
 International Journal of

Geo-Information

Article

A Machine Learning Approach to Delineating
Neighborhoods from Geocoded Appraisal Data

Rao Hamza Ali 1, Josh Graves 2, Stanley Wu 2, Jenny Lee 2 and Erik Linstead 1,*
1 Machine Learning and Assistive Technology Lab, Chapman University, Orange, CA 92866, USA;

raali@chapman.edu
2 CoreLogic, Irvine, CA 92618, USA; jgraves@corelogic.com (J.G.); stwu@corelogic.com (S.W.);

jelee@corelogic.com (J.L.)
* Correspondence: linstead@chapman.edu

Received: 14 June 2020; Accepted: 15 July 2020; Published: 17 July 2020
����������
�������

Abstract: Identification of neighborhoods is an important, financially-driven topic in real estate.
It is known that the real estate industry uses ZIP (postal) codes and Census tracts as a source of
land demarcation to categorize properties with respect to their price. These demarcated boundaries
are static and are inflexible to the shift in the real estate market and fail to represent its dynamics,
such as in the case of an up-and-coming residential project. Delineated neighborhoods are also
used in socioeconomic and demographic analyses where statistics are computed at a neighborhood
level. Current practices of delineating neighborhoods have mostly ignored the information that
can be extracted from property appraisals. This paper demonstrates the potential of using only the
distance between subjects and their comparable properties, identified in an appraisal, to delineate
neighborhoods that are composed of properties with similar prices and features. Using spatial filters,
we first identify regions with the most appraisal activity, and through the application of a spatial
clustering algorithm, generate neighborhoods composed of properties sharing similar characteristics.
Through an application of bootstrapped linear regression, we find that delineating neighborhoods
using geolocation of subjects and comparable properties explains more variation in a property’s
features, such as valuation, square footage, and price per square foot, than ZIP codes or Census tracts.
We also discuss the ability of the neighborhoods to grow and shrink over the years, due to shifts in
each housing submarket.

Keywords: neighborhood estimation; neighborhood boundary; appraisal; spatial filters; machine
learning; real estate

1. Introduction

Producing an estimate of the true market value of a property is a crucial step in each real estate
transaction, including the financing process [1]. The owner’s estimate of the market price of their
property could be adopted as a baseline for market usage, as has been used in some studies [2], but it
is not without the owner’s bias [3]. Of the several property valuation methods, the appraisal process
proves to be a far better alternative and is currently the most widely used method for market value
estimation [4]. To estimate the true market value using this method, the subject property is compared
to similar properties that have recently been sold, and an estimated price is calculated. The comparison
is based on the sales information of the comparable properties, or comparisons of their location and
their current condition. These comparisons are conducted by professionals who are experts in their
neighborhoods and remain impartial in their judgments. Their intuition is based on knowledge of their
focus areas and has been perfected through a combination of training and experience. Kain and Quigley
[5] confirmed the strong relation between true value estimate of a property and the appraiser’s intuition.
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Diaz [6] conducted a study which concluded that appraisers were not influenced by previous expert
value estimates for properties. The reliance on these professionals by real estate and finance industries
calls for deeper and more sophisticated analyses on the data they produce, and its application beyond
the appraisal process.

Another financially driven topic in real estate is neighborhood identification. Neighborhoods
are localized regions that share similar characteristics, and their boundaries can be defined through
different lenses: ZIP (postal) codes, school districts, Census tracts, or inhabitants’ own understanding
of the region. Estimation of neighborhoods is still considered by real estate companies for comparable
pricing [7], and on an extreme level, redlining, the process of denying loans in neighborhoods and
communities based on demographics [8], is another example of using neighborhood estimations for
financial profits. There are numerous ways in which regions can be delineated into neighborhoods
and many techniques have been devised for it in the last few decades. However, they have
moved from likening delineation of neighborhoods to a classification problem [9] to the more
recent approach of data-driven neighborhood estimation. Bourassa et al. [10] applied k-means
clustering analysis on household survey data for defining housing submarkets. Kauko [11] used
self organizing maps (SOM), an unsupervised neural network technique [12], to find subregions
in Amsterdam based on price variation, physical features, and economic and cultural segregation
aspects. Hipp, Faris, and Boessen [13] created neighborhoods based on social ties between inhabitants,
while McKenzie et al. [14] used geotagged rental property listings to identify neighborhood names.

