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Abstract: Roadside vegetation can affect the performance of installed road lighting. We demonstrate
a workflow in which a car-mounted measurement system is used to assess the light-obstructing
effect of roadside vegetation. The mobile mapping system (MMS) includes a panoramic camera
system, laser scanner, inertial measurement unit, and satellite positioning system. The workflow and
the measurement system were applied to a road section of Munkkiniemenranta, Helsinki, Finland,
in 2015 and 2019. The relative luminance distribution on a road surface and the obstructing vegetation
were measured before and after roadside vegetation pruning applying a luminance-calibrated mobile
mapping system. The difference between the two measurements is presented, and the opportunities
provided by the mobile 3D luminance measurement system are discussed.
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1. Introduction

Road lighting is installed mainly to increase traffic safety. Road lighting can reduce the number of
collisions and fatalities significantly [1–7]. For example, in a meta-analysis by Elvik [8], road lighting
was concluded to reduce fatal accidents by 65%, accidents with injuries by 30%, and collisions with
only property damage by 15%. Moreover, correlations between speeding and lack of installed road
lighting have been found [9]. However, lighting installation, maintenance, and use are expenses
for municipalities. Furthermore, excess lighting or light pollution is harmful for city dwellers and
fauna [10,11]. Hence, proper lighting design is crucial. Road lighting is installed following certain
criteria or national regulations that often follow an international technical report such as ANSI/IES
RP–8–14 (American National Standards Institute/Illuminating Engineering Society Recommended
Practice) or CEN/TR (Comité Européen de Normalisation/Technical Report) 13201:2015 [12,13].
Two important regulated measures are the overall uniformity and longitudinal uniformity of the road
surface luminance distribution. Usually, the desired uniformity is present when the road lighting is
installed. However, as the neighbouring vegetation grows, the lighting can become occluded and the
safety critical uniformity in luminance distribution is compromised.

In urban landscaping, the effects of trees and green areas are considered almost solely
positive [14,15]. Green elements most certainly increase the attractiveness of city spaces, reduce
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stress levels of the city inhabitants, and provide cover from the weather or direct sunlight [16–18].
Moreover, trees and vegetation increase the chance of introducing desired urban fauna to the built
environment [19]. However, as living things, trees are constantly under change. This can cause problems
when the vegetation shares the location with safety-critical infrastructure such as road lighting.

Mobile mapping systems are widely used for the 3D measurement of roads and built
environments [20–24], forests and vegetation [25], and especially for collecting data for urban tree
inventories [26,27]. Furthermore, luminance measurements have been integrated into point clouds
scanned terrestrially and from mobile platforms [28–30]. However, mobile luminance mapping
systems have not yet been utilised to measure the effect that roadside vegetation pruning has on road
surface luminance.

The objective of this study is to demonstrate a workflow in which a mobile mapping system is
applied in order to assess the light-occluding effect caused by the roadside vegetation. Moreover,
we measure how much the occlusion affects the luminance distribution on the road surface.
The occlusion effect is presented by comparing road surface luminance uniformity before and
after roadside tree pruning. The measurements were performed applying a mobile laser scanning
system, and the road surface luminance uniformities were analysed and compared in three dimensions.
Furthermore, the data were georeferenced. Finally, the benefits of measuring the light-occluding effect
of roadside vegetation are discussed. This article contributes to the scientific discussion by presenting
a novel and interdisciplinary approach to examine the connection between the road surface luminance
metrics and light-occluding vegetation, which is an important aspect in traffic safety. This approach
is presented with a usability study that was conducted on a part of a suburban street. This paper’s
contribution is to ignite scientific discussion about two primary aspects. Firstly, we want to discuss the
luminance measurement standard, and how it should be revisited, as novel measurement methods
emerge. Secondly, we want to introduce the idea of nighttime measurement to the community of
mobile mapping technology. The contribution of this paper is to present useful examples and evidence
about these two aspects mentioned above.

2. Materials and Methods

2.1. Measurement Area and Conditions

Mobile measurements were performed two times on a street called Munkkiniemenranta,
in Helsinki, Finland. Munkkiniemenranta is a quiet, 1 km long, sub-urban road. When heading
northwest, Munkkiniemenranta is sided by a park and the seashore on the left-hand side, and the road
lighting instalment and a road verge with trees on the right-hand side. Most of the trees were taller
than the mounting height of the luminaires (8.0 m), and in the year 2015, the branches of the trees were
severely occluding the road lighting. Both measurements were performed at night when the road
surface was illuminated solely by the road luminaires. The measurement vehicle was operated with
only the parking lights on. Hence, the vehicle’s effect on the road surface luminance was negligible.
As the luminaires were the same luminaires during both of the measurements, there was no measurable
change in the spectral power distribution that would have affected the luminance measurement.
Furthermore, the measured road surface luminance distributions were compared in relative metrics.
Hence, the effect of dimming or aging of the luminaires was also negligible. The conditions on the
road surface were dry during both of the measurements, and the effect of background illumination
from the surrounding environment was insignificant.

