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Abstract: Industry 4.0 comprises a wide spectrum of developmental processes within the
management of manufacturing and chain production. Presently, there is a huge effort to automate
manufacturing and have automatic control of the production. This intention leads to the increased
need for high-quality methods for digitization and object reconstruction, especially in the area of
reverse engineering. Commonly used scanning software based on well-known algorithms can
correctly process smooth objects. Nevertheless, they are usually not applicable for complex-shaped
models with sharp features. The number of the points on the edges is extremely limited due to the
principle of laser scanning and sometimes also low scanning resolution. Therefore, a correct edge
reconstruction problem occurs. The same problem appears in many other laser scanning applications,
i.e., in the representation of the buildings from airborne laser scans for 3D city models. We focus on a
method for preservation and reconstruction of sharp features. We provide a detailed description of all
three key steps: point cloud segmentation, edge detection, and correct B-spline edge representation.
The feature detection algorithm is based on the conventional region-growing method and we derive
the optimal input value of curvature threshold using logarithmic least square regression. Subsequent
edge representation stands on the iterative algorithm of B-spline approximation where we compute
the weighted asymmetric error using the golden ratio. The series of examples indicates that our
method gives better or comparable results to other methods.

Keywords: edge detection; point cloud; reverse engineering; spline; industry 4.0; 3D scanning;
3D model

MSC: 65D10

1. Introduction

Industry 4.0 is the trend towards automation and data exchange in manufacturing technologies
and processes. Industry 4.0 factories have machines which are augmented with wireless connectivity
and sensors, connected to a system that can visualize the entire production line and make decisions on
its own. Smart manufacturing is a broad category of manufacturing that employs computer-integrated
manufacturing, high levels of adaptability and rapid design changes, digital information technology,
and more flexible technical workforce training [1,2].

Our work covers the part of automation in manufacturing and reverse engineering for design
changes. The widespread availability of cheap commercial depth sensors or multi-camera setups leads
to their common usage in manufacturing engineering, especially in rapid product development [3].
Therefore, the point cloud has become the regular type of the representation used e.g., in reverse
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engineering (RE) and rapid prototyping (RP). The precision, scanning speed and variety of processing
algorithms create suitable conditions for its common usage.

A key problem in the RE/RP integration, as mentioned in [4], is the transformation of a set of
dense points obtained in the RE process to a fitting model that can be used. In Figure 1, the reverse
engineering process is described.

Figure 1. Reverse engineering process.

Usually, 3D scanners are provided with software that creates a physical object in the two-phase
setup: reconstructing CAD model from the scanned point data, and subsequent STL model output.
However, the implemented methods are usually sufficient only for simple and smooth objects.
More complex objects with holes, sharp edges or corners often require prior knowledge of how
to edit the scanned data. The data post-processing is time-consuming and can potentially lead to
errors. We present an algorithm that automatically detects sharp features in arbitrary point cloud data.
Our algorithm is based on a modified region-growing method. The input value to the algorithm is only
one parameter—the normal vector threshold θN (optimal start value and the description is presented
in Section 2.1). Region-growing algorithm eliminates the planar points and the remaining points are
probably edge points.

Before the final manufacturing process or 3D printing, a correct model is essential for STL
generation [5] and subsequent slicing [4,6]. Figure 2 shows the common problematic part (jagged and
inaccurate borders) that occurs frequently. To solve this problem, in Section 3.2 we propose the novel
edge representation based on B-spline approximation. The asymmetric error evaluation is based on
bell function with weighting using golden ratio [7] to improve the edge representation of the models.

Moreover, our B-spline approximation is also sufficient for direct STL slicing from point clouds
that extracts the sectional contours (curves) directly without model reconstruction. The overview of
these methods is e.g., in [8]. The presented B-spline approximation can be used without limitations in
this slicing procedure because it obviously iteratively minimizes the shape-error of the layer curves.

Figure 2. Problematic parts on the edges.

Prior Work

Point cloud segmentation and classification plays a key role in point cloud processing in RE/RP
usage. Segmentation is the process of grouping point clouds into multiple homogeneous regions with
similar properties whereas classification is the step that labels these regions. Segmentation methods are
divided into many categories and the choice of the methods depends on the area of interest, sampling
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density, data quality and explicit structure of point cloud. We can use the categorization described
in [9,10]: region-growing, edge-based methods, model fitting, and hybrid methods.

