The knowledge endowment of agent i represents the knowledge
profile of the agent, i.e., indicates the technology classes the agent is active in, as well as the expertise
in the respective class. Hence, the knowledge endowment can be defined as a vector of length k (with k
being the number of technology classes in the technology space)

κi = {κi1,κi2, . . . ,κik} (A2)

where the value of κik determines the expertise in the respective technology class k (level of knowledge).
Combining all vectors of the agents’ knowledge endowments results in the knowledge space.
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Knowledge gain. In the case of successful research, the agent’s knowledge gain is evaluated,
i.e., the level of expertise in the subsequent technology class (TC) is updated. In the case of internal
research, the learning outcome ψt in time step t can be written as

ψt = κil,t ∗
(
1− pτl,τl+1

)
(A3)

where pτl,τl+1 denotes the proximity between two consecutive TCs on the research path in the technology
space (indicating the similarity of the two TCs); this results in an increase in the expertise level κik+1 of

κil+1,t+1 = κil+1, t +ψt (A4)

An example of an update in the agent’s expertise level is given in Figure A2. Departing from
technology class A with a current expertise of 1.5, the knowledge gain with a transition to TC B on the
learning path—bridging a distance of 0.8 (1− pA,B) between the two TCs—amounts to 1.2.
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Figure A2. Example of expertise level update.

In the case of collaborative research, there is an additional knowledge transfer between the
collaborating agents. Knowledge transfer in the collaborative knowledge creation process is based on
the cognitive distance (knowledge distance) di jk between the two collaborating agents

di j =

√∑(
κik − κ jk

)2
(A5)
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To determine the increase in expertise for the technology class k of interest, the distance of the
levels between the collaborating agents is determined; however, the agent only gains from the partner’s
knowledge if the partner’s expertise is higher than its own. This is represented by

di jk = max
[(
κ jk − κik

)
, 0

]
(A6)

The actual amount learnt depends on the absorptive capacity—representing the trade-off between
novelty value and understandability of new knowledge. Hence, it is assumed that the amount of
knowledge gain corresponds to an inverted u-shaped relationship. Specifically, this relationship is
used to scale di jk

εk = −
1
δ

(
di jk − δ

)2
+ δ (A7)

where δ denotes the optimal learning distance (which is specified by an external model parameter).
As in the case of knowledge gain in internal research, this scaled expertise level distance is set in
relation to the technological distance that is overcome from one to the next technology class on the
research path

ϕt = εk ∗
(
1− pτl,τl+1

)
(A8)

In total, the knowledge gain in each technology class when performing collaborative research is
specified as an additive function comprising knowledge gains from the internal research ψt the agent is
performing regardless of the collaboration partner, and collaborative research. This can be written as

∆Et = ψt + ϕt (A9)

Knowledge space. Combining all vectors of the agents’ knowledge endowments results in the
knowledge space. With N being the total number of agents in the model, that can be interpreted as the
total portfolio and amount of knowledge available in the model

K =


⇀
κ1
...

⇀
κN

 (A10)

Learning process. The core of the knowledge creation process is the learning mechanism.
It is designed as a sequenced process along a specified research path, that each agent decides upon
individually according to its mode of knowledge creation (exploitative or explorative) and with respect to
its current knowledge and research target. The basis for knowledge creation along a research path
is the concept of technology space. It serves as a framework for the agents to gain new knowledge as
they move along their research paths comprising technology classes. Each research path P is a subset of
the technology space, indicating the way and direction of learning (following the concept of a ‘path’
known from social network analysis).

P = {τ1, τ2, . . . , τL} ∈ T = {τ1, τ2, . . . , τk} (A11)

where l = 1, 2, . . . , L with L being the length of the research path. Assuming technology class A being
the present knowledge that is built upon, the agent moves along its research path (e.g., {A, B, E, H} as
illustrated in Figure A3).