The first measurement was done in September 2015, and the second measurement in April 2019.
During the summer of 2018, the trees along Munkkiniemenranta were pruned by the municipality
of Helsinki. Five segments of the street were selected for surface luminance analysis. Each segment
was the lane on the right-hand side when heading in the northwest direction. Longitudinally, each
segment was the area between two adjacent luminaires. The segments were adjacent, creating the area
of the right-hand lane between six consecutive luminaires when combined. Figure 1 presents the area
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of measurement divided into road segments (A–E). The luminaires in the measurement area were 8450
lumen AEC Illuminazione LED luminaires with a longitudinal installation distance of 33 metres.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 3 of 13 

 

 
Figure 1. The full area of measurement and the analysed road surface segments A, B, C, D, and E. [31] 
(Orthophotograph © Helsinki City Survey Department, 2017). 

2.2. Measurement System and Data Processing 

The mobile mapping system (MMS) used was a Trimble MX2, which is a vehicle-mounted and 
geopositioned measurement system that combines panoramic photometry and laser scanning. In 
Trimble MX2, the geopositioning is performed by the Trimble AP20 GNSS–Inertial System, and the 
point cloud is scanned with two SLM–250 Class 1 laser heads, which can collect 72,000 points per 
second. The range of the laser scanning is up to 250 m, and according to the producer, the ranging 
accuracy of the laser scanning subsystem is ± 1 cm at 50 m for a Kodak white card [32]. However, the 
range accuracy was not measured or assessed in our experimental environment. 

In the first and second measurements, the road surface luminance was measured with Ladybug3 
and Ladybug5 panoramic camera systems, respectively. Both camera systems had been 
radiometrically calibrated under laboratory conditions using an Optronic Laboratories Inc., model 
455–6–1 for the reference luminance and a Konica Minolta CS–2000 spectroradiometer as a luminance 
meter [33]. The luminance values were interpreted from the camera R (red), G (green), and B (blue) 
values with the factor obtained in the calibration, and Equation (1) from the IEC [34] standard: 

Lr = 0.2126R + 0.7152G + 0.0722B  
 

(1)

During the measuring, images were captured at 2 metre intervals, and the maximum 
measurement velocity was 10 m/s. In post processing, the image RGB (red, green, blue) values were 
registered into the laser scanned point cloud by visually interpreting the point cloud features when 
superimposed on the images. This is called the interactive orientation method [35–38]. The interactive 
orientation method was first applied to data collected during the daytime in order to obtain 
orientation settings for the nighttime data. Finally, the RGB values were calculated as absolute 
luminance values applying Equation (1) and a camera-specific calibration constant, and registered as 
a scalar for each point cloud point. The average point density on the road surface was 1450 points per 
square metre. 

For noise reduction, the analysed road surface areas’ luminance values were median filtered 
with a diameter of 1.0 metre. Hence, each point had the median luminance value among the points 
within a 0.5 metre distance of itself. We chose to use the metrics overall uniformity, Uo, and 
longitudinal uniformity, Ui, to describe the lighting quality. Uo is the ratio between the lowest 
luminance and the average luminance within the road segment, and Ui is the ratio of the lowest 

Figure 1. The full area of measurement and the analysed road surface segments A, B, C, D, and E. [31]
(Orthophotograph© Helsinki City Survey Department, 2017).

2.2. Measurement System and Data Processing

The mobile mapping system (MMS) used was a Trimble MX2, which is a vehicle-mounted
and geopositioned measurement system that combines panoramic photometry and laser scanning.
In Trimble MX2, the geopositioning is performed by the Trimble AP20 GNSS–Inertial System, and
the point cloud is scanned with two SLM–250 Class 1 laser heads, which can collect 72,000 points per
second. The range of the laser scanning is up to 250 m, and according to the producer, the ranging
accuracy of the laser scanning subsystem is ± 1 cm at 50 m for a Kodak white card [32]. However,
the range accuracy was not measured or assessed in our experimental environment.

In the first and second measurements, the road surface luminance was measured with Ladybug3
and Ladybug5 panoramic camera systems, respectively. Both camera systems had been radiometrically
calibrated under laboratory conditions using an Optronic Laboratories Inc., model 455–6–1 for the
reference luminance and a Konica Minolta CS–2000 spectroradiometer as a luminance meter [33].
The luminance values were interpreted from the camera R (red), G (green), and B (blue) values with
the factor obtained in the calibration, and Equation (1) from the IEC [34] standard:

Lr = 0.2126R + 0.7152G + 0.0722B (1)

During the measuring, images were captured at 2 metre intervals, and the maximum measurement
velocity was 10 m/s. In post processing, the image RGB (red, green, blue) values were registered into
the laser scanned point cloud by visually interpreting the point cloud features when superimposed
on the images. This is called the interactive orientation method [35–38]. The interactive orientation
method was first applied to data collected during the daytime in order to obtain orientation settings
for the nighttime data. Finally, the RGB values were calculated as absolute luminance values applying
Equation (1) and a camera-specific calibration constant, and registered as a scalar for each point cloud
point. The average point density on the road surface was 1450 points per square metre.
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For noise reduction, the analysed road surface areas’ luminance values were median filtered with
a diameter of 1.0 metre. Hence, each point had the median luminance value among the points within
a 0.5 metre distance of itself. We chose to use the metrics overall uniformity, Uo, and longitudinal
uniformity, Ui, to describe the lighting quality. Uo is the ratio between the lowest luminance and
the average luminance within the road segment, and Ui is the ratio of the lowest luminance to the
highest luminance on the centre line of the measured lane. The descriptions for these measurements
are from the European CEN technical report for road lighting, and they are in use in Finnish road
lighting regulations [13]. Furthermore, both of these measures are relative measures. Thus, they can be
compared despite the age-dependent luminous flux output decrease in luminaires. The measurement
area on the Munkkiniemenranta road is classified as road class ME5 according to Finnish road lighting
design regulations. In the ME5 class, the target values for Uo and Ui are 0.35 and 0.40, respectively.