None of the above-mentioned studies used appraisal information in deciding the boundaries
of neighborhoods. Given that appraisals are conducted by professionals who are experts in their
regions, we find it necessary to use their knowledge in a neighborhood estimation problem. A study
by Coulton et al. asked residents to draw maps of their neighborhoods and compared the maps with
Census blocks [15]. They found that units created by the residents covered different space and produced
different social indicator values than the ones produced by Census-defined units. Sun and Mason
compared different regionalization criteria and found that segmentations proposed by experts and
realtors were significantly different from ZIP codes and Census tracts [16]. Moreover, Chappell et al.
studied neighborhoods defined by residents’ sense of belonging with city-defined boundaries and
suggested that administrative boundaries should reflect the subjective experience of living in a
region [17]. This is an indicator of how studies on neighborhood effects can be biased when no
input from residents or area experts is taken into account for the defined neighborhoods. Another area
of contention is the large number of estimators required to solve this problem. An appraiser decides
which properties are similar by considering the comparable physical characteristics they may share,
so the knowledge itself of which properties were termed comparable, should be enough to be able to
define neighborhood boundaries within which properties share similar characteristics.

Given this interest, our work tackles this essential step of combining the appraisal process with
neighborhood delineation. The specific contributions of our work are outlined in the two research
questions (RQ) below.

RQ1: Can we use geographical distance between subject and comparable properties to estimate neighborhoods?

RQ2: Do these neighborhoods perform better than the standardized tabulations in the US (ZIP codes and
Census tracts) when predicting characteristics of a property?

We will first discuss previous research related to this topic followed by an overview of the data
and methodology. We will then answer the research questions in the Results section and finally present
our conclusions.
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2. Related Work

Typically, socioeconomic and demographic data is used are the delineation of neighborhoods.
Spielman and Thill [18] used a data set of 79 variables that describe Census tracts in New York City
to generate geo-demographical classification using self organizing maps. Arribas-Bel, Nijkamp,
and Scholten [19] used the Urban Audit database, a large dataset with over 300 variables of
socioeconomic and environmental aspects, to map the urban sprawl in Europe. There have also
been studies where non-traditional data have been used to estimate neighborhood boundaries.
Poorthuis [20] applied optimization algorithms to geotagged tweets to extract neighborhoods in
the Brooklyn region. Ratti et al. [21] used over 12 billion phone calls to redraw the regional map of
Great Britain. These studies used neural network algorithms that require a vast set of features to
train a model. We hope to condense the input data required for neighborhood generation to just a
single attribute: the distance between the subject and comparable properties through appraisal data.
This way, neighborhoods can be estimated for regions where large amounts of demographic and
socioeconomic data are not available.

It should be noted that there is a lack of studies which use only the geographical distance between
properties or the appraisal information to estimate neighborhood boundaries. We do, however, discuss
works that either used the distance between units as one of the covariates, or replicated an appraiser’s
insight, in estimating neighborhood delineations and market prices. Cutchin et al. [22] reviewed the
socio-spatial neighborhood estimation method (SNEM), which is designed to generate conceptually
informed neighborhood boundaries. As an important step, they spent time on the ground, moving
through the study area, to confirm changes and corrections to be made to the delineations. Gonzalez
and Fermoso [23] used the distances between commercial buildings and a central business district as
one of the factors in estimating property valuation using fuzzy rule-based systems. Similarly, Antipov
and Pokryshevskaya [24] used the distance between a house and the nearest underground station
as an estimator of residential property value.

One reason to compare the generated neighborhoods to ZIP codes is for the usage of the latter
in spatial and demographic analyses in the US. Elnakat, Gomez, and Booth [25] investigated the
influences of socioeconomic and demographic characteristics of inhabitants on energy utilization at
a ZIP code level. Drewnowski, Rehm, and Solet [26] and Acevedo-Garcia [27] used ZIP code-level
factors for health studies. However, Grubesic [28] found that ZIP codes are not always appropriate
for evaluation in spatial and socioeconomic analyses, and instead recommended Census blocks as an
alternative. Census tracts too are used to measure residential segregation on a socioeconomic basis,
as seen in works by Ananat [29] and Kramer et al. [30]. The Census blocks and tracts are updated
once every decade which leaves the geographic region stagnant from the ever-evolving population
demographics. People move in and out, businesses appear and disappear, and new connections are
built. Given this reason, it also makes sense to compare the appraisal-based neighborhoods with
Census tracts, so a new alternative which is a good representative of a group of properties with similar
features and evolves with time can be brought forward.