Most of the methods start with region growing that was purposed by Besl [11] for segmentation
of images. The region-growing algorithm was later expanded into 3D in two different versions:
unseeded [12] and seeded [13]. Region growing is applied in plenty of different applications,
e.g., extracting features and planar surfaces from 3D outcrop point clouds [14], surface segmentation,
and edge feature lines extraction from fractured fragments of relics [15] or urban environment
modelling [16] and also 3D city modelling (literature survey e.g., in [17]).

Region growing is frequently improved. For example, Demaris et al. [18] detect the closed sharp
edges using the region growing with normals given by building a local mesh and least-squares planes
through the nearest neighborhood points. The correct edge detection in provided by graph theory
(minimum spanning tree). In [16], region-growing step is performed on an octree-based voxelized
input point cloud representation to extract major segments.

The edge-based methods are usually used with point clouds transformed into the range
images [19]. Using the high-level features (scan line grouping technique) as segmentation primitives
instead of individual pixels ensure the high computational speed. However, this edge detection is not
applicable for noisy data.

Model fitting methods assume that a surface can be described as a composition of simple,
canonical geometric shapes (watertight reconstruction). Elementary methods use RANSAC to robustly
find planes, spheres, cylinders, cones, and torii [20]. However, there occurs a problem with noise,
any fine-grained details are likely to be treated as noise with the primitive prior, if they are unable to
be represented as a union of smaller primitives (a survey is described in [21]). The partial solution is
hybrid methods that employ primitives with other prior [22].

Region-growing, edge-based methods and model fitting do not need pre-processing, but there
exist other segmentation methods based on pre-processing. These algorithms are capable of
reconstructing data incompleteness [23,24] or construct a triangular mesh of given point cloud [25–27].
Afterwards, the formed mesh can be processed using e.g., the discrete differential geometry where
local extreme of the surface detect the edge lines [25] or algebraic methods based on bivariate
polynomials [27]. We must note that some of these methods work with the machine learning
methods [28].

After the point cloud segmentation and classification, we need a correct model representation and
tessellation (usually STL) with subsequent slicing to extract layer-based additive manufacturing [29].
There exist various approaches that combine different technologies. Traditional STL approach is
described e.g., in [30]. B-spline or NURBS surfaces are used frequently, e.g., authors in [31,32] presents
direct slicing from NURBS without STL. Also, B-Rep model composed of planes, spheres, cylinders and
cones from a 3D mesh is fitting for slicing [33,34]. Some of the authors omit the model reconstruction
and make the direct generation of sectional contour. For example, authors in [35] employ the curve
skeleton of the model to slice through the surface mesh edges. B-spline curve fitting of the layers
where the curve curvature is determined by a circle fitting procedure is presented in [8].

The development of neural networks and deep learning also touches the research in point cloud
analysis. Some methods are promising but there is still no one-size-fits-all approach. Reviews of the
methods are covered e.g., in [36–38].

Present literature contains most of the recently known principles. Main scientific contribution is
in their improvements and applications. For example, work [39] (published 2020) uses B-spline
representation and normal computation using normal curvature directly computed by partial
derivatives of the surface. The omitting of the pre-defined threshold value is the main idea in [40]
(published 2019). The authors suggest the composition of spatial FFT-based filtering and boundary
detection, which together allow for direct generation of low noise tessellated surfaces from point cloud
data. Ref [41] presents the feature sensitive point cloud simplification that is based on insensitive
support vector regression.
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The advantages of the well-known methods (region-growing or PCA) are obvious—robustness,
computed easiness, stable algorithms. Because of that, we chose these classical methods and our main
idea was (1) the simplification and automatic setting of input values (described in Section 2.1) (2) find
optimal error evaluation in B-spline representation that is suitable for engineering objects. The problem
of error computation is described in Section 2.2 and we proposed asymmetric weighting based on
golden ration.

