
 International Journal of

Geo-Information

Article

Toward Measuring the Level of Spatiotemporal
Clustering of Multi-Categorical Geographic Events

Junfang Gong 1,2 , Jay Lee 3 , Shunping Zhou 2,4 and Shengwen Li 2,4,*
1 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources,

Shenzhen 518034, China; jfgong@cug.edu.cn
2 School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;

zhoushunping@cug.edu.cn
3 Department of Geography, Kent State University, Kent, OH 44242-0001, USA; jlee@kent.edu
4 National Engineering Research Center for Geographic Information System, China University of Geosciences,

Wuhan 430074, China
* Correspondence: swli@cug.edu.cn

Received: 26 May 2020; Accepted: 15 July 2020; Published: 16 July 2020
����������
�������

Abstract: Human activity events are often recorded with their geographic locations and temporal
stamps, which form spatial patterns of the events during individual time periods. Temporal attributes
of these events help us understand the evolution of spatial processes over time. A challenge that
researchers still face is that existing methods tend to treat all events as the same when evaluating
the spatiotemporal pattern of events that have different properties. This article suggests a method
for assessing the level of spatiotemporal clustering or spatiotemporal autocorrelation that may exist
in a set of human activity events when they are associated with different categorical attributes.
This method extends the Voronoi structure from 2D to 3D and integrates a sliding-window model as
an approach to spatiotemporal tessellations of a space-time volume defined by a study area and time
period. Furthermore, an index was developed to evaluate the partial spatiotemporal clustering level
of one of the two event categories against the other category. The proposed method was applied to
simulated data and a real-world dataset as a case study. Experimental results show that the method
effectively measures the level of spatiotemporal clustering patterns among human activity events of
multiple categories. The method can be applied to the analysis of large volumes of human activity
events because of its computational efficiency.

Keywords: partial spatiotemporal autocorrelation; levels of spatiotemporal clustering; spatiotemporal
Delaunay triangulation; sliding-window model; geographical events

1. Introduction

Events of human activities are mostly associated with definable locations and time stamps of
occurrence. Collected spatial and temporal information of these events may form not only spatial
patterns of activities at different periods, but also the evolution of spatial processes over time [1].
Human activity events can be recorded as point data with space and time information, which have also
become increasingly available due to cost-effective sensors, widely accessible Internet, and constantly
advancing geospatial technology. Data on human activity events are obtained from multiple sources
that are available and are waiting for new ways to analyze and interpret [2].

Spatial and spatiotemporal statistics, a family of non-graphical indicators, are commonly used to
characterize spatial/spatiotemporal autocorrelation by measuring the degrees to which the objects are
inter-correlated or clustered in space and over time. The spatiotemporal autocorrelation of human
activity events can be used as a fundamental reference for monitoring the evolution of events to
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facilitate environmental impact assessment. Human activity events, which have been studied for their
levels of spatiotemporal autocorrelation, include sightings of endangered/threatened animal habitats
or plant communities, crimes, inter-regional or international trades, or even recent phenomena such as
social media posts and many other forms of human behavioral dynamics [3–7].

In most existing studies, these methods mostly focus on evaluating the spatiotemporal
autocorrelation of a single type of human activity events. Working with events with more than
one type, however, has two main challenges. First, as events are often assumed to be closely related
to their geographical environments, all categories of events are often considered to have similar
levels of spatiotemporal clustering. However, in some cases, considering that all events are the same
overlooks the connection and interactive influences between different categories of activity events.
Thus, key factors affecting the spatiotemporal autocorrelation of a particular type of event may not
be identified. Second, spatial and temporal aspects should be considered different from a physical
perspective because space and time are often measured in different units. The two dimensions should
not be combined into one equation directly similar to many existing methods. These issues have
severely limited the development and use of spatiotemporal autocorrelation measures of human
activity events.

To fill this methodological gap, a method is proposed to measure the level of spatiotemporal
clustering or the spatiotemporal autocorrelation in the distribution of a set of human activity events
with binary or multiple categories. We modeled the spatiotemporal relationship among events by using
the Voronoi model (for spatial dimension) and a sliding-window model (for temporal dimension).
This developed index characterizes the spatiotemporal distribution autocorrelation of binary or
multi-categorical events. The proposed method was applied to simulated and real-world data to show
its feasibility and usage.

The contributions of this article are twofold. First, a Voronoi-based sliding-window model is
proposed to support spatiotemporal analysis of geographic events with multiple categorical attribute
information. The model assesses the spatiotemporal autocorrelation among human activity events
represented as discrete points. It can be applied to measure the levels of spatiotemporal clustering
to support subsequent analysis. Second, the importance of the relationships between categories of
events in the dataset is highlighted. To the best of our knowledge, it is the first index to characterize
the spatiotemporal distribution autocorrelation for point data of multiple categories.