3. Data

We use a snapshot of appraisal data provided by CoreLogic® [31], a leading provider of property
insights and solutions, for Los Angeles County, San Diego County, and Orange County, of Southern
California in the US. The snapshot contains a sample of all internal appraisals conducted by the
company for these counties, between 2014 and 2018, and contains the geographical locations of
subjects and their associated comparable properties in the form of latitude and longitude coordinates.
These coordinates are extracted from parcel polygons and different county sources and map a
property’s location with high precision. Each subject property is attached with multiple comparable
properties through a unique identifier which we used to distinguish a single appraisal. We were also
given the street addresses for subject properties only. Figure 1 shows the share of data for the three
counties, on a per city basis. Since the raw dataset consists of appraisal data that are proprietary to
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CoreLogic® and contains some private information, we are unable to include it here. However, readers
who wish to replicate this study may do so by leveraging data made publicly available through county
recorder/appraiser office databases available on the Internet.

Figure 1. Share of data points for 3 counties in Southern California.

Since not every property in a county has been appraised within the 4-year range, we expected to
come up with a generalized solution for neighborhood delineation. That is, the estimations should also
provide representation for areas not covered by the data. Given that, we first define what a coverage
of a subject property is, and how it covers properties that are not present in the data.

The illustration in Figure 2 represents how we define coverage for a subject property. The subject,
highlighted in red, is surrounded by different properties, among which those in blue were chosen as
comparable properties during an appraisal, which led to the conclusion that at least the area in green
was scoped by the appraiser to find the four comparable properties and is now defined as the coverage
of this subject. Through these coverage polygons, we can also find subjects that overlap most and
could present similar characteristics.

Figure 2. Coverage using polygons.
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4. Methodology

4.1. Spatial Filtration

We are interested in generating neighborhoods using the geographical locations of subjects
and their comparable properties. As an initial step, we first mapped the current magnitude of that
relationship in the data. Figure 3 provides a network map, where each subject is linked to a comparable
property using a single line segment. For all 3 counties, there are regions of dense links, especially
in urban areas, and the dense regions themselves are separated by small boundary-like regions of
little to no links. An overlap of line segments in a small area points to the overlap in the coverage of
subjects, and that these subjects share comparable properties, or even that one subject turns out to be a
comparable property for another subject. The areas with less links separate the dense network regions
from one another to show that the subject coverage overlap between two dense regions is low, and that
the appraisers rarely enter the second dense region to find comparable properties for subjects in the
first one.

Figure 3. Network of links mapped between subjects and comparable properties in Southern California counties.

To delineate neighborhoods that represent properties that are similar in characteristics, we need
to first reduce the overload of coverage in the dense regions. To do so, we will utilize the distances
between subjects and their comparable properties, and use them in a spatial filter, to prune these
regions. Once we apply the filters, we can then apply a clustering algorithm to delineate neighborhoods.
Demšar et al. [32] detailed applications of principal component analysis (PCA) on spatial data to reduce
dimensionality, while Hughes and Haran [33] also discussed getting results by reducing dimensions
on non-Gaussian spatial data. Additionally, the iterative self-organizing data analysis technique
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algorithm (ISODATA) is a popular option for unsupervised segmentation of spatial data, as shown
by [34,35], for segmenting remote sensing images. These reduction and segmentation algorithms,
however, require a multidimensional feature space and because of their sensitivity to dimensions,
exhibit poor speeds when the number of dimensions increase [36].

Our feature space consists of just a distance value between subjects and their comparable
properties, and we want to ensure that reduction occurs only on the basis of proximity between
properties that are directly involved in an appraisal. Coding this information about which properties
were included in an appraisal for which other properties, to apply any of the algorithms discussed
earlier, would result in a very large feature space. This feature space would also scale based on how
rural or urban the focus region is. To that end, we instead used a set of simple but very fast spatial
filters that we describe below. These filters smartly remove comparable properties from the data
based on the proximity to their subject properties and not based on their location on a geographical
map. Once the coverage is reduced, we use a powerful clustering algorithm, HDBSCAN, to generate
neighborhood boundaries.

4.1.1. Filter 1

The first filtering algorithm removes all comparable properties from the data that are farther away
from their subject property than a set average threshold value for each region. The threshold is based
on the geographical location of the region, the size of the coverage of the subject, and the number
of comparable properties available for it. Using the geographical coordinates, we are able to filter
the data intelligently. Figure 4 illustrates how the coverage for a subject changes before and after the
application of this filter.

Figure 4. Change in coverage of a subject after applying Filter 1.