The change in the amount of light-occluding vegetation between the years 2015 and 2019 was
assessed applying a voxel grid. For each road segment A–E, the space between the road surface and
the mounting height of the light sources was sectioned from the point cloud for analysis. For each
sub-sectioned point cloud, a voxel grid was created. The voxel grid was created applying a Python
program. The program first searched for the boundaries of the sub-sectioned point cloud and created a
bounding box. This bounding box was then divided into voxels with a chosen edge length. The voxel
grid was populated with the sub-sectioned point cloud, and then the voxel grid was systematically
browsed through voxel by voxel. If a voxel contained any number of points it was assigned a binary
value 1, and if a voxel contained no points it was assigned a binary value 0. The number of voxels
with any number of scanned points in them was considered the measure for the occluding vegetation.
In other words, the threshold of occupancy was one for the voxels that were considered light occluding,
and the number of occluding voxels between the road surface and the height of the light source was
the measure of occlusion. Finally, the numbers of occluding voxels from the year 2015 and the year
2019 were compared. Measuring the volume or biomass of vegetation by laser-scanning is widely
studied, and a variety of voxel sizes are suggested depending on the measurement application [39–48].
In this study, we chose to test cubic voxels with edge lengths of 0.02 m, 0.05 m, 0.10 m, and 0.40 m in
order to assess how the voxel cell size affects the calculation of occluding vegetation. When measuring
vegetation volume or biomass, the occlusion is often a challenge. In our study, however, the occlusion
is exactly the phenomenon we want to measure, and we consider the calculation described above
suitable for estimating the layers of occluding vegetation.

In this study, the point cloud sectioning was performed manually in point cloud editing software
CloudCompare. We were able to detect every point in the space between the light source and the lane
surface as vegetation, since this experimental area was witnessed by us in situ. We identified that
the only illumination-blocking features in the measurement area were the tree branches. For large
areas, more automated vegetation detection should be considered [49–52]. For this study, however,
this manual method was usable, as our main purpose was to simply identify if there is any sort of
correlation between the road surface luminance distribution and the number of occluding voxels
between the luminaire mounting height and the road surface. For clarification, luminance values
were not calculated to or from the voxel grid at any point. The illumination engineering measures
overall luminance uniformity and longitudinal luminance uniformity were calculated from the MMS
measurements. Both of these luminance uniformity measures reduce to a single relative value for each
road segment, which is the road surface between two adjacent luminaires. The voxel grid was created
only for the occluding points, and the number of occluding voxels was considered the measure of
occlusion for each road segment, which is the area between two adjacent luminaires. The luminance
uniformities and the occlusion measures were then compared.
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3. Results

3.1. Overall and Longitudinal Luminance Uniformities

The measured values for Uo and Ui before (2015) and after (2019) roadside vegetation pruning are
presented in Table 1.

Table 1. The overall and longitudinal uniformities in the road segments (A–E) on the road surface
before and after the vegetation trimming. Furthermore, the relative (rel.) differences between the 2015
and 2019 measurements for the both uniformity measures are presented in their individual columns.

Segment Uo before Uo after Uo rel. Difference Ui before Ui after Ui rel. Difference

A 0.24 0.57 137.5% 0.29 0.41 41.4%
B 0.09 0.44 388.9% 0.05 0.31 520.0%
C 0.17 0.42 147.1% 0.13 0.26 100.0%
D 0.14 0.50 257.1% 0.05 0.39 680.0%
E 0.30 0.53 76.7% 0.17 0.33 94.1%

Average 0.19 0.49 157.9% 0.14 0.34 142.9%

Figure 2 illustrates the pseudo-coloured luminance values on the road surface for the whole area
of measurement before (2015) and after (2019) tree pruning.
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Figure 3 presents a visualisation of the measured vegetation directly from the side of the
measurement area and from diagonally above the measurement area. In the laser scanned point
clouds before the pruning, the lower branches block more laser scans and the canopy was not mapped.
Conversely, the laser scans after the pruning penetrate to the upper branches. More obviously, the
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removed lower branches and full trees can easily be detected when comparing the old and new
point clouds.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 13 
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Pseudo-coloured maps of the height (m) or the z-axis in local coordinates.

3.2. Occluding Voxel Analysis

Table 2 presents the number of voxels that encompassed light-occluding vegetation for the
measurements conducted before (2015) and after (2019) the roadside tree pruning. Furthermore, Table 2
presents the relative change in the number of voxels that encompassed light-occluding vegetation
between the measurements conducted in 2015 and 2019. All of the voxel numbers are presented for
road segments A–E, and for cubic voxels with edge lengths of 0.02, 0.05, 0.1, and 0.4 m.

