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Abstract: The integration of intelligent video surveillance and GIS (geograhical information system)
data provides a new opportunity for monitoring and protecting cultivated land. For a GIS-based
video monitoring system, the prerequisite is to align the GIS data with video image. However, existing
methods or systems have their own shortcomings when implemented in monitoring cultivated land.
To address this problem, this paper aims to propose an accurate matching method for projecting
vector data into surveillance video, considering the topographic characteristics of cultivated land in
plain area. Once an adequate number of control points are identified from 2D (two-dimensional) GIS
data and the selected reference video image, the alignment of 2D GIS data and PTZ (pan-tilt-zoom)
video frames can be realized by automatic feature matching method. Based on the alignment results,
we can easily identify the occurrence of farmland destruction by visually inspecting the image content
covering the 2D vector area. Furthermore, a prototype of intelligent surveillance video system
for cultivated land is constructed and several experiments are conducted to validate the proposed
approach. Experimental results show that the proposed alignment methods can achieve a high
accuracy and satisfy the requirements of cultivated land monitoring.

Keywords: digital orthophoto map (DOM); cultivated land protection; video GIS; basic farmland
protection zones (BFPZs)

1. Introduction

China is experiencing an unprecedented urbanization process, with the urbanization level
increasing from 17.92% in 1978 to 59.58% in 2018 [1]. With the acceleration of urbanization, the expansion
of urban and population growth has led to an increasing demand for cultivated land, resulting in
unreasonable land use. Large amounts of farmland have been occupied and converted into other
uses, such as residential, industrial, commercial, infrastructure, and institutional uses during the
period of urban expansion [2]. Meanwhile, idleness of cultivated land is pervasive in rural areas as a
consequence of urbanization or unclear ownership. As China is a developing country with a large
population and scarce land resources, the loss of cultivated land will threaten the security of food
supply and the stability of society. In this respect, accurate monitoring of cultivated land plays a crucial
role in farmland preservation.

In order to ensure the basic food supply for human survival, Chinese government has formulated
a series of policies to protect the total amount of cultivated land, such as the delineation of basic
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farmland protection zones (BFPZs) [3–5]. When a piece of land is determined as basic farmland by the
land management department, it means that the land use type within the delimited boundaries cannot
be changed into non-cultivated land use. If changed, it will be regarded as illegal occupation of farms.
Therefore, the focus of cultivated land monitoring is to check whether there is deduction of farms and
change in land use type in the delimited area over a period.

Generally, the methods used for monitoring cultivated land can be classified into two categories:
field survey and remote sensing technologies. Traditional field survey method can provide more
accurate results than other approaches. However, it requires considerable manpower, which can be
time consuming and expensive. For the methods of using satellite remote sensing, emerging studies
are mainly focused on landform classification, which is an effective way for dynamically monitoring
land use and land cover changes. It is noted that Landsat series of images are widely used to detect and
monitor land use change, as they are freely available in forms of different spectral, resolution, and time,
supporting continuous and long-term monitoring land use change in large areas [6,7]. However, the
low spatial and temporal resolution of satellite images will limit its ability to detect and monitor
land use in small sized and scattered distribution land [8]. Additionally, it is difficult to use satellite
images to identify the problems of land degradation, illegal occupation, and land idleness within a
certain period and time. UAVs (unmanned aerial vehicles) images seem to be an alternative remote
sensing tool for the detection of land use change, due to its advantage of strong mobility and high
efficiency [8–11]. Nevertheless, UAVs cannot work continuously for the monitoring of cultivated
land for some reasons. UAVs are easily affected by weather conditions, complex terrain, airspace
regulations, and other factors in some places. Moreover, images acquired by UAVs may contain severe
geometric and radiometric distortions, which challenges the automatic processing of UAVs images
and hampers the application of UAVs [12,13].