4.1.2. Filter 2

This filtering algorithm takes advantage of the street address of each subject available in the data.
This is a more aggressive form of Filter 1 wherein we now also prune comparable properties if they
lie farther than a distance threshold compared to the street segment a subject property is situated on.
This filter takes into account how subjects should be perceived if they are packed together. If two
subject properties lie on the same street, they are more likely to share similar characteristics, and their
individual sets of comparable properties can be thought of being part of a larger pool for that street,
which we can then prune to find a more concrete structure for our neighborhood estimations, as seen in
Figure 5. The individual filter (Filter 1) is not applied on these subjects, and instead, a street-wise filter
is applied to take advantage of the presence of multiple subjects on a street. We add that no matter
which filter is applied, the relative positions of subjects and their comparable properties do not change,
and the filters maintain the integrity of the inherent relationships between appraised properties.
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Figure 5. Coverage of subjects after application of Filter 2.

4.1.3. Filter 3

The only information we have on the streets in a region is by the location of subject properties
situated on them. We do not have information about every street in the region, how long it is,
how many intersections it passes through, and what its general shape is. These features could be
informative in investigating how an appraiser views properties that are across the highway or an
avenue, when looking for comparable properties for a subject. This filter applies this knowledge to
further prune properties. Using this filter, we remove data for subjects situated along highways or
long avenues, as there is a possibility of two subjects being situated on either end of a long street
or being connected through a chain of comparable properties. Two densely linked regions that are
connected through a series of a handful of comparable properties should not be counted as a single
region, and this filter accounts for that. This filter does not affect the coverage structure on either side
of a street in question, as seen in Figure 6, and only the bridging subjects and comparable properties
are removed.

Figure 6. Coverage on a street after application of Filter 3.

We present the pseudo-code for the three filters in Algorithm 1. The threshold t is parameterized
to ensure that neighborhoods generated for rural and urban regions are scaled accordingly. The mode
m is set to true or false based on which filter is being applied.

Figure 7 shows the linked map after applying these spatial filters. By comparing it with the
unfiltered map, in Figure 3, we note that areas of dense linkages are still present but are now more
separable. We term these areas as focus regions of appraisals, as they show most overlap of subjects’
coverage, filtered and extracted from appraisal information, and point to the fact that most of the time,
a property selected as comparable for a subject in one of these focus regions is most likely going to be
from the same focus region. We will confirm this hypothesis in the Results section.
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Algorithm 1: Spatial filter to reduce data set.
Input : Data Frame D of subject-comparable property geographical distances
Output : Reduced data frame of subject-comparable property distances
Precondition : t is the threshold based on area size and urban/rural score. f is a scaling factor

that makes the reduction more or less aggressive. Mode m when TRUE enables
street-wise reduction. All distances calculated are Euclidean.

for subject i do
cs = centroid(i) // centroid of the street segment subject i is located on
for comparable j of i do

dc = distance(i, j)
ds = distance(cs, j)
if dc ≥ t ∗ f and max(dc, ds ∗ m) == dc then

D.pop(j)
end

end
end

Figure 7. Post filtration network map between subjects and comparable properties.
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4.2. Neighborhood Delineation

Once all filters are applied and a pruned map is found, we can apply a spatial clustering algorithm
to separate the dense connectivity regions into separate neighborhoods. Hierarchical density based
spatial clustering with an application to noise (HDBSCAN) is an unsupervised machine learning
algorithm which uses a hierarchy to extract a flat clustering based on the stability of clusters [37].
These clusters will become our estimated neighborhoods, which are composed of properties that
share similar characteristics, through the eyes of an appraiser, and can interchangeably be used as
comparable properties for each other.

HDBSCAN also accounts for presence of regions of different densities in the data and is able
to allocate some data points as noise, that is, points that do not belong to any cluster and should be
removed. The algorithm uses a single parameter, the minimum number of data points required to
define a cluster. For each section of the region, we find the optimal value of this parameter through
an iterative application of HDBSCAN on the geographical coordinates of all comparable properties.
Studies have discussed parameter-free clustering algorithms [38,39], and specifically working with
spatial data [40]. However, these applications sacrifice the significance of high or low-density regions
in the data. Instead, with an iterative process, we find a parameter that optimizes the balance between
the number of clusters and the number of noise points. For each cluster generated, we define its
boundary using the concave hull algorithm [41]. Concave hull uses a k-Nearest Neighbors approach
to estimate a suitable boundary for a set of points and does not cover maximum area, as a convex hull
polygon might do. Since a neighborhood can vary from a set of ten properties on adjacent streets to
encompassing an entire small town, a concave hull for the boundary ensures that the true size and
shape of a neighborhood is represented.