Table 2. The number of voxels that encompass occluding vegetation for the space between the road
surface and the mounting height of the light sources in the 2015 and 2019 measurements. The numbers
are presented for road segments A–E and cubic voxels with 0.02, 0.05, 0.1, and 0.4 m long edges.
The lowest row cluster presents the average number of occluding vegetation among the road segments
for voxel size. For each road segment (A–E) and their average, the relative decrease percentage in the
number of occluding voxels is presented.

0.02 m 0.05 m 0.1 m 0.4 m

A (2015) 11,972 10,335 6584 634
A (2019) 5364 4949 3672 387

–55.2% –52.1% –44.2% –39.0%
B (2015) 79,148 68,023 43,503 3909
B (2019) 31,990 29,664 22,295 1999

–59.6% –56.4% –48.8% –48.9%
C (2015) 22,412 19,602 12,412 933
C (2019) 14,661 13,599 10,331 849

–34.6% –30.6% –16.8% –9.0%
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Table 2. Cont.

0.02 m 0.05 m 0.1 m 0.4 m

D (2015) 91,272 78,677 46,808 3836
D (2019) 30,482 28,433 20,903 1864

–66.6% –63.9% –55.3% –51.4%
E (2015) 18,063 15,856 10,233 944
E (2019) 0 0 0 0

–100.0% –100.0% –100.0% –100.0%
Average (2015) 44,573.4 38,498.6 23,908.0 2051.2
Average (2019) 16,499.4 15,329.0 11,440.2 1019.8

–63.2% –60.6% –53.0% –49.6%

The number of voxels with at least one scanned point of vegetation decreases as the size of the
voxel increases.

3.3. Occluding Voxels and Luminance Uniformity Comparison

Table 3 presents the absolute value of the change percentage in overall uniformity, longitudinal
uniformity, and the number of occluding voxels between the measurements conducted in 2015 and
2019 for each road segment A–E. Figure 4 presents the same values as a column graph.

Table 3. The absolute value of the change percentage in overall uniformity Uo, longitudinal uniformity
Ui, and the number of occluding voxels (edge length: 0.02; 0.05; 0.10; 0.40 m) between the measurements
conducted in 2015 and 2019 for each road segment A–E.

A B C D E

∆Uo 138% 389% 147% 257% 77%
∆Ui 41% 520% 100% 680% 94%

∆ voxels (0.02 m) 55% 60% 35% 67% 100%
∆ voxels (0.05 m) 52% 56% 31% 64% 100%
∆ voxels (0.10 m) 44% 49% 17% 55% 100%
∆ voxels (0.40 m) 39% 49% 9% 51% 100%
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Figure 4. The absolute value of the change percentage in overall uniformity Uo, longitudinal uniformity
Ui, and the number of occluding voxels (edge lengths: 0.02; 0.05; 0.10; 0.40 m) between the measurements
conducted in 2015 and 2019 for each road segment A–E.

The decrease in vegetation voxels correlates with improved luminance uniformity values for road
segments A–D. For road segment E, vegetation removal also correlates with improved luminance
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uniformities but not in the same proportion as with road segments A–D. This may be explained by
the fact that there was very little occluding vegetation in the 2015 measurement to begin with, and
all of it was removed before the 2019 measurement. Hence, the relative number of removed voxels
encompassing vegetation was 100% even though there was not that much room for improvement in
the luminance uniformity values.

4. Discussion

In this study, we presented a measurement system and a workflow to assess the road
lighting-occluding effect of roadside vegetation. In particular, we described a case in which we used a
workflow involving a change analysis of the road surface luminance measures for the overall uniformity
and longitudinal uniformity measured before and after roadside vegetation pruning. Applying the
developed workflow, we verified the improvement in road surface overall and longitudinal luminance
uniformities after vegetation pruning.

The authors deem the presented system to be an excellent utility for road lighting measurements.
Compared to static measurements, mobile measuring enables fast coverage and data capture of large
road or street entireties. With the presented system, the result is a three-dimensional luminance point
cloud. The 3D luminance models are undeniably more versatile than the conventional 2D luminance
images. Each measured luminance point is geo-referred and in scale, which is not possible with 2D
imaging luminance photometry. For the specific case in this study—the verification of improvement
in road surface luminance uniformities—the presented measurement system performed very well.
Furthermore, the amount of vegetation removed between 2015 and 2019 was analysed applying a voxel
grid. The amount of removed vegetation was compared to the improved overall luminance uniformity
and longitudinal uniformity values. A correlation was found between these metrics. However, more
research is needed to verify the correlation. Moreover, we applied a manual method for point cloud
sectioning and occluding voxel detection. The manual method was manageable for our usability
study in a limited area. For practical mobile mapping applications, these manual procedures are not
feasible, and automation should be considered both for vegetation detection and for the division of
measured area. For vegetation detection and feature extraction, machine learning tools such as support
vector machines, associative Markov networks, or supervised classification could be applied [48–50].
For road area sectioning, classification based on proximity of known road coordinates, and raster
image processing techniques could be useful [51].