2. Literature Review

Many events have been shown to have spatial/spatiotemporal autocorrelation that may be
influenced by socio-economic and/or physical environment factors at these locations [8–10]. We discuss
previous works on spatial autocorrelation and spatiotemporal autocorrelation. As a general practice,
analysis of geographic events often starts from evaluating if a certain level of spatial/spatiotemporal
clustering exists among them. If such clustering is found, then we assumed that certain factors at
or nearby these locations may have influenced the distribution of events to obtain such clustering
patterns. If the clustering is desirable, then the next logical step would be to identify the influencing
factors to promote clustering. Alternatively, if such clustering is undesired, then the identification of
influencing factors requires policy-making or appropriate actions to demote the clustering level.

2.1. Spatial Pattern of Events

Methods are available for measuring the spatial autocorrelation levels among geographic events
with the interval- and ratio-scale attribute information. Many studies using such methods have been
conducted to find hotspots/coldspots of geographic phenomena [11–18]; thus, appropriate actions can
be taken at these locations. These methods are based on spatial statistics such as Moran’s I, nearest
neighbor ratio (NNR) [19], and G-statistics. In recent years, new methods have been developed to deal
with large data such as estimating spatial autocorrelation with large network data [20].
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These methods were designed to work with datasets, in which all data have the same category or
all events are considered the same. While capable of measuring the level of spatial clustering in a set of
point data that are of the same category/type, these methods are not useful when working with point
data of binary or multiple categories [21].

2.2. Spatiotemporal Pattern of Events

Spatiotemporal autocorrelation refers to the correlation of events within themselves over space
and through time. It reflects the degree to which events of similar properties cluster or disperse.
Some recently published studies have begun to extend spatial statistics to spatiotemporal statistics.
These studies include research that measured spatiotemporal autocorrelation by developing specific
space–time statistics, using space–time cubes or using space–time scans [8–10]. These works have
extended our ability from assessing the degree to which events cluster in space to measuring how
events cluster in space and over time. This advancement is important because it provides a way to
analyze dynamic processes that human activity events may have evolved in space and over time.

To measure the level of spatiotemporal autocorrelation in a set of geographic events, some studies
have grouped events in a temporal span to calculate the spatial autocorrelation for each time period.
The results are then analyzed by time series analysis [22–25]. Other studies have aggregated points
into regions and used polygons as spatial analytic units to construct a spatial adjacency structure of
polygons associated with the frequencies of points in the polygons. For example, [26] used this approach
to design a spatial autoregressive model for ecological studies. Other examples used housing prices as
a spatiotemporal attribute associated with a set of house locations to examine spatiotemporal changes
in housing prices [3,27,28]. In these and many other cases, events were clustered spatiotemporally
because their characteristics were assumed to be influenced by the local conditions of their environment.
Evidently, the temporal effects of influential factors are unaccounted when using only methods for
measuring spatial autocorrelation. Analytical results would likely be considered and valid only as
spatial events [29].

Some works have attempted to identify spatiotemporal autocorrelation of human activity events
on the basis of multivariate analysis methods such as the development and application of global
spatiotemporal Moran’s I by using separately structured spatial weights and temporal weights [30–37]
or space–time calendar [38]. These indices have been used to measure the level of spatiotemporal
autocorrelation in some geographic phenomena [32,39–41]. However, space and time integration
should be considered more carefully.

From a physical perspective, it would make no sense to consider spatial and temporal properties
of events in the same way. This is because there are significant differences between how events
are related to each other in space and in time [42]. For example, two events may have a mutually
influencing association in space as described in spatial interaction models. However, previous events
may influence current events, but not vice versa. Therefore, the direct integration of spatial and
temporal dimensions of geographic data should be carefully reconsidered. For example, the level
of spatiotemporal clustering in a set of events may be considered as being created by stochastic
processes [28,43], if the occurrences are assumed to have certain levels of randomness. R-tree is utilized
to define spatiotemporally neighboring points and evaluate spatiotemporal Ripley’s K index [44].
In another study on the spatiotemporal trends of events, spatial autoregressive models were used for
data with spatial and temporal attributes [26].

These studies evaluated the levels of spatiotemporal autocorrelation of single category of events.
Our study aimed to examine and measure the levels of spatiotemporal distribution autocorrelation of
one category of events when they coexist with events of other categories.

3. Method

To better understand and measure the level of spatiotemporal distribution autocorrelation of
human activity events, a new method, distribution autocorrelation of human activity events (DAE) is
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proposed. This method is particularly useful when, for example, the studied events have multiple
types or categories. As an example, criminal events in a region over a certain time period are different,
for example, they can be business or residential burglaries, murders, or theft. The DAE of burglary
cases is an index that measures the autocorrelation level of distribution of the burglary cases by
considering all other types of crime cases as other types of crime events.

In most spatial statistics, measuring spatiotemporal autocorrelation among a set of events can be
tested against a null hypothesis that assumes that events are not clustered. If an index that measures the
level of spatiotemporal autocorrelation is statistically significantly different from a level representing
random spatiotemporal distribution, it is said that the measured level of spatiotemporal autocorrelation
is statistically significant to support the rejection of this null hypothesis.