Between each transition to the next technology class, the research is evaluated to be successful
or not. Only in the case of successful research the new technology is acquired; otherwise the agent
tries again or eventually chooses an alternate path. How this path is chosen depends on the mode of
knowledge creation.
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Mode of collaboration. There are two different modes of collaboration (the ratio is steered
by an external parameter): (i) research-mode and (ii) service-mode. Technically, following the
research-mode, both partners follow the research path as determined by the partner actively looking
for a collaboration partner, assuming he is the consortium leader and hence specifies the research
direction. However, since the partner has (by definition of partner search) expertise on at least one
technology class on that research path, the agent is able to learn from the partner in these classes; in a
sense, he receives a certain amount of the partner’s expertise—additionally to his own research results
(the partner’s level of expertise is not reduced by this). By how much the level of expertise is increased
(how much is learnt in each technology class) depends on the cognitive distance between the two
collaborators, as well as the absorptive capacity (see ‘knowledge gain’).

Alternatively, following the service-mode, it is evaluated whether the collaboration partner has a
higher expertise in one of the technology classes on the selected research path; if so, the starting TC of
the research path to reach the research target is changed to the closest TC to the target TC (but not the
target TC itself), where the partner has higher expertise. Hence, the research target is probably reached
faster; however, there is potentially less knowledge gain since there are fewer possibilities to gain
knowledge in the particular technology classes. In the case that the partner has no higher expertise
level in any of the technology classes on the research path, its collaborative strategy is shifted to the
research-mode. Although the agent is still not able to learn directly from the partner (less expertise in
all relevant TCs), the success of the research is (most likely) positively influenced by the collaboration
partner (see ‘research success evaluation’).

Mode of knowledge creation. In selecting their research strategy, the agents can choose between
exploitative and explorative knowledge creation, where exploitative knowledge creation reflects a
direct way, and exploration a more indirect way of creating knowledge. Dependent on the research
strategy, the agents’ set their research path P. In the case of exploitation, having set the starting point of
the research path in the technology space, the agent chooses a research target (a target TC). The selection
of the target TC takes place according to a decaying probability function based on the technological
distance between the classes in the technology space, such that closer TCs exhibit a higher probability
to be chosen as a target. Hence, the distance between the starting TC and target TC indicates the degree
of radicality λ of the agent’s research endeavour. Next, the agent identifies the set of shortest paths and
can either select the shortest weighted path, or one of the shortest paths with respect to the number of
TCs on the path. In the case of exploration, the research path is determined by subsequently choosing
the next most proximate TC (originating from the agent’s current TC), where the length of the path is
determined randomly, representing the equivalent of a researching period between one and five years
(set by external parameter). The last TC of the research path is specified as the designated target TC.

Output evaluation. Whether or not a patent emerges from a knowledge gain is determined
by means of econometrically estimated coefficients influencing the patenting propensity of an
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individual agent by means of a region-specific probability that is determined by regional characteristics,
i.e., human resources, GRP per capita, R&D expenditures per capita, and degree of centrality. Note that
only fully accomplished research paths are subject to the evaluation for a patent, where each technology
class on the path represents a patent class (analogously to patent documents issued by, for example,
the European Patent Office). We estimate a standard Poisson regression model (see [75]) to account for
the true integer nature and the distributional assumptions of the number of patents as the dependent
variable. The estimated parameters are used to compute the region’s predicted empirical probabilities
(to receive at least one patent) by means of

P̂r(y > 0 |x ) = 1− P̂r(y < 1 |x ) = 1−
e−xβ̂

(
xβ̂

)m

m!
with m = 0 (A12)

Parameters. The model comprises external system parameters that are not empirically based.
A first set of parameters (Table A1) is fixed to values determined by the calibration process and, by this,
specifies a baseline scenario.

Table A1. Calibrated external system parameters.

Parameter Description Type Calibrated Value

BasePatentProb
Scaling parameter for patent
probability (originally estimated
econometrically)

[0, 1] ∈ R0 1.0

CollabInternalProb
Share of agents performing
collaborative research (vs. internal
research)

[0, 1] ∈ R0 0.5

CollabMemorySize

Length of collaboration memory
vector (determines number of
former collaboration partners being
remembered)

[1, 10] ∈ N 9

CollabModeProb
Share of agents with
service-oriented mode of
collaboration (vs. research-mode)

[0, 1] ∈ R0 0.8

ResearchStrategyProb
Share of agents with exploitative
mode of knowledge creation (vs.
explorative)

[0, 1] ∈ R0 0.3

Additionally, a second set of external system parameters (Table A2) is purely specified by means
of user input (i.e., they are not calibrated and not empirically based).