Figure 8 shows the delineated neighborhoods for the three Southern California counties. We found
neighborhoods of different shapes and sizes, consisting of properties ranging from a dozen to several
hundreds. We noticed that the size of the neighborhoods increases greatly when the method was
applied to rural areas—north of Los Angeles County and west of San Diego County—as properties are
more sparsely located, and a larger distance is covered when conducting an appraisal. To answer the
first research question, we have used spatial filters and a clustering algorithm, applied only on the
geographical distance between subjects and their comparable properties, to estimate neighborhoods.
We will discuss the validity of these neighborhoods in the Results section.

Table 1 shows the running time of the applied method for all counties. We also show the number
of comparable properties before and after the application of the spatial filters. The algorithm was
written in the R scripting language [42] and was executed on a 24 core Intel Xeon processor with
264 GB memory. Because there is no time spent on training a model with sample data, as in the case
of neural network techniques, or pre-processing the data to apply PCA and other similar algorithms
for reduction, the proposed methodology generates neighborhoods quickly and only scales with the
sample size.

Table 1. Running time of algorithm with comparable property count for all counties.

Region Data Size Data Size
(Post Filtration)

Spatial Filter Runtime
(secs)

Spatial Cluster Runtime
(secs)

Orange County 332,411 185,391 79.22 114.84
San Diego County 435,653 238,564 106.44 138.03
Los Angles County 802,130 431,123 197.38 291.54
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Figure 8. Delineated neighborhoods for all 3 regions.

5. Results

We first compare the generated neighborhoods with ZIP code and Census tract delineation and
show which tabulation shows the least variation in property features, as well as show our linear
regression done with these tabulations to find which one was the best predictor of property features
such as valuation, square footage, sale price, price per square foot, and age. Next, we will show
the stability of each neighborhood, from the appraisals’ perspective, and which neighborhoods have
grown or shrunk over the years.

To compare the delineated neighborhoods with ZIP codes and Census tracts, we made use of a
smaller data set provided, which contains information on the five property characteristics for every
subject. We extracted the ZIP code and Census tract information for all properties after estimating the
neighborhoods and joined it with the characteristics data to conduct our tests.

5.1. Coefficient of Variation

The sample coefficient of variation (Cv) is also defined as the ratio of the standard deviation
to the mean of the sample [43]. It describes the dispersion of a variable in a way that it does not
depend on the variable’s measurement unit. We use it to compare how each tabulation criteria
(estimated neighborhood, ZIP code, Census tract) explains the variation in a property’s characteristics.
As we computed the coefficient on a sample, we compared the values of the unbiased estimate of the
population coefficient of variation (Ĉv) instead:
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Cv =
S
x̄

(1)

Ĉv = (1 +
1

4N
)Cv (2)

where Cv is the sample coefficient of variation, S is the sample variance, x̄ is the sample mean, Ĉv is
the unbiased estimate of the population coefficient of variation, and N is the sample size.

For each property feature, we calculated Ĉv for each group in a tabulation and reported the overall
average unbiased estimate for each tabulation criterion. Across the three counties, we found that
the delineated neighborhoods, generated using the geographical location of appraised properties,
provide the smallest Ĉv for each property characteristic, as seen in Table 2. The smallest Ĉv values
for each property feature are highlighted in red. By comparison, a ZIP code is considerably larger
than an average neighborhood and a Census tract, so the variation is a sharp decline for the latter
two tabulation criteria. The estimated neighborhoods also outperforms the equally sized Census
tracts in reducing the variation in property characteristics within them. This result shows that we
were able to generate neighborhoods that do in fact contain properties that are similar to each other
in characteristics and can be used as comparable properties for subjects in the same neighborhood.
The results are also significant, in that they cover three different regions with varying population
densities, so our spatial filter, applied with a threshold based on the locations of subject properties,
has also worked well. A one way ANOVA [44] showed a significant effect of the tabulation criteria on
the unbiased estimates of coefficient of variation, across all property features (p < 0.001). A detailed
table with the results of the ANOVA test is presented in Appendix A.

We next fit a series of linear regression models [45] on the sample data to predict each property
characteristic, using each tabulation criteria as the predictor for each model, and reported the adjusted
R-squared value [46]. The R-squared value, or the coefficient of determination, is a statistical measure
of how close the data are to the fitted regression line. It gives the percentage of variation in a variable
explained by the predictors. Since we used several hundred delineated neighborhoods and Census
tracts as predictors for individual linear regression models, we reported the adjusted R-squared value,
which penalizes the coefficient for using too many predictors. Equation (3) gives the formula for
adjusted R-squared value:

R2
adjusted = 1 − (1 − R2)(N − 1)

N − p − 1
(3)

where R2
adjusted is the adjusted R-squared value, N is the total sample size, R2 is the R-squared value

from the estimated model, and p is the total number of predictors.