However, the presented system is not without shortcomings. Firstly, the image capturing of the
presented measurement system does not fully follow the guidelines of any road lighting measurement
standard. It would naturally be possible to modify the MMS to follow the standards. In this study,
this kind of modification would have drastically reduced the point density and accuracy of the point
cloud. The authors considered this would have been counter-innovative and decided to use the mobile
mapping system at its highest settings possible for the conditions. Likewise, the measurement standard
could be updated to include the versatile possibilities of 3D mobile mapping. Secondly, the dynamics
and the signal-to-noise ratio of MMS panoramic cameras are not yet optimal and cannot compete
with stationary imaging luminance photometry in this respect. However, these technologies are
continuously improving. The authors decided that the technology was developed enough to initiate a
scientific conversation about mobile luminance measurement. Soon, the difference between mobile
and static measurement quality will be negligible in terms of road surface luminance measurements.

In this study, the geometry of the road environment was measured solely with a laser scanner, and
the captured digital images were projected onto the geometry. Urban vegetation has also been mapped
using solely camera-based photogrammetry [53]. However, the following aspects encourage the use of
laser scanning. Firstly, a laser scanner measures absolute distances, whereas camera-based data are
only relative in scale. Secondly, laser scanners are active sensors, which means they can measure the
geometry in dark conditions, whereas camera-based photogrammetry always requires an external
light source to emit light onto the measured surfaces. Especially when measuring under nighttime
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conditions, the geometry measurement quality would decrease if only camera-based photogrammetry
was used. The third option would be a hybrid method in which the geometry is measured using both
laser scanners and camera-based photogrammetry. This has been a favoured method for the daytime
terrestrial measurement of built environments [54]. The capabilities of this hybrid method should be
assessed in future studies for the measurement of artificially lit road environments.

Urban green areas, trees, and vegetation will become even more emphasised and prominent in
the future. The shading and temperature-reducing effect of urban vegetation helps to counter the
effects of climate change [14,55]. Furthermore, trees increase the property value [56], potentially reduce
crime [57,58], and improve air quality [54]. In terms of traffic infrastructure, street lighting obstruction
is not the only negative effect of roadside vegetation. Growing trees can also cause damage to the
pavement [59]. Conveniently, the measurement system presented in this study could possibly also
map pavement damage, and thus, measure these two negative effects caused by urban vegetation with
one measurement.

The emergence of low-cost equipment further increases the feasibility of applying MLS in an
increasing number of applications. Jaakkola et al [60] have demonstrated the performance of affordable
MLS systems. The reduction of the size and weight of MLS systems has also enabled their installation
on UAVs, potentially offering a less occluded viewpoint of the urban environment. Highly portable
MLS systems can also be utilised by pedestrians, further increasing their flexibility [61]. Systems that
rely on the SLAM principle are also able to operate in GNSS-occluded areas. These developments
potentially expand the applicability of MLS-based luminance mapping to tunnels, the undersides of
bridges, pedestrian areas etc., depending on the performance and suitability of the imaging sensors
in these systems. As 3D mapping and imaging have also been demonstrated in near-consumer-level
systems, it can also be argued that to some extent luminance mapping could also be carried out via a
crowdsourcing-oriented approach in pedestrian areas, for example.

In addition to road lighting assessments, roadside vegetation mapping has various applications.
Moose, deer, and elk collisions correlate with roadside vegetation, as they are browsing sites for
Cervidae [62]. On the other hand, roadside vegetation has been found to reduce frustration and
aggression in drivers [63]. Furthermore, roadside trees have the potential to reduce light pollution
from street luminaires [64]. Due to its positive outcome, roadside vegetation is preferred as long as it
can be controlled. The measurement system presented in this study is an optimal utility for control.

5. Conclusions

This study demonstrated a novel and specific application for a mobile mapping system.
The presented practice can have a direct effect on traffic safety and energy efficiency as the road
lighting can be improved and the roadside vegetation reworked according to the measurements.
Furthermore, this study is connected to technological trends such as high-definition 3D semantic
maps and even autonomous vehicles, as autonomous vehicles could continuously collect the data for
vegetation and luminance analysis. Mobile mapping and digital imaging technologies will inevitably
improve. Likewise, accelerated urbanization will set higher demands for semantic 3D maps. Most of
the mobile mapping is done during the day. Road lighting measurement is one incentive for nighttime
mobile mapping. Simultaneously with the lighting measurements, the nighttime urban environment
is measured, and this more general measurement can be used to create 3D nighttime models of the
urban environment. However, it is important to note that these technological trends could evolve via
complementary routes. The ultimate goal for real-time updated 3D city models representing accurate
lighting data among the other imaginable semantic information will be achieved gradually.



ISPRS Int. J. Geo-Inf. 2020, 9, 455 10 of 13

Author Contributions: Conceptualization, Mikko Maksimainen. Matti Kurkela, Matti T. Vaaja, Juho-Pekka Virtanen,
and Hannu Hyyppä; methodology, Mikko Maksimainen Matti Kurkela, Matti T. Vaaja and Juho-Pekka Virtanen;
software, Mikko Maksimainen, Matti Kurkela, Matti T. Vaaja and Juho-Pekka Virtanen; investigation,
Mikko Maksimainen. Matti Kurkela, Matti T. Vaaja and Juho-Pekka Virtanen; resources, Hannu Hyyppä
and Matti T. Vaaja; data curation, Mikko Maksimainen, and Matti Kurkela; writing—original draft preparation,
Mikko Maksimainen. Matti Kurkela, Matti T. Vaaja, and Juho-Pekka Virtanen; writing—review and editing,
Mikko Maksimainen, Matti Kurkela, Matti T. Vaaja, Juho-Pekka Virtanen, Arttu Julin, Kaisa Jaalama,
and Hannu Hyyppä; visualization, Mikko Maksimainen supervision, Hannu Hyyppä, and Matti T. Vaaja; project
administration, Hannu Hyyppä; funding acquisition, Hannu Hyyppä, Kaisa Jaalama, Juho-Pekka Virtanen and
Matti T. Vaaja; All authors have read and agreed to the published version of the manuscript.