2. Methods and Materials

The common industrial engineering components consist of flat, smooth or curved surfaces.
A measurable difference in surface normals or curvature is relatively small on most of the model
surfaces. Contrary to that, in the neighborhood of a sharp feature, such as a sharp edge or corner,
there is a significant change in the surface normal and curvature. Thus, if we remove all points of the
flat, smooth or curved surfaces, the remaining ones are the points on the sharp features. With this idea
in mind, we build our method, similarly to [42], on the analysis of the eigenvalues of the covariance
matrix for every point’s k-nearest neighbor. We use region growing not to find planar surfaces or
regular models [43] but to remove the points with low curvature (Section 2.1).

The important input values of region growing are normal and curvature thresholds. Their setting
substantially changes the segmentation results, but their choice is unintuitive and difficult especially
for beginners. We find the geometric correlation between these two values and we compute the
optimal initial value that is applicable in the case of regular engineering objects. This is described
in the following subsections. This approach is robust to the noise and is suitable for subsequent
B-spline approximation.

The B-spline approximation was chosen due to its good properties and well-known computation.
The iterative process ensures sufficient quality. The error computation is based on the asymmetrically
weighted distance (asymmetric distance is presented in [44]) but in our case, the weight is described
with the golden ratio. The asymmetric measurement replaces the outliers and protects the curve from
the zig-zag effect. This approach is described in Section 2.2. Computed B-spline curve can represent
edges in point clouds. Moreover, described B-spline approximation is also possible to use in the
methods for direct slicing.

2.1. Edge Points Detection

The processing of a given point cloud starts with the region-growing segmentation.
Surface normal computation is based on Principal Component Analysis (PCA) [45] that uses an
orthogonal transformation to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables. The description is in Section 2.1.1.

Edges can be also classified by Gauss mapping [42,46,47]. The point normal vectors are projected
on the Gauss sphere and subsequent clustering distinguish the point type (corner, edge, planar).
This method is time-consuming so that we use the region growing.

2.1.1. PCA—Normal Estimation

The first step in the PCA algorithm is the computation of the covariance matrix C for each point P
in the point cloud.

C =
1
k

k

∑
i=1

(Pi − P̄) · (Pi − P̄)T , (1)

where P̄ is the centroid of k-nearest neighborhood points Pi, i = 1, 2, . . . k of a point P. Eigenvalues
(λ0, λ1, λ2) and eigenvectors (~v1,~v2,~v3) of this matrix defines the covariance ellipsoid. We distinguish
between these three cases:

1. (λ0 ≤ λ1 ≤ λ2) ∧ (λ1 ≈ λ2)
2. (λ0 ≤ λ1 ≤ λ2) ∧ (λ0 ≈ λ1)
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3. (λ0 ≤ λ1 ≤ λ2) ∧ (λ0 ≈ λ1 ≈ λ2).

These types of covariance ellipsoids define the neighborhood of the given point (Figure 3a–c).
In the case of an oblate ellipsoid ((λ0 ≤ λ1 ≤ λ2) ∧ (λ1 ≈ λ2)), the point is obviously on an almost
planar area and the eigenvector corresponding with the smallest eigenvalue is point normal.

λ0

λ1

λ2

(a)

λ2

λ0 λ1

(b)

λ2

λ0

λ1

(c)

Figure 3. Types of the covariance ellipsoid (a) oblate (b) prolate (c) similar to a sphere.

2.1.2. Region Growing—Initial Normal Threshold Value thrθN

Region-growing segmentation algorithm usually requires input parameters: minimal and
maximal cluster size, k-nearest neighbor points, normal threshold thrθN and curvature threshold
thrθC . Value θN is the angle between two-point normals and θC is curvature. They strongly affect the
segmentation results and geometrically, they are tightly connected. The setting of the initial values is
unintuitive and not user-friendly so that we focus on the optimal automatic estimation of θN .

Figure 4a shows the definition of the curvature θ of the curve l at the point P1. In the limit as
∆t→ 0, we obtain:

θ = lim
∆t→0

∆α

∆t
(2)

In the case of a point cloud, we consider the parameter ∆t as the minimal distance dmin of the line
between two adjacent points (Figure 4b). The curvature θC is computed by

θC =
θN

dmin
. (3)

l

Δα

Δα

Δt
P1

n1 n2
t2

t1

P2

(a)

dmin

θN

θN

P1

n1 n2

t2

t1

P2

(b)

Figure 4. (a) Curvature of the curve, (b) curvature estimation in a point cloud.