3.1. Voronoi-Based Sliding Window Model

One way to partition a space occupied by a set of points (events) is to construct Thiessen
polygons [45–48] (also known as Voronoi polygons) using points as polygon centroids. Each polygon
has one point that serves as the polygon’s centroid. Any location within a Thiessen polygon is closer
to the polygon’s centroid than to those of any other polygons. Spatially, Thiessen neighbors can be
determined by constructing a Delaunay triangulation that connects all points into a mesh of triangles
whose internal angles are maximized. If two points (centroids) are linked by an edge of a Delaunay
triangle, the two points are considered Thiessen neighbors, indicating that they are centroids of
two adjacent Thiessen polygons (they share at least a segment of polygon boundaries). Edges of
Thiessen polygons can be drawn by perpendicular bisectors of Delaunay triangle edges. Such bisectors
are then reassembled to form Thiessen polygons. The diagram of Thiessen polygons is known as
a Voronoi diagram, and the way a space is partitioned into Thiessen polygons is referred to as Thiessen
tessellation. In most spatial statistics that analyze points, Thiessen tessellation is used for building the
spatial neighborhood structure among events that are represented as points.

Given the properties and analytical units, where spatial and temporal relationships among event
points are different, the direct integration of spatial and temporal weights by simply multiplying the
spatial weights matrix and the temporal weights matrix leaves much room for debate [42]. Therefore,
we cannot determine if any given pair of events are spatiotemporal neighbors by simply extending
the Voronoi diagram for all events from 2D to 3D directly (for example, temporal neighborhood
relationships are not mutually true while spatial neighborhood relationships may be). One possible
solution to the issue of existing studies is to split events into a series of continuing time spans referred
to as a layered model (Figure 1a), with each span of time considered a temporal layer.
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The layered model experiences a potential difficulty, as follows: if grouping events by months
and two events occurred right around the end of a month (for example, on 31 January 2019 and 1
February 2019), then they would be in different layers. Evidently, the two events should be temporally
adjacent, but the layered model would separate them into two different layers. To avoid this problem,
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we defined a sliding-window model, as shown in Figure 1b, by dynamically itemizing the event in
a layer. Given a span of time such as one week as the size of the sliding window ws, and a layer
structure as described in Figure 1b, the sliding of the time window, with a sliding interval θ, starts
from the bottom and proceeds upward.

We developed a new model, namely, the Voronoi-based sliding window model by combining
the sliding window model and the Voronoi model. It is used to construct a spatiotemporal
neighborhood structure. In the model, window sliding is repeated over the entire time duration to find
spatiotemporally adjacent events on the basis of a spatial Voronoi structure. The complete algorithm is
shown in Algorithm 1:

Algorithm 1. Building spatiotemporal weight matrix by sliding window algorithm.

INPUT:

n = number of events,
coords = locations of events,
ts = occurrence time of events,
ws = window size,
θ = sliding step size

OUTPUT: Spatiotemporal weight matrix

1: create spatiotemporal weight matrix with size of n*n and set all elements to 0
2: while the time of the latest events>= update edge of current windows
3: xs = [ ], ys = [ ]
4: for each event located in current windows
5: add x and y coordinates of event to xs and ys
6: end for
7: tri = Delaunay(xs, ys)
8: for simplices in tri:
9: for each two vertices in simplices
10: set to 1 for adjacent of the two vertices into spatiotemporal matrix
11: end for
12: end for
13: slide window with a step size θ
14: end while
15: return matrix

3.2. Evaluating the Distribution Autocorrelation of Human Activity Events (DAE) of Events

After building the structure of the spatiotemporal association among human activity events,
we calculated the DAE by extending Joint Count statistics [49], a spatial statistics applicable for
polygonal data with binary or multi-categorical attributes.

Let the targeted category of events be “black” and the other category of events “red”. With such
marking, we can directly evaluate their DAE on the basis of Joint Count statistics. Joint Count
statistics is perhaps the simplest statistical measure of spatial autocorrelation of a set of binary or
multi-categorical polygons, especially when only categorical; attribute information is available to
describe the characteristics of events and when the numbers of polygons in each category vary greatly.
Joint Count statistics can be an excellent tool for solving the problem of measuring autocorrelation
between two categories of events. Considering spatiotemporal events with a categorical attribute
(such as being marked as black and red), an extended Joint Count statistic can be calculated using
the number of joins between spatiotemporally neighboring events. Please note that the polygons
in spatial Joint Count statistics are extended to space–time volumes in spatiotemporal Joint Count
statistics. Specifically, the boundary segment between two spatially adjacent polygons is called a join.
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A join can be the boundary between two black polygons, between two red polygons, or between
a black polygon and a red polygon. To keep things simple, we still refer to the boundary facet between
two spatiotemporally adjacent volumes as a join.

The possible categories of joins, in the case of binary categories of black and red, are Black–Black,
Black–Red or Red–Black, and Red–Red (where Black or Red refers to a volume of black property or
a volume of red property).