Funding: This research project was funded by the Academy of Finland and the Centre of Excellence in Laser
Scanning Research (CoE–LaSR) (No. 272195, 307362). The Strategic Research Council of the Academy of Finland
is acknowledged for financial support for the project “Competence Based Growth Through Integrated Disruptive
Technologies of 3D Digitalization, Robotics, Geospatial Information and Image Processing/Computing—Point
Cloud Ecosystem (No. 293389, 314312)”.

Acknowledgments: We would like to thank Mitaten Oy for cooperation with the luminance measurement equipment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Payne, D.M.; Fenske, J.C. An analysis of the rates of accidents, injuries and fatalities under different light
conditions: A Michigan emergency response study of state police pursuits. Policing 1997, 20, 357–373.
[CrossRef]

2. Oya, H.; Ando, K.; Kanoshima, H.A. Research on interrelation between illuminance at intersections and
reduction in traffic accidents. J. Light Vis. Environ. 2002, 26, 29–34. [CrossRef]

3. Plainis, S.; Murray, I.J.; Pallikaris, I.G. Road traffic casualties: Understanding the night–time death toll.
Inj. Prev. 2006, 12, 125–138. [CrossRef] [PubMed]

4. Sullivan, J.M.; Flannagan, M.J. Determining the potential safety benefit of improved lighting in three
pedestrian crash scenarios. Accid. Anal. Prev. 2007, 39, 638–647. [CrossRef] [PubMed]

5. Wanvik, P.O. Effects of road lighting: An analysis based on Dutch accident statistics 1987–2006. Accid. Anal.
Prev. 2009, 41, 123–128. [CrossRef]

6. Jackett, M.; Frith, W. Quantifying the impact of road lighting on road safety—A New Zealand Study. IATSS
Res. 2013, 36, 139–145. [CrossRef]

7. Yannis, G.; Kondyli, A.; Mitzalis, N. Effect of lighting on frequency and severity of road accidents. Proc. Inst.
Civ. Eng. Transp. 2013, 166, 271–281. [CrossRef]

8. Elvik, R. Meta–analysis of evaluations of public lighting as accident countermeasure. Transp. Res. Rec. 1995,
1485, 12–24.

9. de Bellis, E.; Schulte–Mecklenbeck, M.; Brucks, W.; Herrmann, A.; Hertwig, R. Blind haste: As light decreases,
speeding increases. PLoS ONE 2018, 13, e0188951. [CrossRef]

10. Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.C.; Henckel, D.; Hänel, A.; Kappeler, P.M.; Völker, S.;
Schwope, A.; et al. The dark side of light: A transdisciplinary research agenda for light pollution policy.
Ecol. Soc. 2010, 15, 13. [CrossRef]

11. Rodríguez, A.; Burgan, G.; Dann, P.; Jessop, R.; Negro, J.J.; Chiaradia, A. Fatal attraction of short–tailed
shearwaters to artificial lights. PLoS ONE 2014, 9, e110114. [CrossRef]

12. The Illuminating Engineering Society of North America. ANSI/IES RP-8-14, Roadway Lighting; The Illuminating
Engineering Society of North America: NY, USA, 2014; ISBN 978-0-87995-299-0.

13. European Committee for Standardization (CEN). CEN-EN 13201-3, Road lighting—Part 3: Calculation of
Performance; European Committee for Standardization (CEN): Brussels, Belgium, 2015.

14. Pitman, S.D.; Daniels, C.B.; Ely, M.E. Green infrastructure as life support: Urban nature and climate change.
Trans. R. Soc. S. Aust. 2015, 139, 97–112. [CrossRef]

15. Nieuwenhuijsen, M.J.; Khreis, H.; Triguero–Mas, M.; Gascon, M.; Dadvand, P. Fifty shades of green.
Epidemiology 2017, 28, 63–71. [CrossRef] [PubMed]

16. Chang, C.R.; Li, M.H. Effects of urban parks on the local urban thermal environment. Urban For. Urban Green.
2014, 13, 672–681. [CrossRef]

http://dx.doi.org/10.1108/13639519710169180
http://dx.doi.org/10.2150/jlve.26.1_29
http://dx.doi.org/10.1136/ip.2005.011056
http://www.ncbi.nlm.nih.gov/pubmed/16595429
http://dx.doi.org/10.1016/j.aap.2006.10.010
http://www.ncbi.nlm.nih.gov/pubmed/17126278
http://dx.doi.org/10.1016/j.aap.2008.10.003
http://dx.doi.org/10.1016/j.iatssr.2012.09.001
http://dx.doi.org/10.1680/tran.11.00047
http://dx.doi.org/10.1371/journal.pone.0188951
http://dx.doi.org/10.5751/ES-03685-150413
http://dx.doi.org/10.1371/journal.pone.0110114
http://dx.doi.org/10.1080/03721426.2015.1035219
http://dx.doi.org/10.1097/EDE.0000000000000549
http://www.ncbi.nlm.nih.gov/pubmed/27525811
http://dx.doi.org/10.1016/j.ufug.2014.08.001