Table A2. Non-calibrated external system parameters.

Parameter Description Type Initialisation Value

ExplorativePathLength

Indicates the maximum length of
research project for explorative
mode of knowledge creation (1 step
= 1 month)

unif(0, x), x ∈ R+ 5

Delta [δ]
Determines how much is learnt
from the partner in collaborative
research (optimal learning distance)

R+ 1

Lambda [λ]

Determines the degree of radicality
in search for a research target
technology class (in exploitative
research)

[0, 1] ∈ R0 1.0

Partner choice. A core element of the collaborative research process is the agent’s choice of a
suitable collaboration partner. Ahead of the general process of partner choice, a collaboration memory
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(see ‘collaboration memory’ for details) serves to account for re-occurring collaborations with partners
of previously successful joint research projects. The general partner choice is organised along three
main steps covering the spatial, sectoral, and cognitive dimension to guarantee the best possible
real-world collaboration behaviour of agents. For the spatial dimension, i.e., the choice of an empirical
probable region to look for a suitable partner agent, we draw upon estimated probabilities for a
collaboration taking place between two agents located in two regions. Therefore, we estimate a Spatial
Interaction Model (SIM; [76] for details) using data from the EUPRO database (see risis2.eu for details
and access)comprising systematic information on collaborative research projects in EU framework
programmes and explicitly take the geographical distance between the regions, and variables indicating
a neighbouring region and country, into account in the model. Thus, we receive individual collaboration
probabilities for all combinations of regions with respect to their geographical relations. With respect
to the sectoral dimension, to determine the sector where the partner search is carried out, the proximity
between the sectoral classes (based on co-occurrences of IPC patent classes attributed to each NACE
class in Dorner and Harhoff [55]) is used to identify a suitable sector; closer sectors exhibit higher
probabilities to be chosen. Once, empirically, a suitable region and sector for the partner choice has
been identified, the agent looks for a cognitively proximate collaboration partner, i.e., a partner having
expertise in one of the technology classes that is on its research path.

Research path. A research path P is a subset of the technology space, indicating the way and
direction of learning (following the concept of a ‘path’ known from Social Network Analysis).

P = {τ1, τ2, . . . , τL} ∈ T = {τ1, τ2, . . . , τk} (A13)

where l = 1, 2, . . . , L with L being the length of the research path and T the set of all technology classes
(see ‘learning process’ and ‘technology space’ for details).

Research strategy. There are two different research strategies: internal and collaborative research.
Depending on the research strategy, different mechanisms are in place regarding the learning process,
knowledge gain and research success evaluation (see respective items in Appendix A for details).

Research success evaluation. The evaluation of the research success is a necessary intermediate
step for every transition from one technology class to another, i.e., to determine whether a new TC
on the path is reached. In the case of internal research, the research success is determined by means
of a scaled composite indicator (interpretable as success probability) depending on (i) agent-specific
characteristics cim (overall expertise and R&D quota) and (ii) technological proximity between the
involved technology classes pτl,τl+1 . This can be formalised as

P(success) = γA + (1− γ)pτl,τl+1 (A14)

with A =
∑ 1

m 1(cim > median(c·m)) and pτl,τl+1 ∈ [0, 1], where m indicates the number of agent-specific
characteristics included. In the case of collaborative research, the evaluation of the research success is
similar to the case of internal research, however, differs regarding the agent-specific characteristics;
such that the maximum value of either agent in the collaboration partnership is used for the evaluation
of the research success, and hence, increasing the probability of success. Recalling the formula of the
research success P(success) = γA + (1− γ)pτl,τl+1 , A is now defined as

A =
∑ 1

m
1(max

(
cim, c jm

)
> median(c·m)) (A15)

Technology space and technology class (TC). The technology space is defined as a network
comprising a set of technology classes, with the links indicating the technological proximity between
these classes (see Figure A3 for an illustrative example). The network is constructed by extracting
patent data from the European Patent Office for the EU-27 countries including the United Kingdom
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and Norway from 2012 to 2016 and determining the co-occurrences of IPC patent classes (3-digit) on
patent documents. Formally, the technology space S can be defined as symmetric matrix

S =


p11 p12

p21 p22

· · · p1k
. . . p2k

...
...

pk1 pk2

. . .
...