Therefore, the region-growing segmentation can be controlled only by one parameter—the normal
vector threshold thrθN . The following part describes the process of the ideal initial value of thrθN .

We prepared a set of testing point clouds Mi, i = 1, 2, . . . , 6 to cover the spectrum of different
shapes from simple one to the complex ones (Figure 5). These point cloud data were acquired by ATOS
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Compact Scan 2M.We set a testing range of maximal values of normal vector threshold thrθN = 1, . . . , 15.
It means that the segmentation removes all points in clusters where the normal vector threshold is
lower than thrθN . Let nout be a number of the removed points and nin be several points in a point cloud.

We applied the region-growing algorithm on our data-sets with parameters thrθN and we
computed the number of removed points nout. The percentage of remaining points is defined as:

percN =
nout

nin
· 100. (4)

We notice that the dependence between thrθN and percN has logarithmic progress, the logarithmic
regression is the best choice to compute the dependence:

thrθN = b1 ln(percN) + b0, b0, b1 ∈ R. (5)

The graphs and final results are in Section 3.1.

(a) (b) (c) (d) (e) (f)

Figure 5. Testing point clouds: (a) Mffl, (b) M2, (c) M3, (d) M4, (e) M5, (f) M6.

2.2. B-Spline Edge Representation

B-spline fitting belongs to the favorite tools for processing of a set of unorganized, possibly noisy
data points in computer graphics, computer vision and CAD/CAM. The main advantage of B-spline
approximation is based on the well-known formulation of B-spline [48]:

C(u) =
n

∑
i=0

Bi,p(u)Pi, (6)

where Bi,p(u) is the B-spline basis function of degree p with control points Pi. The parameter u is
from the nonperiodic and nonuniform knot interval u =< u0, u1, . . . , un+p+1 >. We set u0 = 0 and
un+p+1 = 1.

Let {Qk}m
k=0 be the set of input points. The fitting algorithm search for control points Pi,

knot vector u of the spline curve defined in Equation (6) and also the parameters û = {ûk}m
k=0

that satisfied the equation:

Qk =
n

∑
i=0

Bi,p(ûk)Pi (7)

and C(u0) = C(0) = Q0, C(un+p+1) = C(1) = Qm.
First, we compute the initial curve shape. The authors in [44] work with the initial circle (center

of the circle is at the mean of the point cloud, the radius of the maximal distance of a point to center)
or an ellipse which the main axes are computed by PCA. We start with frequently used chordal and
centripetal method. The chordal method computes the parameters as:

û0 = 0; ûm = 1; ûk = ûk−1 +
|Qk −Qk−1|

d
(8)

where d = ∑m
k=1 |Qk −Qk−1|. Centripetal method is similar, we only add square root of the line length.

Centripetal method is more relevant in case that the data takes sharp turns.
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Secondly, we set the knot vector u with condition that every knot span contains at least one ûk.
The internal knot spans are defined by [49]:

i = f loor(jd), α = jd− i,

up+j = (1− α)ûi−1 + αûi, j = 1, . . . , n− p (9)

and function f loor is the largest integer such i ≤ jd.
Subsequently, coordinates of the control points Pi are approximated by the standard technique of

linear least-squares fitting [48]. We minimize the function:

f = |
m−1

∑
k=1

Qk − C(ûk)|2 (10)

We can describe the solution in matrix form (the system of n− 1× n− 1 equations) as:

(BT B)P = R (11)

where matrix BB represents the B-spline function of degree p evaluated for all ûk, k = 1, . . . , n− 1.
Matrix P are wanted control points and vector R is the vector of n− 1 points:

R =

 ∑m−1
k=1 B1,p(ûk)Rk

...
∑m−1

k=1 Bn−1,p(ûk)Rk

 (12)

and
Rk = Qk − B0,p(ûk)Q0 − Bn,p(ûk)Qm, k = 1, . . . , m− 1. (13)

The Equation (11) can be solved by Gaussian elimination because the matrix BT B is positive
definite and well-conditioned.