Nowadays, numerous intelligent surveillance cameras have been mounted in public places due to
its increasingly significant role in traffic monitoring, public security, and other applications. Intelligent
video surveillance can automatically detect, track, and recognize interested objects, and analyze their
activities to extract useful information from collected videos [14]. Moreover, it can remotely transmit
real-time images, audio, and other data to the central control room through the Internet, which offers
great potential for monitoring cultivated land. In comparison with satellite remote sensing and UAVs
technology, it can work continuously with higher spatial and temporal resolution with less manual
intervention. What is more, it is more suitable for monitoring small size and scattered distribution
land. However, there are various problems when the conventional intelligent video surveillance is
directly applied to cultivated land monitoring. For example, the unauthorized conversion of certain
farmland can be detected early by intelligent video surveillance, while regulars cannot quickly identify
the location, including the coordinates or other semantic information of the land. When the number of
surveillance cameras grows larger, it is more difficult to manage the cameras and fragmented video
data [15]. More importantly, it is hard to define the boundary of cultivated land (region of interest) in
every video image when the camera is panned, tilted or zoomed.

BFPZs delimited by the land management department define the boundary of protected cultivated
land, and it is usually presented and stored in forms of vector data. The integration of intelligent video
surveillance and 2D vector BFPZs data provides a new opportunity for solving the above problems.
As video is composed of a sequence of separate frames (images), it is essential to establish the relations
that map the frame’s pixels with corresponding geographic locations for each frame to integrate GIS
and video [16]. At present, the general method is to directly project video frames into a virtual 3D
(three-dimensional) GIS scene, which requires both precise 3D models of the surroundings and camera
pose estimation [15–17]. In this case, video frames do not match the intuitive feeling of the human
eye because they have been geometrically corrected to the 3D GIS scene. Furthermore, it is difficult to
obtain accurate real-world physical information of acquired images due to changes in focal length
and angles of the PTZ (pan-tilt-zoom) cameras. Moreover, high resolution DEM (digital elevation
model) or DSM (digital surface model) are not always accessible. Another method is based on a



ISPRS Int. J. Geo-Inf. 2020, 9, 448 3 of 17

homography transformation, which assumes a planar ground in geographic space and requires at
least four corresponding points to calculate the homography matrix parameters [18]. Both of the two
methods rely on matching corresponding points in video image space and geospatial space [19]. It is a
challenge to automatically match features from video image and GIS data. For PTZ cameras, it is not
advisable to manually select points considering the cost and work efficiency.

Based on the above analysis, the main objective of this paper is to propose an accurate matching
method for projecting vector data into surveillance video to monitor and protect the cultivated land.
It mainly relies on matching the 2D image coordinates from PTZ video frames with orthophoto maps
and vector surveying and mapping data. On the basis of the proposed method, we design and
implement a prototype of cultivated land monitoring system. Then, the implemented prototype is
applied to monitor cultivated land in Dongyang City, Zhejiang Province, China.

2. Related Work

Currently, several GIS-based video monitoring systems have been developed and applied in the
fields of city safety management and forest insect defoliation and discoloration [17,18]. Inspired by
these systems, this paper develops a new video and GIS integrated surveillance system for cultivated
land, which can make up for the shortcomings of traditional field surveying and remote sensing
technologies. In this section, we mainly introduce the related work on the integration of video and GIS.

The study mainly focuses on establishing the geometric mapping relationship between the
spatial point set sampled from video frame and the geospatial point set sampled from geodetically
calibrated reference imagery. Since the video is composed of a series of independent frames (images),
the geometric mapping relationship should be constructed for each frame.

At present, the methods for video geo-referencing can be classified into two categories: methods
based on view line intersection with DEM and methods based on a homography transformation [18–20].
For methods based on the intersection between sight and DEM, precise parameters including inner
and outer camera parameters and DEM are required to project video frames into a 3D model of an area
that is being watched. For example, Zhao et al. [17] proposed a video-based monitoring framework for
forest insect defoliation and discoloration. GIS data and Video Surveillance could be integrated to
determine the geographical position of forest insect damage in their monitoring system, which required
a digital elevation model (DEM) and returned parameters from the PTZ camera. Milosavljevic et
al. [19] proposed a method to estimate the geo-reference of both fixed and PTZ cameras, which relied
on matching 2D image coordinates from video frames with 3D geodetic coordinates to estimate the
camera’s position and orientation in geographic space. In this situation, video frames do not match the
intuitive feeling of the human eye because they have been geometrically corrected to the 2D or 3D GIS
scene. Furthermore, it is difficult to obtain precise real-world physical information of the acquired
images due to changes in focal length and angles of the PTZ cameras. Meanwhile, high resolution DEM
or DSM are not always available and not all of the objects in real world can be modelled, which causes
the failure of cross-mapping.