· · · pkk


kxk

(A16)

where p.. denote the Jaccard coefficient as a measure of proximity (derived from the co-occurrences of
IPC patent classes), and k is the number of technology classes considered. In Figure A4, an example of
an exemplary subset of the technology space is illustrated. The nodes indicate technology classes and
the links represent connectivity between these nodes.
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Appendix B. Robustness Checks

The robustness checks present basic model behaviour over time and model runs to demonstrate
the dynamics and robustness of the simulation model with respect to the variability of model outcomes.
The results of the robustness checks presented cover 180 steps (equals 15 years) and five simulation runs.
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Appendix C. Supplementary Material

The Index of Specialisation assesses the degree of specialisation of each region (relatively to
the other regions); however, the index does not indicate in which sectors the regions are specialised.
The Index of Specialisation is defined as

Si =
1
2

m∑
k=1

∣∣∣yik − yk

∣∣∣ (A17)
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where yik = xik/
m∑

k=1
xik and yk =

n∑
i=1

xik/
n∑

i=1

m∑
k=1

xik and x indicates patents, and i and k refer to the

region i = 1, . . . , n and sector k = 1, . . . , m, respectively. The index ranges from 0 to 1, where 1 indicates
full specialisation and 0 implies diversification.
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Table A3. Region codes (selected).

NUTS-2 Code Region Name NUTS-2 Code Region Name

AT32 Salzburg FR43 Franche-Comté
AT33 Tirol FR52 Bretagne
BE10 Région de Bruxelles-Capitale FR71 Rhône-Alpes
BE22 Prov. Limburg FR72 Auvergne
CZ08 Moravskoslezsko FR82 Provence-Alpes-Côte d’Azur
DE13 Freiburg IE02 Southern and Eastern Ireland
DE21 Oberbayern ITC4 Lombardia
DE23 Oberpfalz ITF1 Abruzzo
DE24 Oberfranken ITH3 Veneto
DE30 Berlin ITI4 Friuli-Venezia Giulia
DE93 Lüneburg NL33 Zuid-Holland
DEA2 Köln SE11 Stockholm
DEB1 Koblenz SE21 Småland med öarna
DK04 Midtjylland SE23 Västsverige
EL30 Aττική SE31 Norra Mellansverige
EL52 Kεντρική Mακεδoνία SI04 Zahodna Slovenija
ES30 Comunidad de Madrid SK04 Východné Slovensko
ES41 Castilla y León UKI3 Inner London—West
ES51 Cataluña UKI4 Inner London—East

ES61 Andalucía UKI7
Outer London—West and North
West

ES62 Región de Murcia UKK2 Dorset and Somerset
FR10 Île de France



ISPRS Int. J. Geo-Inf. 2020, 9, 477 22 of 24

References

1. Malmberg, A.; Sölvell, Ö.; Zander, I. Spatial clustering, local accumulation of knowledge and firm
competitiveness. Geogr. Ann. Ser. B Hum. Geogr. 1996, 78, 85–97. [CrossRef]

2. Audretsch, D.B.; Feldman, M.P. Knowledge Spillovers and the Geography of Innovation. In Handbook of
Regional and Urban Economics; Elsevier: Cambridge, UK, 2004; pp. 2713–2739.

3. Acs, Z.J.; Anselin, L.; Varga, A. Patents and innovation counts as measures of regional production of new
knowledge. Res. Policy 2002, 31, 1069–1085. [CrossRef]

4. Tödtling, F.; Trippl, M. One size fits all? Towards a differentiated regional innovation policy approach.
Res. Policy 2005, 34, 1203–1219.