We must deal with the main problem throughout the iteration process: a choice of the distance
measure to error determination. The formulation of the problem is simple, we have unorganized
data points (in our case possible edge points) with non-uniform distribution with considerable noise.
This problem can be formulated as a nonlinear optimization problem. Given input points {Qk}m

k=0,
we want to compute control points Pi that minimize a general objective function [44]:

f =
1
2

n

∑
k=1

d2(P(u), Qk) + λ fs (14)

d2(P(u), Qk) is the distance of point Qk to the curve P(t), fs is regularization term to ensure a smooth
curve, λ is weight of fs. In our algorithm, we work with the asymmetric weighted point distance
measure. We introduce a novel error term in Equation (15) that is based on golden ration. It ensures
that the inner points (on the same side as a normal vector) have lesser influence than the outer. This
advantage eliminates the problematic outliers and improves the shape of the curve (Figure 6).

outliers

Figure 6. The example of the outliers.
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The distance dk is the signed distance of the point Qk and the closest point on the computed
B-spline curve. dk is positive if the point Qk is on the same side as normal nk—see Figure 7a. This error
term is:

wϕ(dk) =


(

1
ϕ + ϕ

)− d2
k

σ2 for dk < 0

1 for dk ≥ 0

(15)

k = 0, 1, 2 . . . , m, where σ defines the width of the transition of the weighting function with respect to
the signed distance. The value ϕ is the golden ratio 1.61803398875. The objective function has a form:

fϕ =
m

∑
k=0

wϕ(dk)d2
k , (16)

The weighting function wϕ(dk) and objective function fϕ are modelled in Figure 7b.

C(k)

nk

Qk

(a)

-1.5 -1 -0.5 0 0.5 1

d

0

0.5

1

1.5

2

(b)

Figure 7. (a) Normal vector is on the opposite side of the point Qk, distance dk is negative, (b) the
graphs of the functions wϕ (red line) and fϕ (blue line).

The asymmetric error detects the parts where the curve accuracy is insufficient. The improvement
is done by local knot insertion. We know the parameter uk of the nearest curve point C(uk) for every
Qk. Therefore, we insert all knots uk in the insufficient parts and recompute the curve using knot
insertion scheme. If uk ∈< uk, uk+1), then the new control points Pi are:

Pi = βiPi + (1− βi)Pi−1 (17)

where

βi =


uk−ui

ui+p−ui
for k− p + 1 ≤ i ≤ k

1 for i ≤ k− p
0 for i ≥ k + 1

(18)

In the parts, where the error is high, we add the new knot in the value of the nearest curve point.
We tested the proposed improvement on the set of point clouds C1, C2, C3, C4 and C5. The test results
and thorough comparison are in Section 3.

3. Results and Discussion

This section contains two main parts: Estimation of normal threshold parameter and B-spline
fitting with a novel asymmetric error. In the first part, we made a series of testing objects—from
almost planar ones to the complex ones with holes. We proceeded these models with region-growing
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algorithm and using our proposed method (Section 2.1.2) we estimate the optimal value of the normal
threshold. This value can be set as a universal input threshold value. The inexperienced end-users of
the edge detection algorithm do not need any complex manual on how to control the results.

The second step contains a B-spline fitting algorithm for the edge representation. The input of this
part are points detected in the first step. The asymmetric error with the golden ratio (Equation (15))
is used in the iteration process as described in the previous section. On the set of different curves
(smooth, complex) we show the results and we make a comparison with method [44].

Feature detection algorithm was implemented in Microsoft Visual Studio C++ with Point Cloud
Library 1.8.0. The B-spline approximation was programmed in MATLAB R2018a. The point cloud
data-sets were obtained by ATOS Compact Scan 2M. Testing was provided on the MacBook Pro,
2.6 GHz Intel Core i7, 16 GB 1600 MHz DDR3, NVIDIA GeForce GT 750M 2048 MB, SSD.

3.1. Estimation of Normal Threshold thrθN

The first analyses examines the impact of parameter thrθN . The set of testing point clouds
Mi, i ∈ 〈1, 6〉 is in Figure 5. Let sin be several points in the given point cloud (Table 1).