Let J be the number of Black–Black joins. An index R is defined to identify the DAE for ‘Black’
events, as in Equation (1):

R =
J− kp2

S
(1)

where k is the number of all events (i.e., volumes); p is the ratio of J to k; and S is the standard errors of
such expected numbers of Black–Black joins. If following the normality assumption, which assumes
that the probability of any given volume being Red or Black follows a random process, then the value
of the standard errors can be calculated following a probability density function with properties of
a normal distribution, as follows:

S =

√
kp2 + 2mp3 − (k + 2m)p2 (2)

m denotes the following:

m =
1
2

n∑
i=1

ki(ki − 1) (3)

The distribution autocorrelation and its statistical significance of the distribution of one category
of events are determined by the value of R. If R is positive, then the assessed activity category is more
spatiotemporally clustered than that of the events of other categories. Similar to most spatial statistics,
the index value of R alone is not useful. A level of statistical significance should accompany this index
value. In this case, the statistical significance of R is calculated using the Z-score formulation, and the
associated probability density function follows a normal distribution. For example, the distribution
autocorrelation is significantly clustered at the 0.05 level when the value of R is greater than 1.96, and
the distribution autocorrelation is dispersed at the 0.05 level when the value of R is less than −1.96.

Finally, the level of significance test is a two-tailed test of the null hypothesis
(without spatiotemporal autocorrelation) given that R can be either positive or negative.

4. Experiments and Results

4.1. Data

To fully evaluate the proposed method (DAE), we designed three groups of simulated data.
Each data group had 1500 events. The positions of each event were defined by their x, y, and t
coordinates, where (x, y) defines a spatial location, and t defines a time stamp.

In group 1, the events were created based on randomization assumption whose x, y, and t
coordinates were randomly distributed between 0 and 1. The activity events were assigned to be “black”
or “red” by a random process. In group 2, the events were created based on normalization assumption
centered on (0.5, 0.5, 0.5) with standard deviations of coordinates set to 0.2. The events were assigned to
“black” or “red” by a random process. In group 3, the events consisted of three categories, which were
created based on binomial distribution assumption. The first category of events marked with “black”
were distributed around (0.7, 0.7, 0.7) with a standard deviation of 0.05. The second category of events
marked with “blue” were distributed around (0.3, 0.3, 0.3) with a standard deviation of 0.1, and the
third category events, whose x, y, and t were randomly distributed between 0 and 1, were marked
“red.” To enable comparative examinations, the number of events of each category in each group
was kept the same. A set of examples for the spatiotemporal distribution of events in each group is
illustrated in Figure 2a–c.
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4.2. Experiment Setting

The experiments adopted Moran’s I [11,41] and nearest neighbor ratio (NNR) [50] as baseline
methods to be compared with the DAE. Moran’s I is a widely used coefficient that measures the
overall spatial autocorrelation of a dataset. The higher value of the coefficient means a higher spatial
autocorrelation among the events in the region. NNR is calculated as the ratio of the observed average
distance between nearest neighboring events to the expected average distance based on a hypothetical
random distribution with the same number of features covering the same total area. It is a basic tool to
examine clustering of a set of discrete points. The value of NNR varies from 0 (completely clustered)
to 1 (random) to 2.149 (completely dispersed). In this paper, the two models and the proposed method
(DAE) made up six indices to examine the effectiveness of the proposed method.

For the classic Moran’s I that measured the level of spatial autocorrelation among data points,
the experiment initially excluded the temporal attribution of activity events. It initially divided the
space into a 10 by 10 grid of 100 same sized (0.1 × 0.1) cells. The number of events inside each grid cell
was considered an attribute of the grid cell. Subsequently, we considered each grid cell as a region and
calculated Moran’s I value of the grid.

For spatiotemporal Moran’s I [41] that measured the spatiotemporal autocorrelation of the
time–space cubic, the experiment divided the activity space into a 10 by 10 by 10 cubic volume of 1000
same size (0.1 × 0.1 × 0.1) cubes. Similarly, the number of events falling in each cube was used as its
attribute. Finally, we considered each cube a volume and examined the Moran’s I of each cube.

For the classic NNR, the experiment set the parameter of the study “area” to 1, and then the ratio
was calculated in accordance with the x and y coordinates of those events.

For the spatiotemporal NNR, this was derived from the classical NNR by extending spatial
distance in the model to space–time distance. The distance between event a(x1, y1, t1) and event
b(x2, y2, t2) was calculated using the Euclidean distance (i.e., distance(a,b) = sqrt((x2 − x1)2 + (y2 −
y1)2 + (t2 − t1)2). Subsequently, the ratio was calculated by setting the size of the study area to 1.
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For the proposed DAE method, we conducted the experiments after setting the parameter ws
(windows size) into 1 and 0.2 in each of the two experiments. When ws was set to 1, all the events
were located in the same time window, and the index was inclined to evaluate the spatial distribution
autocorrelation of events than the spatiotemporal distribution autocorrelation.

We performed a 100-permutation test to evaluate the accuracy values of the six indices, and the
median value of R and p-value in each group were recorded as the group’s result.