Methods based on a homography matrix assume a planar ground in a geographic space,
so they require at least four matching points to estimate the corresponding homography matrix [21].
Automatically detecting and matching features from ground imagery or stationary videos, such as
surveillance cameras videos, and satellite or aerial images can be defined as cross-view image
matching [22–24]. It is almost impossible to automatically match features from such images due
to the dramatic differences in each set of images, as they are captured from different viewpoints
and in different resolutions. Therefore, the matching points are manually selected from cross-view
images. The number, precision, and spatial distribution of the selected points are very important
and directly affect the accuracy of image registration. For 2D GIS, the mapping from 2D geographic
space to video image space is double, but for 3D GIS, the transformation is single [18]. When using
these methods, the terrain model is usually taken into account for the assumption of planar ground.
The main drawback of these methods is that they are unsuitable for the case of PTZ cameras. With
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the change of pan-tilt-zoom, more user interaction is required to select corresponding features and
prevents automation.

3. Methodology

The proposed method for integrating a surveillance video and BFPZs (2D GIS vector data) relies on
registering BFPZs to surveillance video image. This can be realized by the mapping matrix estimated
by matching the 2D geodetic coordinates with the 2D image coordinates in video frames. Compared to
fixed camera, PTZ cameras can be controlled to rotate horizontally and vertically, and the field-of-view
can be changed. The image coordinates of each video frame are independent of other images. Therefore,
we need to construct the mapping relationship between BFPZs data and every video image.

As there is large resolution and geometric difference in the two types of data, it is impossible to
automatically detect and match features. Therefore, we break down the integration process into two
stages, as shown in Figure 1. In the configuration phase, we will determine the mapping relationship
between BFPZs and the preset video image I0. by identifying corresponding features from the two data
and estimation algorithms. DOM (digital orthophoto map) is used to help identify corresponding points
in the BFPZs and preset video image, as vector data is graphics and hard to be recognized. Based on
these features, the transformation matrix can be estimated by algorithms. Then, the coordinates of 2D
BFPZs can be transformed from geodetic space to video image space. In the dynamic mapping phase,
the mapping between 2D BFPZs and PTZ video images can be seen as the problem of multi-view
image matching since BFPZs has been projected in image space. Different from configuration phase,
we can use a matching method to automatically detect and match points without manual intervention.
Once the relative geometric relation between video frames is estimated, then the coordinates of 2D
BFPZs can be transformed between different video image space. In the following sections, we will
introduce the details about homography transformation, SIFT (scale-invariant feature transform) [25]
and ASIFT (affine-SIFT) [26] matching algorithms and the integration strategies.
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Figure 1. The flowchart of the proposed integration of 2D GIS data and PTZ (pan-tilt-zoom)
surveillance video.

3.1. Homography Transformation

The homography transformation is a popular geo-referencing technique used worldwide.
Surveillance video and remote sensing (RS) sensors capture the same scene differently in two views, i.e.,
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front view and side view, as shown in Figure 2. Usually, the remote sensing images are geometrically
corrected and used to produce a DOM. When the terrain is a planar ground or the topographic relief is
small, the complex geometric relations between surveillance video image and remote sensing image
can be modelled by homography transformation.
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Figure 2. Different views of surveillance video and remote sensing sensors when capturing the
same scene.

Assuming P is a point in the DOM spatial coordinate system, and its corresponding point in video
image coordinate system is Q:

P =
[

X Y 1
]T

, (1)

Q =
[

u v 1
]T

, (2)

where X and Y are real world coordinates, u and v are column and row, respectively, in image coordinates.
Given a homography matrix H, the relationship between P and Q can be expressed as follows:

Q = HP, (3)

H is a 3× 3 matrix and can be represented as follows:

H =


A B C
D E F
G H 1

, (4)

As H has eight unknowns, at least four pairs of non-collinear video image point and geospatial
points are required to calculate the parameters of H. Once H is determined, the coordinates of any
point in spatial coordinate system can be projected into the image coordinate.[

u v 1
]T

= H
[

X Y 1
]T

, (5)

The mapping is double direction, and image coordinates can also be projected into the spatial
coordinate system. This modeling method is convenient for geometric presentation, computation,
and implementation simplicity.
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3.2. SIFT and ASIFT Matching

When the PTZ surveillance camera is paned, tilted, or zoomed, there will be geometric distortion
between these video sequences. To automatically integrate GIS data and surveillance video, we use
the image matching algorithm to automatically detect and match corresponding features, rather than
manually selecting feature points.