ISPRS Int. J. Geo-Inf. 2020, 9, 455 11 of 13

17. Elsadek, M.; Liu, B.; Lian, Z.; Xie, J. The influence of urban roadside trees and their physical environment on
stress relief measures: A field experiment in Shanghai. Urban For. Urban Green. 2019, 42, 51–60. [CrossRef]

18. Huang, Q.; Yang, M.; Jane, H.A.; Li, S.; Bauer, N. Trees, grass, or concrete? The effects of different types of
environments on stress reduction. Landsc. Urban Plan. 2020, 193, 103654. [CrossRef]

19. Threlfall, C.G.; Williams, N.S.; Hahs, A.K.; Livesley, S.J. Approaches to urban vegetation management and
the impacts on urban bird and bat assemblages. Landsc. Urban Plan. 2016, 153, 28–39. [CrossRef]

20. Jaakkola, A.; Hyyppä, J.; Hyyppä, H.; Kukko, A. Retrieval algorithms for road surface modelling using
laser–based mobile mapping. Sensors 2008, 8, 5238–5249. [CrossRef]

21. Lehtomäki, M.; Jaakkola, A.; Hyyppä, J.; Kukko, A.; Kaartinen, H. Detection of vertical pole–like objects in a
road environment using vehicle–based laser scanning data. Remote Sens. 2010, 2, 641–664. [CrossRef]

22. Cabo, C.; Kukko, A.; García–Cortés, S.; Kaartinen, H.; Hyyppä, J.; Ordoñez, C. An algorithm for automatic
road asphalt edge delineation from mobile laser scanner data using the line clouds concept. Remote Sens.
2016, 8, 740. [CrossRef]

23. Javanmardi, M.; Javanmardi, E.; Gu, Y.; Kamijo, S. Towards high–definition 3D urban mapping:
Road feature–based registration of mobile mapping systems and aerial imagery. Remote Sens. 2017,
9, 975. [CrossRef]

24. Balado, J.; González, E.; Arias, P.; Castro, D. Novel Approach to Automatic Traffic Sign Inventory Based on
Mobile Mapping System Data and Deep Learning. Remote Sens. 2020, 12, 442. [CrossRef]

25. Holopainen, M.; Kankare, V.; Vastaranta, M.; Liang, X.; Lin, Y.; Vaaja, M.T.; Yu, X.; Hyyppä, J.; Hyyppä, H.;
Kaartinen, H.; et al. Tree mapping using airborne, terrestrial and mobile laser scanning—A case study in a
heterogeneous urban forest. Urban For. Urban Green. 2013, 12, 546–553. [CrossRef]

26. del–Campo–Sanchez, A.; Moreno, M.; Ballesteros, R.; Hernandez–Lopez, D. Geometric Characterization of
Vines from 3D Point Clouds Obtained with Laser Scanner Systems. Remote Sens. 2019, 11, 2365. [CrossRef]

27. Holopainen, M.; Vastaranta, M.; Kankare, V.; Kantola, T.; Kaartinen, H.; Kukko, A.; Vaaja, M.T.; Hyyppä, J.;
Hyyppä, H. Mobile terrestrial laser scanning in urban tree inventory. In Proceedings of the 11th International
Conference on LiDAR Applications for Assessing Forest Ecosystems (SilviLaser 2011), Hobart, Australia,
16–20 October 2011.

28. Wu, J.; Yao, W.; Polewski, P. Mapping individual tree species and vitality along urban road corridors with
LiDAR and imaging sensors: Point density versus view perspective. Remote Sens. 2018, 10, 1403. [CrossRef]

29. Vaaja, M.T.; Kurkela, M.; Virtanen, J.-P.; Maksimainen, M.; Hyyppä, H.; Hyyppä, J.; Tetri, E.
Luminance–corrected 3D point clouds for road and street environments. Remote Sens. 2015, 7, 11389–11402.
[CrossRef]

30. Vaaja, M.T.; Kurkela, M.; Maksimainen, M.; Virtanen, J.-P.; Kukko, A.; Lehtola, V.V.; Hyyppä, J.; Hyyppä, H.
Mobile mapping of night–time road environment lighting conditions. Photogramm. J. Finland 2018, 26, 1–7.
[CrossRef]

31. Helsingin Karttapalvelu (Helsinki Map Service). Available online: http://kartta.hel.fi (accessed on 18
March 2020).

32. Trimble MX2 Mobile Mapping System. Available online: http://www.webcitation.org/6sc5p4MvX (accessed
on 18 March 2020).

33. Kurkela, M.; Maksimainen, M.; Vaaja, M.T.; Virtanen, J.-P.; Kukko, A.; Hyyppä, J.; Hyyppä, H. Camera
preparation and performance for 3D luminance mapping of road environments. Photogramm. J. Finland 2017,
25, 1–23. [CrossRef]

34. International Electrotechnical Commission. Multimedia Systems and Equipment–Colour Measurement and
Management-Part 2-1: Colour Management—Default RGB Colour Space—sRGB; IEC 61966-2-1; International
Electrotechnical Commission: Geneva, Switzerland, 1999.