5. Wanzenböck, I.; Scherngell, T.; Brenner, T. Embeddedness of regions in European knowledge networks:
A comparative analysis of inter-regional R&D collaborations, co-patents and co-publications. Ann. Reg. Sci.
2014, 53, 337–368.

6. Scherngell, T. The Geography of Networks and R & D Collaborations; Springer: Heidelberg/Berlin, Germany;
New York, NY, USA, 2013.

7. Fischer, M.M.; Varga, A. Spatial knowledge spillovers and university research: Evidence from Austria.
Ann. Reg. Sci. 2003, 37, 303–322. [CrossRef]

8. Rodríguez-Pose, A.; Crescenzi, R. Research and development, spillovers, innovation systems, and the genesis
of regional growth in Europe. Reg. Stud. 2008, 42, 51–67. [CrossRef]

9. Neves, P.C.; Sequeira, T.N. Spillovers in the Production of Knowledge: A meta-regression Analysis. Res. Policy
2018, 47, 750–767. [CrossRef]

10. Jaffe, A.B. Real effects of academic research. Am. Econ. Rev. 1989, 79, 957–970.
11. Paci, R.; Marrocu, E.; Usai, S. The complementary effects of proximity dimensions on knowledge spillovers.

Spat. Econ. Anal. 2014, 9, 9–30. [CrossRef]
12. Marrocu, E.; Paci, R.; Usai, S. Productivity growth in the old and new Europe: The role of agglomeration

externalities. J. Reg. Sci. 2013, 53, 418–442. [CrossRef]
13. Ó hUallacháin, B.; Leslie, T.F. Rethinking the regional knowledge production function. J. Econ. Geogr. 2007,

7, 737–752. [CrossRef]
14. Ponds, R.; Oort, F.V.; Frenken, K. Innovation, spillovers and university–industry collaboration: An extended

knowledge production function approach. J. Econ. Geogr. 2009, 10, 231–255. [CrossRef]
15. Greunz, L. Geographically and technologically mediated knowledge spillovers between European regions.

Ann. Reg. Sci. 2003, 37, 657–680. [CrossRef]
16. Moreno, R.; Paci, R.; Usai, S. Geographical and sectoral clusters of innovation in Europe. Ann. Reg. Sci. 2005,

39, 715–739. [CrossRef]
17. Breschi, S.; Lissoni, F. Knowledge spillovers and local innovation systems: A critical survey. Ind. Corp. Chang.

2001, 10, 975–1005. [CrossRef]
18. Miguélez, E.; Moreno, R. Research networks and inventors’ mobility as drivers of innovation: Evidence from

Europe. Reg. Stud. 2013, 47, 1668–1685. [CrossRef]
19. Breschi, S.; Camilla, L. Co-invention networks and inventive productivity in US cities. J. Urban Econ. 2016,

92, 66–75. [CrossRef]
20. Maggioni, M.A.; Nosvelli, M.; Uberti, T.E. Space versus networks in the geography of innovation: A European

analysis. Pap. Reg. Sci. 2007, 86, 471–493. [CrossRef]
21. Batty, M. A Generic Framework for Computational Spatial Modelling. In Agent-Based Models of Geographical

Systems; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; pp. 19–50.
22. Crooks, A.; Castle, C.; Batty, M. Key challenges in agent-based modelling for geo-spatial simulation. Comput.

Environ. Urban Syst. 2008, 32, 417–430. [CrossRef]
23. Heppenstall, A.J.; Crooks, A.T.; See, L.M.; Batty, M. Agent-Based Models of Geographical Systems; Springer

Science & Business Media: Dordrecht, The Netherlands, 2011.
24. Ausloos, M.; Dawid, H.; Merlone, U. Spatial interactions in agent-based modeling. In Complexity and

Geographical Economics; Springer: Cham, Germany, 2015; pp. 353–377.
25. Dawid, H. Agent-based models of innovation and technological change. Handb. Comput. Econ. 2006, 2,

1235–1272.