Table 2. Average unbiased estimate of coefficient of variation for each tabulation criteria across
3 counties (lower is better).

Orange County Los Angeles County San Diego County

Property
Feature

ZIP
Codes

Census
Tracts Neighborhoods ZIP

Codes
Census
Tracts Neighborhoods ZIP

Codes
Census
Tracts Neighborhoods

Valuation 0.543 0.513 0.478 0.558 0.516 0.504 0.557 0.512 0.461
Sale Price 0.339 0.265 0.234 0.338 0.283 0.283 0.312 0.263 0.230
Price per ft2 0.200 0.183 0.171 0.258 0.230 0.225 0.207 0.195 0.183
Square Footage 0.348 0.286 0.228 0.368 0.300 0.284 0.356 0.204 0.254
Age 0.181 0.128 0.112 0.321 0.262 0.259 0.265 0.192 0.172

Table 3 shows the performance of each tabulation criterion as a predictor for a property feature.
Highest R2

adjusted values for each property feature are highlighted in red. A linear regression model
is able to explain a linear relation between a continuous value and a set of predictors, and a
high R-squared value means that the selected predictors are able to explain much variance in the
independent continuous value. As an added step, we applied bootstrapping to our linear regression
models. Bootstrapping [47] is a non-parametric approach to statistical inference which gives the
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standard errors and biases of the true coefficients of the model. It works by drawing random samples
from the data and by computing statistics on each of those samples. This step adds another level of
accuracy to our models. We present the accumulated adjusted R-squared values, their biases, and the
standard errors in the table, after resampling from the data 100 times. We show that the delineated
neighborhoods outperformed ZIP code and Census tract proxy neighborhoods in Orange and San
Diego counties, and were on par with Census tracts in Los Angeles County, with a few exceptions.
We also show a table with adjusted R squared values computed by fitting a series of linear regression
models without bootstrapping in Appendix B. The results here are significant, not only from a statistical
standpoint, but also from the fact that we only used a single feature to produce these neighborhoods.
The high performance of our neighborhoods was also not due to the numerical advantage, as there
were more Census tracts in Los Angeles county than the number of neighborhoods generated there,
and we are presenting the adjusted R squared values, which do account for the number of estimators
used in a regression model.

Using these two tests, we answered the second research question we brought forward in this
paper. Using the locations of appraised properties, we have not only delineated neighborhoods that
contain significantly uniform and similar properties, but that also explain more variation in a property’s
features than ZIP code and Census tract proxy neighborhoods.

Table 3. Adjusted R squared value for each tabulation criterion, with bias and standard error computed
by bootstrapping.

Orange County

ZIP Code Census Tract Neighborhood

Property Feature Adj. R2 Bias Std. Error Adj. R2 Bias Std. Error Adj. R2 Bias Std. Error

Valuation 0.391 0.0008 0.0051 0.462 0.0033 0.0054 0.518 0.0068 0.0053
Sale Price 0.515 0.0005 0.0055 0.598 0.0035 0.0056 0.690 0.0058 0.0054
Price per ft2 0.722 0.0016 0.0051 0.740 0.0047 0.0045 0.751 0.0066 0.0046
Square Footage 0.254 0.0010 0.0034 0.416 0.0045 0.0030 0.533 0.0055 0.0040
Age 0.567 0.0009 0.0041 0.663 0.0041 0.0039 0.685 0.0045 0.0037

San Diego County

ZIP Code Census Tract Neighborhood

Property Feature Adj. R2 Bias Std. Error Adj. R2 Bias Std. Error Adj. R2 Bias Std. Error

Valuation 0.456 0.0006 0.0041 0.497 0.0034 0.0040 0.536 0.0044 0.0043
Sale Price 0.566 0.0008 0.0046 0.645 0.0046 0.0037 0.704 0.0042 0.0038
Price Per Sqft. 0.674 0.0012 0.0054 0.693 0.0116 0.0050 0.695 0.0216 0.0048
Square Footage 0.268 0.0014 0.0035 0.436 0.0045 0.0032 0.539 0.0050 0.0040
Age 0.440 0.0048 0.0088 0.647 0.0144 0.0066 0.607 0.0125 0.0084

Los Angeles County

ZIP Code Census Tract Neighborhood

Property Feature Adj. R2 Bias Std. Error Adj. R2 Bias Std. Error Adj. R2 Bias Std. Error