SIFT [25] is a well-known image matching algorithm, which is invariant to scaling, rotation,
illumination, and affine transformation with sub-pixel accuracy. The original SIFT algorithm first
uses subpixel location, scale, and dominant orientation to describe a detected feature point. It can
be expressed by f = (L, σ, θ, d), where L represents the location of the feature, σ and θ denote the
point’s characteristic scale and dominant orientation, respectively, and d is a 128-vector invariant
feature descriptor. Then, feature points are matched using the minimum Euclidean distance method
between their descriptors. To ensure correct matching, Lowe [25] suggested another matching strategy
called NNDR (nearest neighbor distance ratio), which means that the ratio of the nearest to the second
nearest neighbor can be applied to get correct matches. It can be described as follows:

NN1/NN2 ≤ dratio (6)

where, NN1 means the Euclidean distance from the nearest vector in sensed image feature map to
the vector in reference image feature map and NN2 is the Euclidean distance from the second nearest
vector in sensed image feature map to the vector in reference image feature map. When the distance
ratio is lower than dratio, it can be seen as a pair of correct matches.

However, SIFT does not perform well when geometric distortion between images is severe.
In order to improve the performance in this situation, ASIFT [26] is proposed, which simulates the
rotation of camera around optical axis. In their method, image affine transformation is applied to
model the changes of viewpoints, which can be expressed as:

u(x, y)→ u(ax + by + e, cx + dy + f ) (7)

The processing steps of ASIFT can be summarized as follows: first, a dense set of rotation
transformation is applied to both images A and B; then a series of tilt transformation is applied to all
rotated images; at last, SIFT is performed to match all pairs of the simulated images.

3.3. Integration of 2D Vector BFPZs and Surveillance Video Images

In the proposed method, the mapping between 2D Vector BFPZs and PTZ surveillance video is
constructed in a semi-automatic way. To solve the homography matrix between BFPZs data and the
preset frame of PTZ camera, we provide an interactive tool to select control points. Once an adequate
number of points are matched, Levenberg–Marquardt iterative optimization [27,28], is applied to
calculate the homography matrix.

Assuming that 2D Vector BFPZs is a set of polygons {P1, P2, . . . , Pn}, for a given polygon
Pi

{
(Xi1, Yi1), (Xi2, Yi2), . . . , (Xis, Yis)

}
, i = 1, 2, . . . , n, and the coordinates of its vertex are V

(
Xi j, Yi j

)
, j =

1, 2, . . . , s. Then this vertex can be mapped into an image coordinate system, and its coordinates are
V′(xi j

′, yi j
′), which can be computed as follows. xi j

′ =
A0Xi j+B0Yi j+C0
G0Xi j+H0Yi j+1

yi j
′ =

D0Xi j+E0Yi j+F0
G0Xi j+H0Yi j+1

, (8)

where, A0, B0, C0, D0, E0, F0, G0, H0, are parameters of H0.
The precision, number, and spatial distribution of the selected points play a vital role in the process

of calculating the homography matrix, which directly affects the accuracy of the estimated matrix. It is
better to choose relative permanent points, such as road intersection, as shown in Figure 3.
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When the PTZ camera is paned, tilted, or zoomed, the homography matrix between GIS data
and video frames can be calculated as follows. First, ASIFT matching method is used to detect and
match features from video sequences. Then, random sample consensus (RANSAC) [29] is applied to
estimate the homography matrix between video frames, considering that the obtained corresponding
features have mismatches even using the best automatic matching method. RANSAC estimates the
parameters of homography model from a set of observed data containing outliers in an iterative way.
Finally, the mapping between 2D Vector BFPZs and any video frame can be calculated.

Specifically, the locations of 2D Vector BFPZs in each single video frame coordinates system can
be computed by two strategies. What counts is the selection of reference video frame. If the preset
video frame is chosen as the reference image, ASIFT and RANSAC methods are applied to estimate the
mapping matrix between video frames and preset image. As shown in Figure 4, assuming that the
estimated transformation matrix between reference frame and frame It is Ht, and any vertex Vt

′ of the
BFPZs polygons in video frame It can be calculated using its corresponding vertex V′ of the BFPZs
polygons in reference frame as the following equation.