http://dx.doi.org/10.1080/04353684.1996.11879699
http://dx.doi.org/10.1016/S0048-7333(01)00184-6
http://dx.doi.org/10.1007/s001680200115
http://dx.doi.org/10.1080/00343400701654186
http://dx.doi.org/10.1016/j.respol.2018.02.004
http://dx.doi.org/10.1080/17421772.2013.856518
http://dx.doi.org/10.1111/jors.12000
http://dx.doi.org/10.1093/jeg/lbm027
http://dx.doi.org/10.1093/jeg/lbp036
http://dx.doi.org/10.1007/s00168-003-0131-3
http://dx.doi.org/10.1007/s00168-005-0021-y
http://dx.doi.org/10.1093/icc/10.4.975
http://dx.doi.org/10.1080/00343404.2011.618803
http://dx.doi.org/10.1016/j.jue.2015.12.003
http://dx.doi.org/10.1111/j.1435-5957.2007.00130.x
http://dx.doi.org/10.1016/j.compenvurbsys.2008.09.004


ISPRS Int. J. Geo-Inf. 2020, 9, 477 23 of 24

26. Gilbert, N.; Pyka, A.; Ahrweiler, P. Innovation networks-a simulation approach. J. Artif. Soc. Soc. Simul.
2001, 4, 1–13.

27. Vermeulen, B.; Pyka, A. The role of network topology and the spatial distribution and structure of knowledge
in regional innovation policy: A calibrated agent-based model study. Comput. Econ. 2018, 52, 773–808.
[CrossRef]

28. Wang, Z.; Yao, Z.; Gu, G.; Hu, F.; Dai, X. Multi-agent-based simulation on technology innovation-diffusion in
China. Pap. Reg. Sci. 2014, 93, 385–408.

29. Beckenbach, F.; Briegel, R.; Daskalakis, M. Behavioral Foundation and Agent Based Simulation of Regional
Innovation Dynamics; University of Kassel: Kassel, Germany, 2007.

30. Paier, M.; Dünser, M.; Scherngell, T.; Martin, S. Knowledge creation and research policy in science-based
industries: An empirical agent-based model. In Innovation Networks for Regional Development; Springer: Cham,
Switzerland, 2017; pp. 153–183.

31. März, S.; Friedrich-Nishio, M.; Grupp, H. Knowledge transfer in an innovation simulation model.
Technol. Forecast. Soc. Chang. 2006, 73, 138–152. [CrossRef]

32. Pyka, A.; Kudic, M.; Müller, M. Systemic interventions in regional innovation systems: Entrepreneurship,
knowledge accumulation and regional innovation. Reg. Stud. 2019, 53, 1321–1332. [CrossRef]

33. Sebestyén, T.; Varga, A. Knowledge networks in regional development: An agent-based model and its
application. Reg. Stud. 2019, 53, 1333–1343. [CrossRef]

34. Savin, I.; Egbetokun, A. Emergence of innovation networks from R&D cooperation with endogenous
absorptive capacity. J. Econ. Dyn. Control 2016, 64, 82–103.

35. Thiriot, S.; Kant, J.-D. Using Associative Networks to Represent. Adopters Beliefs in a Multiagent Model of
Innovation Diffusion. Adv. Complex Syst. 2008, 11, 261–272. [CrossRef]

36. Mueller, M.; Bogner, K.; Buchmann, T.; Kudic, M. The effect of structural disparities on knowledge diffusion
in networks: An agent-based simulation model. J. Econ. Interact. Coord. 2017, 12, 613–634. [CrossRef]

37. Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and knowledge: Local buzz, global pipelines and the process
of knowledge creation. Prog. Hum. Geogr. 2004, 28, 31–56. [CrossRef]

38. Nikolic, I.; Van Dam, K.H.; Kasmire, J. Practice. In Agent-Based Modelling of Socio-Technical Systems;
Van Dam, K.H., Nikolic, I., Lukszo, Z., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 73–140.

39. Feldman, M.P. The Geography of Innovation; Springer Science & Business Media: Dordrecht, The Netherlands,
1994; Volume 2.