Valuation 0.507 0.0017 0.0029 0.562 0.0058 0.0034 0.552 0.0062 0.0035
Sale Price 0.634 0.0022 0.0033 0.706 0.0059 0.0031 0.687 0.0059 0.0031
Price Per Sqft. 0.740 0.0016 0.0030 0.762 0.0062 0.0027 0.737 0.0059 0.0027
Square Footage 0.313 0.0019 0.0030 0.474 0.0074 0.0029 0.492 0.0069 0.0030
Age 0.428 0.0024 0.0035 0.555 0.0091 0.0031 0.555 0.0067 0.0032

5.2. Linear Order Subject Pairing

We started our discussion by defining the coverage of a subject, which encompasses properties
that are not used in this analysis. As our estimated neighborhoods were built upon the overlap of
coverage of different subjects, we wanted to conduct another test to ensure that properties that were
clustered into a single neighborhood could in fact be used as comparable with one another. To do
so, we tested how closely related the subjects in a neighborhood were, from an appraisal’s point
of view. An appraiser can use a single property as a comparable for two or more subjects, during
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different inspections. A subject in one appraisal can also be a comparable property for another subject.
If two subjects are linked via one or more comparable properties, we can estimate how many such
subject pairs there are in a single neighborhood. Figure 9 illustrates the subject pairs. If all comparable
properties are in blue, and we focus on the subject property in red, then the two properties in orange
are a first-order pair to the subject in red. That is, they share a single comparable property. The subject
property in yellow will then be a 2nd order pair to the subject in red, as the link goes through at least
one subject property to chain them together.

Figure 9. First and second-order subject pairs for a subject property in red.

A high percentage of first and second-order pairs belonging to the same neighborhood will
highlight the fact that these neighborhoods are in fact composed of properties that have been estimated
by an appraiser to be similar. We made an effort to use the original, unfiltered data for this analysis.
Even though the final delineated neighborhoods are generated using data after the filters are applied,
where we removed some comparable and subject properties and pruned the network by a factor,
we wanted to ensure that the generated neighborhoods were still able to represent any sample of
data, for a new region or location. We present the hit rate, the average percentage of an order pair
belonging to the same neighborhood, for the three counties in Southern California. Table 4 shows
the hit rate for both first and second order pairs. The high percentages show that more often than
not, a first or a second order pair of a subject is found within the same neighborhood that subject
belongs to. That is, subjects who are linked with other subjects through one or more comparisons,
are more likely to be in the same neighborhood. Given that, properties within a neighborhood can
be picked as comparable properties for a subject with much ease and efficiency. This test is an
extension to Tobler’s first law, “Everything is related to everything else, but near things are more
related than distant things” [48]. Subject pairs are already closely located and so the hit rate percentages
should be significantly high, and while we do not discount the significance of spatial autocorrelation,
the methodology is a significant improvement over an existing common practice in the industry.

Table 4. Hit rates of first and second-order pairs of subjects in delineated neighborhoods.

Region 1st Order-Pair Hit Rate 2nd Order-Pair Hit Rate

Orange County 71.2% 61.5%
Los Angeles County 76.6% 64.8%
San Diego County 67.5% 54.2%

5.3. Yearly Shift

The appraisal data provided by CoreLogic® contain a sample of appraisals conducted between
2014 and 2018. Now that we have generated definitive boundaries for neighborhoods, and have
proven their validity, we now focus on seeing how the neighborhoods grow or shrink over the years.
The contention of using Census tracts is that they remain stagnant for 10 years (in the US) and do not
change with a market shift. Emergence of a new neighborhood, a sell-off of a set of properties, and even
gentrification, will not be considered right away. Given this fact, performing real estate analysis on a
Census tract-level will lack validity. A timeseries analysis of property prices in a city or region is quite
common in developing an understanding of the real estate market and in predicting the future dips in
prices, as used by Quan and Titman [49], and Chiang, Lee, and Wisen [50]. For this analysis, we focus
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on the shift in the shape of a neighborhood. A delineated neighborhood that constantly grows points
to a further growth in the coming years. If we are able to find neighborhoods that have constantly
grown or shrunk, across all four years in our range, then we can make a prediction that they will
continue to do so in the future.