Vt
′ = HtV′, (9)
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Image matching is performed between adjacent video frame, as shown in Figure 5. In this situation,
vertex Vt

′ of the BFPZs polygons in video frame It can be computed as Equation (10).

Vt
′ = Ht · · ·H2H1V′, (10)

where Hi is the transformation matrix between video frame Ii−1 and Ii.
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4. Framework of Cultivated Land Surveillance System

On the basis of the integration method of 2D vector BFPZs and real-time PTZ surveillance video,
we design and implement a prototype of monitoring system. The system can collect, manage geospatial
and video data, and perform overall display and analysis. Through video surveillance of cultivated
land, supervisors can efficiently improve the supervision work. As shown in Figure 6, the integration
framework mainly contains three layers: presentation layer, middle layer, and data layer.
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land monitoring.

1. Data layer: The data layer is mainly used to store and manage geospatial and surveillance video
data. In the proposed system, geospatial data contains BFPZs presented in 2D vector format
and high-resolution ortho-images presented in raster format. The former is used to define ROI
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regions in real-time video, and the latter is used to establish the mapping relationship between
geospatial space and image pixel coordinates.

2. Middle layer: The middle layer has functions of data acquisition, processing, and analysis.
As geospatial data and video data are unstructured data, they are independent of each other.
In this layer, GIS components are used for fetching geospatial data, and video stream components
are used for reading real-time video data. 2D mapping between BFPZs and video images is
the core component, and BFPZs data can be projected into real-time video to generate ROI area.
For the specific area, video analysis can be performed.

3. Presentation layer: In the presentation layer, it provides interactive integration of 2D BFPZs data
and surveillance video as well as real-time alert for command and control center.

The software structure of the cultivated land monitoring system consists of five parts: video
retrieval, video control, image registration, image matching, and video analysis. Video retrieval is
mainly used to load real-time video using HTTP protocol and display the current video frame. It can
also visualize 2D BFPZs overlaid on video frames. Video control allows the user to pan, tilt, and zoom
the PTZ camera and fetch the current, previous, or next video frame. Image registration provides
an interactive tool for constructing the mapping matrix between 2D vector BFPZs and the preset
video image by selecting correspondences between image space and geospatial space and solving the
matrix parameters. Then, 2D vector BFPZs is projected into the preset video image. Image matching
provides an automatic way that can use the multi-view image matching method ASIFT to construct
the mapping between surveillance video images. Correspondences between video images can be
detected and matched without human involvement. The projected 2D vector BFPZs in the preset
video image can be mapped into real-time video images with different matching strategies. At last,
2D vector BFPZs polygons can be set as the defense area for intelligent video surveillance, which
can efficiently extract useful information from the huge number of videos by automatically detecting,
tracking, and recognizing objects and analyzing activities [14].

5. Experiments and Results

Details of experiments on the alignment of 2D vector data and video images are presented in this
section. We tested our system in cultivated land with relatively smooth landscape and compared the
alignment results with man-made ground truth.

5.1. Datasets and Evaluation Criteria

In order to visually and quantitatively evaluate the proposed method, two intelligent surveillance
cameras (PTZ) were deployed on China Mobile’s signal tower in Dongyang City, Zhejiang Province,
China. One is located in the Woodcarving town, and the other one is located in Wangfeng community,
Jiangbei Street. Meanwhile, two video datasets were recorded and collected from the two surveillance
cameras, detailed information can be seen in Table 1. Dataset MDXZ contains the scenes of cultivated
land in Woodcarving town, while JBWF contains the scenes of Wangfeng community. These two
datasets were created by rotating the cameras vertically and horizontally, as well as changing the zoom
level. As shown in Figure 7, cultivated landscape in the two places is relatively smooth.

Table 1. The experimental datasets.