40. Boschma, R.; Frenken, K. The emerging empirics of evolutionary economic geography. J. Econ. Geogr. 2011,
11, 295–307. [CrossRef]

41. Cooke, P. Regional innovation systems, clusters, and the knowledge economy. Ind. Corp. Chang. 2001, 10,
945–974. [CrossRef]

42. Ponds, R.; Van Oort, F.; Frenken, K. The geographical and institutional proximity of research collaboration.
Pap. Reg. Sci. 2007, 86, 423–443. [CrossRef]

43. Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 4, 151–162.
[CrossRef]

44. EC. Regions in the European Union. In Nomenclature of territorial Units for Statistics; NUTS 2013/EU-28;
Publication Office of the European Union Luxembourg: Luxembourg, 2015.

45. March, J.G. Exploration and exploitation in organizational learning. Organ. Sci. 1991, 2, 71–87. [CrossRef]
46. Scherngell, T.; Barber, M.J. Spatial interaction modelling of cross-region R&D collaborations:

Empirical evidence from the 5th EU framework programme. Pap. Reg. Sci. 2009, 88, 531–546.
47. Hoekman, J.; Frenken, K.; Tijssen, R.J. Research collaboration at a distance: Changing spatial patterns of

scientific collaboration within Europe. Res. Policy 2010, 39, 662–673. [CrossRef]
48. Rallet, A.; Torre, A. On Geography and Technology: The Case of Proximity Relations in Localized Innovation

Networks; Clusters and Regional Specialisation: On Geography, Technology and Networks; Pion: London,
UK, 1998.

49. Storper, M.; Venables, A.J. Buzz: Face-to-face contact and the urban economy. J. Econ. Geogr. 2004, 4, 351–370.
[CrossRef]

50. Nooteboom, B. Innovation, learning and industrial organisation. Camb. J. Econ. 1999, 23, 127–150. [CrossRef]
51. Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci.

Q. 1990, 35, 128–152. [CrossRef]

http://dx.doi.org/10.1007/s10614-017-9776-3
http://dx.doi.org/10.1016/j.techfore.2005.05.002
http://dx.doi.org/10.1080/00343404.2019.1566702
http://dx.doi.org/10.1080/00343404.2019.1622663
http://dx.doi.org/10.1142/S0219525908001611
http://dx.doi.org/10.1007/s11403-016-0178-8
http://dx.doi.org/10.1191/0309132504ph469oa
http://dx.doi.org/10.1093/jeg/lbq053
http://dx.doi.org/10.1093/icc/10.4.945
http://dx.doi.org/10.1111/j.1435-5957.2007.00126.x
http://dx.doi.org/10.1057/jos.2010.3
http://dx.doi.org/10.1287/orsc.2.1.71
http://dx.doi.org/10.1016/j.respol.2010.01.012
http://dx.doi.org/10.1093/jnlecg/lbh027
http://dx.doi.org/10.1093/cje/23.2.127
http://dx.doi.org/10.2307/2393553


ISPRS Int. J. Geo-Inf. 2020, 9, 477 24 of 24

52. Cohen, W.M.; Levinthal, D.A. Agent-Based Simulation of innovation diffusion: A review. Cent. Eur. J. Oper.
Res. 2012, 20, 183–230.

53. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MA,
USA, 2013.

54. Lovelace, R.; Ballas, D. Modelling commuter patterns: A spatial microsimulation approach for combining
regional and micro level data. In ERSA Conference Papers; European Regional Science Association: Bratislava,
Slovakia, 2012.

55. Dorner, M.; Harhoff, D. A novel technology-industry concordance table based on linked
inventor-establishment data. Res. Policy 2018, 47, 768–781. [CrossRef]

56. Thiele, J.C.; Kurth, W.; Grimm, V. Facilitating parameter estimation and sensitivity analysis of agent-based
models: A cookbook using NetLogo and R. J. Artif. Soc. Soc. Simul. 2014, 17, 11. [CrossRef]

57. McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [CrossRef]

58. Schmoch, U. Concept of a technology classification for country comparisons. In Final Report
to the World Intellectual Property Organisation (WIPO); 2008; Available online: http://www.world-
intellectual-property-organization.com/edocs/mdocs/classifications/en/ipc_ce_41/ipc_ce_41_5-annex1.pdf
(accessed on 30 July 2020).