35. Barber, D.; Mills, J.; Bryan, P.G. Laser Scanning and Photogrammetry—21st Century Metrology. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 360–366.

36. Rönnholm, P.; Honkavaara, E.; Litkey, P.; Hyyppä, H.; Hyyppä, J. Integration of laser scanning and
photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36, 355–362.

37. Abdelhafiz, A.; Riedel, B.; Niemeier, W. Towards a 3D true colored space by the fusion of laser scanner
point cloud and digital photos. In Proceedings of the ISPRS Working Group V/4 Workshop 3D–ARCH 2005,
Mestre-Venice, Italy, 22–24 August 2005.

http://dx.doi.org/10.1016/j.ufug.2019.05.007
http://dx.doi.org/10.1016/j.landurbplan.2019.103654
http://dx.doi.org/10.1016/j.landurbplan.2016.04.011
http://dx.doi.org/10.3390/s8095238
http://dx.doi.org/10.3390/rs2030641
http://dx.doi.org/10.3390/rs8090740
http://dx.doi.org/10.3390/rs9100975
http://dx.doi.org/10.3390/rs12030442
http://dx.doi.org/10.1016/j.ufug.2013.06.002
http://dx.doi.org/10.3390/rs11202365
http://dx.doi.org/10.3390/rs10091403
http://dx.doi.org/10.3390/rs70911389
http://dx.doi.org/10.17690/018261.1
http://kartta.hel.fi
http://www.webcitation.org/6sc5p4MvX
http://dx.doi.org/10.17690/017252.1


ISPRS Int. J. Geo-Inf. 2020, 9, 455 12 of 13

38. Rönnholm, P.; Hyyppä, H.; Hyyppä, J.; Haggrén, H. Orientation of airborne laser scanning point clouds with
multi-view, multi-scale image blocks. Sensors 2009, 9, 6008–6027. [CrossRef] [PubMed]

39. Moskal, L.M.; Zheng, G. Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban
heterogeneous forest. Remote Sens. 2012, 4, 1–20. [CrossRef]

40. Hauglin, M.; Astrup, R.; Gobakken, T.; Næsset, E. Estimating single–tree branch biomass of Norway spruce
with terrestrial laser scanning using voxel–based and crown dimension features. Scand. J. For. Res. 2013, 28,
456–469. [CrossRef]

41. Wu, B.; Yu, B.; Yue, W.; Shu, S.; Tan, W.; Hu, C.; Huang, Y.; Wu, J.; Liu, H. A voxel–based method for
automated identification and morphological parameters estimation of individual street trees from mobile
laser scanning data. Remote Sens. 2013, 5, 584–611. [CrossRef]

42. Yao, W.; Fan, H. Automated detection of 3D individual trees along urban road corridors by mobile laser
scanning systems. In Proceedings of the International Symposium on Mobile Mapping Technology, Tainan,
Taiwan, 6 May 2013.

43. Bienert, A.; Hess, C.; Maas, H.G.; Von Oheimb, G. A voxel–based technique to estimate the volume of trees
from terrestrial laser scanner data. In Proceedings of the International Archives of the Photogrammetry,
Remote Sensing & Spatial Information Sciences Commission V Symposium, Riva del Garda, Italy, 23–25
June 2014.

44. Cifuentes, R.; Van der Zande, D.; Farifteh, J.; Salas, C.; Coppin, P. Effects of voxel size and sampling setup on
the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agric. For. Meteorol. 2014,
194, 230–240. [CrossRef]

45. Jalonen, J.; Järvelä, J.; Virtanen, J.-P.; Vaaja, M.T.; Kurkela, M.; Hyyppä, H. Determining characteristic
vegetation areas by terrestrial laser scanning for floodplain flow modeling. Water 2015, 7, 420–437. [CrossRef]

46. Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.;
Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115,
63–77. [CrossRef]

47. Grau, E.; Durrieu, S.; Fournier, R.; Gastellu–Etchegorry, J.P.; Yin, T. Estimation of 3D vegetation density with
Terrestrial Laser Scanning data using voxels. A sensitivity analysis of influencing parameters. Remote Sens.
Environ. 2017, 191, 373–388. [CrossRef]

48. Kükenbrink, D.; Schneider, F.D.; Leiterer, R.; Schaepman, M.E.; Morsdorf, F. Quantification of hidden canopy
volume of airborne laser scanning data using a voxel traversal algorithm. Remote Sens. Environ. 2017, 194,
424–436. [CrossRef]

49. Loghin, A.; Oniga, V.E.; Giurma–Handley, C. 3D Point Cloud Classification of Natural Environments Using
Airborne Laser Scanning Data. Am. J. Eng. Res. 2018, 7, 191–197.

50. Lucas, C.; Bouten, W.; Koma, Z.; Kissling, W.D.; Seijmonsbergen, A.C. Identification of linear vegetation
elements in a rural landscape using LiDAR point clouds. Remote Sens. 2019, 11, 292. [CrossRef]

51. Weinmann, M.; Weinmann, M.; Mallet, C.; Brédif, M. A classification–segmentation framework for the
detection of individual trees in dense MMS point cloud data acquired in urban areas. Remote Sens. 2017, 9,
277. [CrossRef]
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