Video Datasets Size Brief Description

MDXZ 1920 × 1080 Large parcels of arable land; large geometric distortion between video images
JBWF 1920 × 1080 Small size of arable land; little geometric distortion between video images
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The mapping between 2D vector BFPZs and video frames is taken as an issue of image registration.
Therefore, root of mean square error (RMSE) is used to qualify the accuracy of alignment results, which
measures the deviation between the observed value and ground truth. It can be calculated as follows:

RMSE =

√
(x− x′)2 + (y− y′)2

M
, (11)

where (x, y) is the coordinates of the selected M points in transformed 2D GIS data, and (x′, y′)
demotes the ground true values.

Since we lack ground truth values, it is hard to determine the projection error of the estimated
mapping relationship. In addition, pixel coordinates system between video frames is independent.
To cope with the above challenge, we manually constructed ground truth for each video frame
as follows:

(1) Select 20 points in 2D vector BFPZs and record their projected coordinates in the image pixel
coordinate system;

(2) For each point in (1), find its corresponding point by visual inspection and record its coordinates
in the current image pixel system.

Then, for each video frame, the projection error can be calculated by using RMSE. Note that
some principles should be obeyed when selecting points. For example, the selected points should
be well-distributed.

5.2. Implementations and Experimental Results

The cultivated land monitoring system was implemented as a Visual C# project in Microsoft
Visual Studio 2017 and works in a client/server environment. This application is mainly designed for
PTZ network (i.e., IP) cameras. It is also suitable for fixed cameras. As Figure 8 shows, the user can
retrieval real-time video using the HTTP protocol. The URL, username, and password are needed to
access the camera API to retrieve the current video frame.

The user interface is composed of two interconnected components. The first involves the
registration of 2D BFPZs data from the geospatial coordinates system to video image pixel coordinate
system, which corresponded to the function of image registration. The second involves registering 2D
BFPZs data in different video image space, which corresponded to the function of image matching.
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Figure 8. The user interface of video-based surveillance system for cultivated land.

To visually check the suitability of the proposed method, several examples are taken in Figures 8
and 9. Though the intention of this paper is to register 2D BFPZs into real-time video to determine the
defense boundary of cultivated land, in fact, this is a reversible process, which means that the real-time
video image is also mapped into the geospatial space. This mapping can satisfy the needs of spatial
analysis, such as the measurement of cultivated land. Figure 9 shows the cross-mapping results of
2D BFPZs (polygons in red) and the preset video image, while Figure 10 shows the matching results
between video images and results of projected 2D BFPZs in different video image space using ASIFT
and RANSAC method. From these figures, we can see that the proposed method can successfully
build the transformation between 2D BFPZs and video image, and accurately define the boundaries of
the protected cultivated land in the video image.
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Figure 9. The cross-mapping between 2D BFPZs and the preset video frame of MDXZ (upper row) and
JBWF (lower row) dataset. (a) The preset video frame. (b) The corresponding ortho-image overlaid
with 2D vector BFPZs. (c) The preset video frame projected into the geospatial space. (d) The 2D vector
BFPZs projected into the image space.
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Figure 10. 2D BFPZs projected into different image space by using the proposed method in the MDXZ
dataset. (a) Part frames of video. (b) The matching results, in which corresponding points are connected
with a straight line. (c) Video frames overlaid with the projected BFPZs.

5.3. Accuracy Analysis

The examples presented in Figures 9 and 10 show the feasible and achievable accuracy of the
solution for projecting 2D vector BFPZs into real-time video frames. In this section, we mainly focus
on the evaluation of the proposed method in a quantitative way and comprehensively analyze the
influence of the selected reference image on the alignment results.

In this experiment, image video frames named MDXZ05 and JBWF05 in the two datasets were
chosen as the preset image, respectively. We manually selected 6–8 control points to map the 2D
BFPZs from the geospatial coordinate system to the preset image pixel system. Then two matching
strategies (Strategy-A: adjacent image is set as the reference image; Strategy-S: preset image is set as the
reference image;) are applied to automatically detect and match control points to estimate the mapping
matrix. The relationship between images can be depicted in Figures 11 and 12, taking MDXZ dataset
as an example.
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Quantitative comparisons of different matching strategies and two datasets using the RMSE are
reported in Tables 2 and 3, respectively. RMSE-A represents the results of Strategy-A, and RMSE-S
represents the results of Strategy-S.

Table 2. Experimental results on dataset MDXZ. Quantitative comparisons on different matching
strategies using the root of mean square error (RMSE).