4.3. Results

As mentioned in Section 4.1, the “black” events in group 2 and group 3 and “blue” events in group
3 were three cases, whose distributions were simulated with the normalization assumption. The result
of Moran’s I and ST Moran’s I of the three cases showed that those events were autocorrelated at
the 0.001 significance level. All values of NNR and ST NNR of the three cases were greater than 0
and were statistically significant at the 0.05 level. In other words, the four indices had successfully
identified the normalization autocorrelation, whereas the “black” event in group 1 and the “red” events
in group 3 were two cases that were simulated with the randomization assumption. The four indices,
Moran’s I, ST Moran’s, NNR, and ST NNR were very close to 0, indicating that they measured the
levels of autocorrelation among the events effectively. In summary, the four indices had obtained
reasonable values when measuring the levels of spatial/spatiotemporal autocorrelation. However,
their shortcoming was that they could not identify the difference of distribution autocorrelation between
two category events, called partial autocorrelation. The concept of partial autocorrelation is similar to
the partial regression coefficient in a multivariate regression model; it measures the autocorrelation
of events of a particular category while considering all events of other categories as the second type.
The lack of means to calculate partial autocorrelation could be a limitation of the classical methods;
thus, we were motivated to carry out this study.

It should be noted that even in evaluating absolute (as opposed to partial) spatiotemporal
autocorrelation, the spatiotemporal NNR has some limitations. Its R values should be approximately 1
for the “black” events subgroup in group 1 and for the “red” events subgroup in group 3 because the
“black” events were simulated to be randomly distributed. The R’s should be less than 1 for the “black”
subgroup events in group 2 because the distribution of data was simulated with the normalization
assumption. Furthermore, they should have a p-value of at least 0.05 in the three subgroups because
the distribution autocorrelation of the events in three subgroups was not statistically significant.

According to Table 1, the proposed DAE method successfully evaluated the distribution of
the target category of events against other categories of events. When the target events had similar
distributions in different groups, the spatiotemporal R was extremely low, with approximately 0.5
p-value on the “black” event subgroups in group 1 and group 2. The events of three subgroups in
group 3 had different levels of distribution autocorrelation: a high R value indicated that the target
category was distributed differently from those of other categories. In addition, the three R’s decreased
gradually along with the decrease in the degrees of aggregation of three categories of events.

Table 1. Results in three group data (the ST in the table denotes spatiotemporal).

Index
“Black” in
Group 1

“Black” in
Group 2

“Black” in
Group 3

“Blue” in
Group 3

“Red” in
Group 3

R p-Value R p-Value R p-Value R p-Value R p-Value

Moran’s I −0.00 0.44 0.76 0.00 0.38 0.00 0.64 0.00 −0.01 0.83
ST Moran’s I 0.00 0.50 0.60 0.00 0.29 0.00 0.55 0.00 −0.00 0.47

NNR 1.00 0.30 0.96 0.01 0.23 0.00 0.48 0.00 1.02 0.17
ST NNR 0.19 0.00 1.67 0.00 0.34 0.00 0.70 0.00 1.62 0.00
R(ws = 1) 0.14 0.44 0.18 0.42 22.24 0.00 17.69 0.00 15.01 0.00

R(ws = 0.2) −0.11 0.54 0.05 0.47 24.75 0.00 21.46 0.00 15.64 0.00
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5. Discussion

5.1. Impact of the Target Activity Ratio

To examine whether the ratio of target events against others would affect the calculated index
values, we assumed that the data were under three different distributions: random, standard normal
distribution, and binormal distribution, and repeated the experiments with ratios of “black” being
set from 0.1 to 0.9 (i.e., 10% and 90% of all event points in a simulated dataset). For each experiment,
the size of the sliding window (ws) was set to 0.1, the sliding interval θwas set to 0.01, and the number
of permutations was set to 100. The median of the obtained index values and their corresponding
p-values are listed in Table 2.

Table 2. Impact of black ratio with Voronoi-based sliding window model.

% Black
Random Distribution Normal Distribution Binomial Distribution

R p-Value R p-Value R p-Value

0.1 −0.05 0.52 −0.14 0.55 32.04 0.00
0.2 0.13 0.44 0.09 0.46 27.35 0.00
0.3 −0.07 0.52 0.03 0.48 22.68 0.00
0.4 −0.02 0.51 −0.02 0.51 19.71 0.00
0.5 −0.05 0.52 −0.00 0.50 16.39 0.00
0.6 −0.00 0.50 −0.04 0.51 13.60 0.00
0.7 −0.01 0.50 −0.06 0.52 10.97 0.00
0.8 0.02 0.49 −0.02 0.50 8.62 0.00
0.9 −0.00 0.50 0.01 0.49 5.72 0.00

Table 2 shows that all R values were very close to 0, but none were significantly different in
the proportions of “black” events in data under either randomization or normalization assumptions.
In group 3, binomial distribution, the R values decreased from 15.664 to 4.037, whereas the proportions
of “black” events increased from 0.1 (10%) to 0.9 (90%) in the simulated datasets. This finding is due
to the number of events marked “black” being greater than half of the total numbers of all events.
This was not the case, however, when the number of one category was less than the total number of
other categories of activities.