Table 1. The point clouds with number of points sin.

Model M1 M2 M3 M4 M5 M6

sin 87,848 67,394 195,815 123,112 103,534 90,209

We applied the region-growing algorithm on our data-sets with the initial parameters thrθN ∈ N,
thrθN = 1, . . . , 15 and we find the number of removed points nout. The percentage of remaining points
is computed by:

percN =
nout

nin
· 100. (19)

Table A1 provides the results obtained by the analysis of different values thrθN . We can see that
the value of percN is tightly related to the complexity of the model.

Table A2 (middle column) presents point charts of the values thrθN and percN . We can see that
independently on the model complexity, it has the logarithmic progress. Therefore, the dependence
between thrθN and percN can be generally described with logarithmic regression using Equation (5).
The final equations and graphs are in Table A2 (last column).

We want to determine the best possible input value thrθN that is applicable for common point
clouds of the engineering models. We start with the average regression equation (the average of the
equations in Table A2):

θST ≈ R(x) = −2.45 · ln(x) + 6.06. (20)

The optimal value of perc is set empirically as 1–6%. Therefore, the values of thrθN are in interval
〈R(1), R(6)〉. Obviously, we get:

R(1) = −2.45 · ln(1) + 6.06 ≤ θST ≤ −2.45 · ln(6) + 6.06 = R(6)
6.06 ≤ θST ≤ 1.67.

(21)

The arithmetic mean of R(1) and R(6) is θopt = 3.86 is set as a default initial value in the proposed
feature detection algorithm. In the case of insufficient results, this value can be changed incrementally.
Table 2 shows the segmentation results for models Mi, i = 1, 2, . . . , 6 using the default initial value
θopt = 3.86. It is obvious that the results are sufficient and this value helps inexperienced users to
start segmentation without any prior knowledge of curvature or normal threshold. By applying the
incremental change of this value, the results are improved to obtain sufficient quality for actual use.
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Table 2. The final segmentation using the initial value θopt = 3.86.

Input Output Input Output

M1 M2

M3 M4

M5 M6

We made a comparison of our method with similar approaches presented in [18,47]. We built a
similar set of models for the evaluation (see Figure 8). The initial value of the curvature threshold
was set to the pre-defined initial value θN and this value was incrementally changed to obtain the
best results.

(a) (b) (c) (d)

Figure 8. Set of testing models for comparison (a) similar to model in [18], (b–d) similar to models
in [47].

In Table 3, model in column (a), there is significant difference between the results—the incorrectly
detected cylinder parts in results [18]. Our method with thrθN = 4 provides visibly better results.

Models (b), (c) and (d) are similar to models in [47]. We can see that our method provides
comparable results. In the case of these models, we had to decrease the value of θN because these
models contain a lot of planar surfaces.
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Table 3. The comparison of the testing results (upper row: model from [18,47]), bottom row:
edge detection with the incremental change of the threshold value).

(a) (b) (c) (d)

thrθN = 4 thrθN = 1.2 thrθN = 1 thrθN = 1.5

3.2. B-Spline Curve Fitting

This section presents the results of the proposed B-spline approximation described in Section 2.2.
We tested the computation on the set of curves Ci, i = 1, . . . , 5 (Figure 9). The curves were extracted
from point clouds—square curve (200 × 200 mm) from the cubic model, circle (radius 200 mm) from
the cylindrical model. Remaining models were generated in Blender studio to prove the versatility of
the algorithm. Table 4 gives the numbers of points of these curves.

(a) (b) (c) (d) (e)

Figure 9. Set of testing point clouds: (a) C1, (b) C2 , (c) C3, (d) C4, (e) C5.

Table 4. The testing curves—number of points sin.