Video Frames RMSE-A (Pixels) RMSE-S (Pixels)

MDXZ00 15.08573 12.10606
MDXZ01 10.59250 8.99473
MDXZ02 7.78827 7.192565
MDXZ03 9.35951 9.39466
MDXZ04 9.63640 9.63640
MDXZ05 * *
MDXZ06 6.53356 6.53356
MDXZ07 13.50897 13.43115
MDXZ08 15.93654 14.57003
MDXZ09 23.46391 22.34980
Average 12.43393 11.57877

* denotes no data.

Table 3. Experimental results on dataset JBWF. Quantitative comparisons on different matching
strategies using the RMSE.

Video Frames RMSE-A (Pixels) RMSE-S (Pixels)

JBWF00 16.3613 16.10768
JBWF01 9.32134 9.26386
JBWF02 6.08594 6.04870
JBWF03 7.23469 7.21215
JBWF04 11.04419 11.04419
JBWF05 * *
JBWF06 8.89209 8.89209
JBWF07 12.76803 12.76073
JBWF08 12.92818 12.83391
JBWF09 17.74984 17.50123
Average 11.37618 11.29606

* denotes no data.

From Tables 2 and 3, we can see that the average projection error of the two datasets is within
13 pixels. As the surveillance camera get images in a side view, the GSD (ground sample distance)
varies with the distance from the object to the camera. With reference to the GSD of TDOMs (true digital
orthophoto maps) generated from low-altitude UAVs images [30], it is believed that the proposed
integration method can achieve meter-accuracy and meet the requirements of real-time cultivated land
monitoring in the experimental area. Meanwhile, one can observe that the average image registration
accuracy of dataset MDXZ is higher than that of dataset JBWF, which can also reflect that the geometric
difference between video images in MDXZ is greater than that in JBWF.

By comparing the experimental results of video frames in MDXZ dataset, a clear trend stands out:
both RMSE-A and RMSE-S increase when the matching process varies from MDXZ05 to MDXZ00 and
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from MDXZ05 to MDXZ09, in which the geometric distortion becomes larger when the PTZ camera is
panned, tilted, and zoomed. Furthermore, it can be found that Strategy-S can obtain higher accuracy
than Strategy-A. This is because the matching error will accumulate as the matching times increase.
An interesting discovery is that the best image registration results may not be obtained between the
nearest image, but may be the second or third nearest image, such as the results of MDXZ02, MDXZ03,
and MDXZ04 in Table 2. A similar conclusion can be reached in Table 3.

6. Discussions

For a GIS-based video monitoring system, the prerequisite is to align the GIS data with video
images. In order to accomplish this alignment, it is necessary to establish a mapping relationship
between the video frame and GIS data. In this study, we propose a method to register 2D vector data of
the protected cultivated land onto surveillance video images. Experimental results in cultivated land
with relatively flat landscape suggest that the proposed method can accurately project 2D vector BFPZs
onto real-time video frames and obtain meter-level positioning accuracy to meet the requirements of
cultivated land monitoring.

Currently, there have been some studies on GIS-based video monitoring systems.
The GeoScopeAVS system designed by Milosavljevic et al. [16] integrated GIS and video surveillance
for real-time retrieval of information about viewed geospatial objects. In their system, 3D GIS and
camera views were aligned so that it is possible to extract the visualization of appropriate 3D virtual
objects and place them over the video. However, this method may not be applicable to cultivated
land, because 3D models of geographic features and accurate DEM of the area are essential. As we all
know, people pay more attention to the modeling of urban environment, especially buildings, but the
modeling of rural environment is largely ignored. Moreover, not all objects in the real world can be
completely modelled, such as vehicles, people, trees, and street lights [15]. Zhao et al. [17] designed a
GIS-based video monitoring system for forest insect defoliation and discoloration. Though 2D GIS
and 3D GIS are simultaneously integrated in their system, it is not a real fusion because these data
are geographically linked and separately displayed in their own window. Nonetheless, it is difficult
for non-experts to interpret these data as they are not presented in the same layer. Milosavljevic
et al. [19] proposed a method to georeference video images, which relied on matching video frame
coordinates of certain point features with their 3D geographic locations. Overall, the above-mentioned
methods have one thing in common: all of them require internal and external parameters of the camera
and high-precision 3D geospatial data, which are difficult to be accurately obtained for the case of
cultivated land and cause failure. Zhang et al. [18] presented a GIS-based prototype system for city
safety management. They described a semi-automatic cross-mapping method based on 2D GIS and
some constraints. However, the case of the PTZ camera was not considered in their system, which
made them unsuitable for the monitoring of cultivated land. In comparison to them, our solution is
more feasible in monitoring cultivated land. On the one hand, it is fast and easy to be implemented.
Neither of the camera parameters and 3D model of objects are needed to integrate 2D GIS data
and PTZ video images. Once a number of control points are identified from 2D GIS data and the
selected reference video image, the alignment of 2D GIS data and PTZ video frames can be realized
by automatic feature matching method. On the other hand, even non-experts and inexperienced
persons can intuitively see the boundary of protected farmland from the surveillance video and identify
destruction of cultivated land.