5.2. Impact of the Size Sliding Window Size and Step Size

Using the DAE model, the size of the sliding windows (ws) and step size (θ) should have some
impacts on R values. Considering that the distribution of “black” data in group 3 was significant with
all six indices, we used the same simulated data of group 3 in Section 4 to conduct more experiments
to verify the influence of window size and step size. The values of ws used in the experiments started
from 0.05 to 0.5 with increment θ from 0.005 to 0.05. The median R values of each 100 permutations are
listed in Table 3a.

Table 3a shows that the window size was significantly correlated to the results. It should be noted
that bias could exist because the spatial distribution of x, y and temporal distribution t were very
similarly controlled and generated by the same assumption and parameters.

However, there was no clear evidence showing that the results were connected to step size.
Ideally, θ should be as small as possible so that the window moves smoothly and therefore would
better capture the temporal and spatial relationships between events. To better examine the impact
of step size, we took a very small θ, 0.001, as a baseline θ. Then, we took Dx to present the deviation
between the values of R in the baseline and of Rx, which was obtained when θ was set to x. The Dx

was calculated by |R0.001 − Rx|, as listed in Table 3b.
As shown in Table 3b, as the θ increased, so did the average of Dθ. A smaller Dθ means that the

values of R had less deviation with the theoretical results, and was thought to be better. It suggests
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that the proposed index prefers that θ should be as small as possible. However, a smaller θ requires
repeating the Delaunay process more, which is time consuming.

Table 3. (a) The R values with different windows sizes (ws) and different step sizes (θ) for the group 3
data, where R0.005 denotes the obtained values of Rs when θ is set to 0.005. (b) The deviation matrix
compared to the baseline result.

a

ws R0.005 R0.010 R0.015 R0.020 R0.025 R0.030 R0.035 R0.040 R0.045 R0.050 Avg.

0.05 21.17 21.23 20.96 20.67 20.67 20.28 19.65 19.56 19.84 20.20 20.67
0.10 21.09 21.21 21.09 21.19 21.13 21.13 21.09 21.07 21.01 21.19 21.13
0.15 21.19 21.08 21.32 21.10 21.30 21.21 20.99 21.10 21.16 21.10 21.10
0.20 21.12 21.20 21.18 21.27 21.17 20.84 21.12 21.00 20.76 21.08 21.12
0.25 20.61 20.66 20.80 20.84 20.82 20.70 20.93 20.93 20.70 20.92 20.80
0.30 19.70 19.71 19.89 20.00 19.99 20.04 20.07 20.25 20.16 20.21 20.00
0.35 18.55 18.68 18.88 18.87 18.83 18.90 19.09 19.50 19.38 19.03 18.88
0.40 17.69 17.77 17.83 18.00 18.04 18.13 18.38 18.20 18.41 18.17 18.04
0.45 16.86 16.88 17.05 16.99 17.16 17.12 17.43 17.40 17.56 17.59 17.12
0.50 16.55 16.55 16.73 16.72 16.71 16.66 16.66 16.88 16.88 16.99 16.71

Avg. 19.45 19.50 19.57 19.56 19.58 19.50 19.54 19.59 19.59 19.65 19.50

b

ws R0.001 D0.005 D0.010 D0.015 D0.020 D0.025 D0.030 D0.035 D0.040 D0.045 D0.050 Avg.

0.05 21.07 0.10 0.16 0.11 0.40 0.41 0.79 1.42 1.52 1.23 0.87 0.41
0.10 21.24 0.15 0.03 0.15 0.04 0.11 0.11 0.15 0.17 0.23 0.04 0.11
0.15 21.07 0.13 0.01 0.25 0.03 0.23 0.14 0.07 0.04 0.10 0.04 0.04
0.20 20.54 0.58 0.66 0.64 0.73 0.63 0.30 0.57 0.46 0.22 0.54 0.57
0.25 19.75 0.86 0.91 1.05 1.10 1.08 0.96 1.19 1.18 0.96 1.18 1.05
0.30 18.60 1.10 1.10 1.28 1.39 1.39 1.44 1.46 1.65 1.55 1.60 1.39
0.35 17.75 0.79 0.92 1.12 1.11 1.07 1.14 1.34 1.75 1.63 1.27 1.12
0.40 17.05 0.63 0.72 0.78 0.94 0.98 1.08 1.33 1.15 1.36 1.11 0.98
0.45 16.37 0.49 0.51 0.67 0.61 0.79 0.75 1.05 1.02 1.18 1.21 0.75
0.50 16.55 0.00 0.00 0.18 0.17 0.16 0.12 0.11 0.34 0.33 0.44 0.16

Avg. 19.00 0.48 0.50 0.62 0.65 0.69 0.68 0.87 0.93 0.88 0.83 0.66

We believe that ws will cause an MTUP (modifiable temporal unit problem). For events from
the real world, natural units of time such as a year, month, week, day, would be good choices for
ws. In addition, the time span of all events should cross dozens of ws for fine capturing the temporal
impact. For θ, the smaller the better.