To calculate yearly shift for a neighborhood, we first found the two directions in which most
properties lie, relative to the centroid of the neighborhood. This allowed us to focus on the area within
a neighborhood that saw the most activity and should be used for any inter-neighborhood analysis.
For those directions, we then calculated the average distances between properties and the centroid
and evaluated whether the distance was constantly increasing or constantly decreasing, over the
years. Our selection criterion was conservative, and we classified a neighborhood to be growing or
shrinking only if a neighborhood’s average distance increased or decreased every year. Given the
strict setup, we observed that most neighborhoods showed no sign of growth or contraction, as seen in
Figure 10. Each circle points to a neighborhood for Orange County and its size is based on the size
of the neighborhood. Circles in gray signify neighborhoods with no shift, while those in green point
to growth, the ones in red show shrinkage. A steady growth, across all years, alludes to the fact the
appraiser now travels farther away to find comparable properties for a subject in the neighborhood and
its boundary also needs to change, to potentially cover properties that might be used as comparables
in the coming years.

Figure 10. Growing and shrinking neighborhoods in Orange County (2014–2018).

This also affects the real estate market in and around a neighborhood. If the appraiser finds
comparable properties beyond the neighborhood boundary of 2014 when conducting appraisals in
2015, it shows that the properties inside the neighborhood are no longer similar in characteristics to
the subject property and the inhabitants are making improvements to their houses, which then has
the potential of inviting buyers from a more diverse economic background. An area with adjacent
neighborhoods with steady growth is a strong indication of a shift in the market and it points to an
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emerging sub-market with undeveloped land that might become a focus of the real estate market in
the coming years.

Having the ability to grow with time gives an extra edge to the delineated neighborhoods
when compared with the static boundaries of ZIP codes and Census tracts. For future demographic,
socioeconomic studies, analyses could be conducted on the level of these neighborhoods, which will
provide a more concrete segregation of properties and the inhabitants. Figure 11 shows a sample of
properties that were binned into different neighborhoods based on physical features (size and number
of stories) and location (beachfront properties for images in the last row).

Figure 11. Sample of properties in 4 different delineated neighborhoods (1 neighborhood per row).

6. Conclusions

In this paper, we present a novel approach to solving the problem of delineating neighborhoods
in a region, that contain properties of similar characteristics, by using the geographical distance
between subject and comparable properties, in an appraisal. A limitation of this approach is that the
estimated neighborhoods do not cover an entire region. The sample data does not cover appraisals
for each individual property, and through the application of spatial filters and a clustering algorithm
that deems some properties as noise, we end up with a significant portion of properties that are
not within any neighborhood. Our approach, however, uses just the distance between subject and
comparable properties to delineate these neighborhoods, and if this approach were to be scaled on a
larger level, we would only need the appraisal information to find neighborhoods for new regions,
compared to the need to have all characteristic features of properties, had we taken the neural network
approach. This limitation, for a future study involving delineating neighborhoods using spatial
distance between properties, could be overcome through application of generative algorithms where
most significant neighborhoods boundaries are drawn first and are iteratively expanded, until the
entire region is covered by delineated neighborhoods. Our algorithm, in essence, is able to connect
the knowledge gathered by appraisers through the years, about their specific focus regions, with the
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market estimations of those regions. Basing our approach on the appraisal data, we highlight the
contribution of appraisers to the real estate market and their impact on the observations and predictions
we make.

We generate neighborhoods that maintain the relationship between similar properties, highlight
an appraiser’s intuition for a region, and have the ability to grow or shrink in the real estate markets.
Our neighborhoods are also an improvement on ZIP codes and Census tracts, which are commonly
used in demographic and socioeconomic analyses, in predicting property characteristics and explaining
their variability.
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Appendix A

Table A1. Hit rates of first and second-order pairs of subjects in delineated neighborhoods.

Property Feature Residuals F Value Pr (>F)

Current Valuation 1457 17.471 3.2 × 10−8

Sale Price 1271 51.141 <2.2 × 10−16

Price per ft2 1273 17.752 2.5 × 10−8

Square footage 1455 111.51 <2.2 × 10−16

Age 1311 32.315 2.0 × 10−14

Appendix B

Table A2. Adjusted R squared value for each tabulation criteria across 3 counties (higher is better).
Highest values per property feature are highlighted in red.

Orange County Los Angeles County San Diego County

Property
Feature

ZIP
Codes

Census
Tracts Neighborhoods ZIP

Codes
Census
Tracts Neighborhoods ZIP

Codes
Census
Tracts Neighborhoods

Valuation 0.386 0.445 0.500 0.499 0.542 0.541 0.469 0.502 0.539
Sale Price 0.523 0.596 0.684 0.624 0.677 0.671 0.585 0.649 0.710
Price per ft2 0.702 0.713 0.721 0.724 0.735 0.714 0.674 0.693 0.695
Square Footage 0.287 0.424 0.543 0.307 0.446 0.472 0.275 0.428 0.527
Age 0.562 0.656 0.676 0.395 0.510 0.506 0.425 0.613 0.527
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