59. Scherngell, T.; Lata, R. Towards an integrated European Research Area? Findings from Eigenvector spatially
filtered spatial interaction models using European Framework Programme data. Pap. Reg. Sci. 2013, 92,
555–577. [CrossRef]

60. Maggioni, M.A.; Uberti, T.E. Knowledge networks across Europe: Which distance matters? Ann. Reg. Sci.
2009, 43, 691–720. [CrossRef]

61. Griliches, Z. Patent Statistics as Economic Indicators: A Survey; National Bureau of Economic Research:
Cambridge, MA, USA, 1990.

62. Jaffe, A.B.; Trajtenberg, M. Patents, Citations, and Innovations: A Window on the Knowledge Economy; MIT Press:
Cambridge, MA, USA, 2002.

63. Gertler, M.S. Tacit knowledge and the economic geography of context, or the undefinable tacitness of being
(there). J. Econ. Geogr. 2003, 3, 75–99. [CrossRef]

64. Moulaert, F.; Sekia, F. Territorial innovation models: A critical survey. Reg. Stud. 2003, 37, 289–302. [CrossRef]
65. Paci, R.; Usai, S. Technological enclaves and industrial districts: An analysis of the regional distribution of

innovative activity in Europe. Reg. Stud. 2000, 34, 97–114. [CrossRef]
66. Glaeser, E.L.; Kohlhase, J.E. Cities, regions and the decline of transport costs. In Fifty Years of Regional Science;

Springer: Berlin/Heidelberg, Germany, 2004; pp. 197–228.
67. Beaudry, C.; Schiffauerova, A. Impacts of collaboration and network indicators on patent quality: The case of

Canadian nanotechnology innovation. Eur. Manag. J. 2011, 29, 362–376. [CrossRef]
68. Van der Panne, G. Agglomeration externalities: Marshall versus jacobs. J. Evol. Econ. 2004, 14, 593–604.

[CrossRef]
69. Marshall, A. Principles of Economies; Macmillan: London, UK, 1890.
70. Jacobs, J. The Economy of Cities; Random House: New York, NY, USA, 1969.
71. Marshall, A. Industry and Trade; Macmillan: London, UK, 1920.
72. Wanzenböck, I.; Piribauer, P. R&D networks and regional knowledge production in Europe: Evidence from a

space-time model. Pap. Reg. Sci. 2018, 97, S1–S24.
73. Sebestyén, T.; Varga, A. Research productivity and the quality of interregional knowledge networks. Ann.

Reg. Sci. 2013, 51, 155–189. [CrossRef]
74. Scherngell, T. The Geography of R&D Collaboration Networks. In Handbook of Regional Science; Fischer, M.M.,

Nijkamp, P., Eds.; Springer: Berlin, Germany, 2019.
75. Long, S.J.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata; Stata Press: College

Station, TX, USA, 2006.
76. Fischer, M.M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques; Springer Science & Business

Media: Berlin, Germany, 2011.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.respol.2018.02.005
http://dx.doi.org/10.18564/jasss.2503
http://dx.doi.org/10.1080/00401706.2000.10485979
http://www.world-intellectual-property-organization.com/edocs/mdocs/classifications/en/ipc_ce_41/ipc_ce_41_5-annex1.pdf
http://www.world-intellectual-property-organization.com/edocs/mdocs/classifications/en/ipc_ce_41/ipc_ce_41_5-annex1.pdf
http://dx.doi.org/10.1111/j.1435-5957.2012.00419.x
http://dx.doi.org/10.1007/s00168-008-0254-7
http://dx.doi.org/10.1093/jeg/3.1.75
http://dx.doi.org/10.1080/0034340032000065442
http://dx.doi.org/10.1080/00343400050006032
http://dx.doi.org/10.1016/j.emj.2011.03.001
http://dx.doi.org/10.1007/s00191-004-0232-x
http://dx.doi.org/10.1007/s00168-012-0545-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Model Description 
	Empirical Foundations 

	Results 
	Discussion and Concluding Remarks 
	Technical Appendix—Glossary of Model Elements and Processes 
	Robustness Checks 
	Supplementary Material 
	References