There are some factors that may influence the performance of our system: the selection of reference
images as well as the amplitude and speed of video camera movement may change the overlap between
images and have an impact on feature matching. If overlap between images is too small, it is difficult
to obtain uniformly distributed corresponding features to estimate the geometric transformation
matrix. In addition, a different matching strategy may affect the accuracy of video images and GIS
data registration results. As described in Section 5.2, a reasonable matching strategy can reduce the
propagation of matching error. Comprehensively, it is better to choose Strategy-S instead of Strategy-A
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for the integration of 2D vector BFPZs and video images. One reason is the error propagation in
Strategy-A, and the other reason is that it is difficult to determine the interval between adjacent images.
The major shortcoming of Strategy-S is that the movement of the PTZ camera can be restricted. If the
overlap between the preset frame and the current frame is too small, this strategy may fail. Furthermore,
the proposed method is not suitable for areas of complex terrain, such as mountainous areas. In such
areas, the geometric mapping relationship between video image plane and 2D GIS data cannot be
simply modelled by homography transformation. It may fail in alignment video images with GIS data,
and prevents the following application.

Based on the alignment results, we can easily identify the occurrence of farmland destruction
by visually inspecting the image content covering the 2D vector area. In China, the conversion of
permanent farmland in BFPZs to other uses is forbidden, while the use nature of non-permanent
agricultural land can be changed, for example, to construction land, with the approval of relevant
departments. Since the two kinds of farmland are very similar and indistinguishable in video images,
it is necessary to label the protected area on the video image. The proposed method provides a solution
to solve the problem of labelling basic farmland in PTZ videos. Polygons in the 2D GIS data define
the boundary of protected cultivated land. If image content delimited by polygons is recognized as
construction land, it can be recognized as an illegal change.

However, little effort has been made to automatically identify destruction of farmland or
unauthorized change of farmland use from the video images. In current literature, there is almost
no research and report on this issue. Moreover, this issue is a complicated problem that requires
technologies in various subjects and fields, such as computer vision, intelligent video analysis, image
processing, and data mining. In the future, we will try to improve the robustness of our system and
further study on automatic detection of illegal farmland occupation from real-time PTZ video images
delineated by 2D GIS vector data.

7. Conclusions

The objective of this paper is to integrate 2D GIS and real-time PTZ surveillance, and implement
a prototype of a cultivated land monitoring system based on the proposed integration method.
This integration can assist users in identifying the illegal occupation of the protected cultivated land as
early as possible. Since the permanent cultivated land and non-permanent agriculture land are very
similar and indistinguishable in video images, 2D GIS data can provide the boundaries and other
semantic information of the protected farmland. For the integration process, the alignment of GIS data
and video frames is necessary. In the proposed method, 2D GIS vector data is projected onto the video
image by the transformation matrix, which is estimated from the extracted pairs of corresponding
features. Compared with the existing methods or systems, the proposed integration method has the
following advantages: (1) it is fast and easy to be implemented. Neither of the camera parameters and
3D model of objects or terrain are needed to integrate 2D GIS data and PTZ video images. (2) It is easier
for non-experts and inexperienced persons to identify illegal occupation of the protected land from the
real-time video. In addition, there are some other issues worthy of consideration. For example, how to
automatically identify destruction of farmland or unauthorized change of farmland use from the video
images with the aid of projected 2D GIS data. This will be our future studies.
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