5.3. Performance Analysis

Since event data are increasingly generated and made available, new models and methods are
required to handle large volumes of event data. To investigate the relationship between the cost
of computation time and the volumes of event data, we conducted experiments using four sample
datasets of different sizes consisting of 1000 events, 10,000 events, 100,000 events, and 1,000,000 events,
respectively. The times used in calculating the three indices of ST Moran’s I, ST NNR, and the proposed
index (R) were recorded and presented in Table 4.

As shown in Table 4, the computation times for the ST Moran’s I and ST NNR index increased
rapidly as the sample size increased. In contrast, our method was more efficient at handling large
amounts of data. The required time of the proposed index increased when the sample size increased,
showing a linear relationship with the sample size. Moreover, the time overhead was related to the
two parameters, ws and θ:

(1) When ws was greater, more events fell into each temporal window and were involved in each
Delaunay model, thus requiring more calculation time.

(2) When the value of θ was smaller, more time for constructing the Delaunay triangulation was
required, resulting in more overall computation time.
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Table 4. The computation time (seconds) of different sample size for three ST models, where NA
represents the computation process is not finished within 10 h (36,000 s).

Index n = 1000 n = 10,000 n = 100,000 n = 1,000,000

ST Moran’s I 0.24 229.69 20387.89 NA
ST NNR 0.03 0.70 191.26 NA

R(ws = 0.2, θ = 0.01) 1.44 13.66 140.00 1497.30
R(ws = 0.2, θ = 0.02) 0.71 6.98 75.45 704.94
R(ws = 0.1, θ = 0.01) 0.76 7.48 71.51 704.18
R(ws = 0.1, θ = 0.02) 0.34 3.16 32.41 349.99

5.4. Real World Application—A Case of Call-for-Service Records

A call-for-service dataset in Portland, Oregon, with geographic coordinates and time stamps,
was used in this case study. The data was downloaded from the official website of Real-Time Crime
Forecasting Challenge (https://nij.gov/funding/Pages/fy16-crime-forecasting-challenge.aspx, accessed
on 19 May 2017). A total of 95 categories of events were recorded in the downloaded call-for-service
data, which represented 208,083 event cases located in Portland during that time.

Considering that the population may be closely related to the numbers of calls [51], the density of
population and calls of per square kilometer by census tracts are mapped, as shown in Figure 3a,b,
respectively. From these figures, some levels of spatial clustering in the distributions of population and
calls can be observed visually.
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Figure 3. Density of (a) population and (b) crime cases of per square kilometers by census tracts.
The U.S. Census Bureau divides each state into counties, each county into a number of census tracts,
each census tract into a number of census block groups, and each block group into a number of
census blocks.

We focused on the top 10 tracts whose call numbers were the highest among all tracts. As shown
in Table 5, the accumulated number of calls of the top 10 call-for-service categories was more than 50%
of the total number of calls from all categories.

To examine the spatial patterns by call categories, we evaluated them by using the Moran’s I with
two spatial units, namely, tracts and census block groups. In addition, nearest neighbor ratio (NNR)
values were calculated using default parameters for each of the top 10 call categories. Results are
shown in Table 6a,b.

https://nij.gov/funding/Pages/fy16-crime-forecasting-challenge.aspx
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Table 5. Frequencies of Top-10 call categories.

Category Case Description Number Percent

UNWNT UNWANTED PERSON 24,747 11.89%
DISTP DISTURBANCE 21,715 10.44%
SUSP SUSPICIOUS SUBJ, VEH, OR CIRCUMSTANCE 13,481 6.48%

WELCKP WELFARE CHECK—PRIORITY 12,673 6.09%
THEFT THEFT—COLD 12,036 5.78%
WELCK WELFARE CHECK—COLD 11,616 5.58%

AREACK AREA CHECK 6444 3.10%
ASSIST ASSIST—CITIZEN OR AGENCY 6284 3.02%

ACCNON ACCIDENT—NON INJURY 6050 2.91%
HAZARD HAZARD—HAZARDOUS CONDITION 5926 2.85%

120,972 58.14

Table 6. (a) Classical spatial pattern of call for service record (Znorm is the Z-score calculated under
normality assumption). (b) Classical spatial pattern of call for service record (Zrand is the Z-score
calculated under randomness assumption).

a

Case Type
Moran’s I Tract Moran’s I Block Group NNR

Moran’s I Znorm p-Value Moran’s I Znorm P-Value Z p-Value

UNWNT 0.46 9.70 0.00 0.51 19.02 0.00 −212.36 0.00
DISTP 0.32 6.84 0.00 0.47 17.54 0.00 −180.92 0.00
SUSP 0.38 8.01 0.00 0.42 15.56 0.00 −97.61 0.00

WELCKP 0.41 8.59 0.00 0.56 20.76 0.00 −120.46 0.00
THEFT 0.37 7.81 0.00 0.41 15.27 0.00 −105.45 0.00
WELCK 0.39 8.20 0.00 0.53 19.86 0.00 −112.43 0.00

AREACK 0.36 7.57 0.00 0.45 16.54 0.00 −63.02 0.00
ASSIST 0.34 7.17 0.00 0.48 17.94 0.00 −71.05 0.00

ACCNON 0.32 6.82 0.00 0.32 12.04 0.00 −87.90 0.00
HAZARD 0.30 6.36 0.00 0.31 11.67 0.00 −89.97 0.00

b

Case Type
Moran’s I Tract Moran’s I Block Group

Moran’s I Zrand p-Value Moran’s I Zrand p-Value

UNWNT 0.46 10.57 0.00 0.51 20.28 0.00
DISTP 0.32 7.51 0.00 0.47 17.86 0.00
SUSP 0.38 8.42 0.00 0.42 15.52 0.00

WELCKP 0.41 9.52 0.00 0.56 22.29 0.00
THEFT 0.37 7.84 0.00 0.41 15.93 0.00
WELCK 0.39 9.05 0.00 0.53 20.27 0.00

AREACK 0.36 7.79 0.00 0.45 17.41 0.00
ASSIST 0.34 7.46 0.00 0.48 18.15 0.00

ACCNON 0.32 7.10 0.00 0.32 12.40 0.00
HAZARD 0.30 6.33 0.00 0.31 11.64 0.00

Table 6a,b show the certainly statistically significant levels of spatial clustering with respect to all
call categories. However, identifying which call category showed a spatial pattern that is significantly
different from that of all call categories was difficult because all spatial patterns are statistically
significantly clustered for this dataset. Therefore, analyzing these events to identify the autocorrelation
distribution pattern over different call categories is necessary. We evaluated the partial spatiotemporal
autocorrelation for each category of events using the proposed method, and the results are shown
in Table 7.
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Table 7. Distribution autocorrelation of human activity events (DAE) of call for service records.

Case Type
ws = 365 Days ws = 7 Days

R p-Value R p-Value

UNWNT −8.69 0.00 11.43 0.00
DISTP 18.93 0.00 9.49 0.00
SUSP 28.92 0.00 12.49 0.00

WELCKP −7.35 0.00 4.08 0.00
THEFT 6.45 0.00 5.19 0.00
WELCK −4.62 0.00 4.46 0.00

AREACK 11.24 0.00 4.51 0.00
ASSIST 1.66 0.09 5.8 0.00

ACCNON −1.63 0.10 12.45 0.00
HAZARD 4.26 0.00 47.41 0.00

Table 7 shows the remarkable difference among different call categories. The R’s of the UNWNT,
WELCKP, and WELCK categories were less than 1.96. Although they were significantly clustered
in space and time, they seem to be significantly dispersed when compared with those of other call
categories. Such an outcome suggests that call categories with small absolute R values may not have
special spatial factors that can influence the source of these calls. Alternatively, the DISTP, SUSP, THEFT,
AREACK, and HAZARD categories have evident spatiotemporal relative aggregation characteristics,
as shown by their partial autocorrelation measures. This finding indicates that they could be closely
related to specific spatial environments and other factors. This condition is only possible when partial
autocorrelation levels are calculated.

Table 6 also shows that the levels of the DAE (when ws was set to seven days) of all call categories
were more statistically significant than the spatial pattern (when ws was set to 365 days) of any
given call category. This finding suggests that the temporal patterns in these call events must not
be overlooked.

6. Concluding Remarks

To better distinguish the distribution autocorrelation of human activity events, a new method for
measuring the levels of autocorrelation in a set of events was proposed. With this method, we built
a Voronoi-based sliding window model to solve the problem of finding spatiotemporal neighbors
among human activity events. The model is based on integrating space and time dimensions while
maintaining spatiotemporal heterogeneity among spatiotemporal events. We also analyzed and
demonstrated the properties and usage of this method by applying it to simulated data and a case
study of real-world data. The experimental results showed that the proposed method can examine
and measure the level of spatiotemporal autocorrelation in a set of events. The results of this study
are expected to enrich the spatiotemporal analysis methods of categorical events and provide a new
approach for the applications of spatiotemporal analysis methods/data when working with large
volumes of data on human activities.

However, this study still has some limitations that may require further research. First, using only
one case study may be biased because different outcomes may be obtained when the proposed method
is used in different case studies. The call-for-service records used here are only for the purpose of
illustrating the methodological procedures and checking the effectiveness of the methods. More works
on classifying call-for-service records to different categories may be needed by applying the proposed
method to more datasets of different characteristics. Furthermore, the sliding window model lacks
a means to define an optimal universal window size. In practical uses, such window sizes may depend
upon the way a particular category of events being analyzed is distributed.

Along the temporal dimension, geographical events can affect other events in ways that are
different from those in spatial dimensions. For example, past events may affect how current events
evolve, but not vice versa. Similarly, the effects that some events may have on others may have
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time-delayed impacts. The current format of the method discussed in the paper does not consider these
effects. Additionally, the frequencies of events should be assessed to see if they have any temporal
cycles, which are important when defining an appropriate temporal window size in the analysis.

Finally, as in almost all spatial statistics, the boundary issue should also be recognized here.
Conventionally, a buffer zone can be constructed to include geographic events from the neighboring
areas into the dataset for analysis. That, of course, is feasible only when such data are available.
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