Model Curve C1 C2 C3 C4 C5

sin 1632 1307 2560 2477 3130

The set of curve points was tested using presented B-spline curve fitting with adaptive knot
insertion. The most difficult part was the optimal setting of the error computation—how to measure
the quality of approximation if we do not know the correct shape. The common approach of the error
computation works with point distance that offers the robustness. The tangent distance [50] provides
the substantially faster convergence. The squared distance with asymmetric weighting [44,51] benefits
from both and performs a stable method. We used the asymmetric weighting, but we proposed a novel
evaluation of asymmetric error:

f 2
ϕ,k = wϕ,k(dk)d2

k , where wϕ(dk) :=


(

1
ϕ + ϕ

)− d2
k

σ2 for dk < 0

1 for dk ≥ 0

(22)
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k = 0, 1, 2 . . . , m,

We set the error threshold to 1 mm. In Figure 10a, we can see the initial B-spline curve (dashed
blue line) that is computed by the chordal method and least square method described in Section 2.2.
Red points are new B-spline control points and black crosses are the points in the point cloud.
Figure 10b shows the distance of the point cloud points to the fitting curve (blue line segments).

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

3.5

4

4.5

5

5.5

6

6.5

7

(a)

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

3.5

4

4.5

5

5.5

6

6.5

7

7.5

(b)

Figure 10. (a) The initial B-spline curve of the cloud points (black crosses) and new control points (red
crosses), (b) the distance of the point cloud points and the computed curve line.

The value of asymmetric error determines whether we proceed the knot insertion and insert
new control points in the inaccurate positions. Figure 11 shows the result of second iteration of
B-spline fitting. We implemented the method [44] and proposed computation given by Equation (22).
We computed average error of approximation Em and Egold in Table 5 (we set σ = 0.02, 0.09, 0.1).
We can see that in the case of σ = 0.09 and σ = 0.1 the error is lower and the shape of the curve is
visibly better (see Figure 11).

Table 5. Computation of approximation error Em and Egold using different values of σ.

σ 0.02 0.09 0.1

Em 0.9387 0.9661 0.9702
Egold 0.9382 0.9560 0.9604
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Figure 11. The comparison of second iteration using method [44] (red line) and proposed method
given by Equation (22) (blue line). Different values of σ: (a) σ = 0.02, (b) σ = 0.09, (c) σ = 0.1.
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Table A3 shows different results with the number of control points and the corresponding
asymmetric error. It is obvious that the algorithm is applicable in the case of different structures and
work well with corner points.

4. Conclusions

The main contribution of this article is a method that improves the detection and representation of
the edges of scanned engineering parts. This area is challenging because the scanning device (usually a
3D scanner) is frequently not able to cover the sharp edges with a sufficient amount of measured points.
Therefore, the used techniques have a problem with the correct representation of the object shape.
A manual time-consuming work in some commercial program is needed for fine-tuning of the scanned
objects. Our article describes the overall workflow of the automatic edge detection in the arbitrary
point cloud and subsequent correct edge representation using splines. We provide a user-friendly
solution based on a single control parameter that can work with different shapes of engineering parts
as well as other 3D scans generally. This method is also suitable e.g., for the reconstruction of the sharp
edges of the buildings based on airborne laser scanning. The density of the measured points is also
limiting the ability of the algorithms to reconstruct the precise shape of the walls. Simple adjustment
of a single control parameter for the particular type of scanned object can substantially improve the
results.

As the first step of our algorithm, we used the standard region-growing segmentation.
We improved the part of principal component analysis (PCA) algorithm that is necessary for normal
computation. We made a series of tests with variable shapes (from almost planar to complex ones)
and using geometry calculus and numerical methods we implemented new variable—normal vector
threshold thrθN . Subsequently, we set this computed optimal value as the start value. Users can change
incrementally this threshold in dependence on the shape of the object. Using one interconnected value
to control the result is more suitable and very comfortable for end-users that are not able to understand
to all algorithm parameters. Region-growing method removes the planar points and the remaining
points are the possible edge points.

The next step was challenging. How to compute the error of the edge representation when
the correct edge points are missing. We chose to work with iterative B-spline method using the
asymmetrically weighted point distance. The reasons are discussed in Section 3. We decided to use
the golden ratio as a parameter (Section 2.2). It ensures that the inner points (on the same side as a
normal vector) have lesser influence than the outer and the result is optically “perfect”. This advantage
eliminates the problematic outliers and improves the shape of the curve. We made the algorithm
resistant to noise and prevented the zig-zag effect.

Our work has many possible extensions. Reverse engineering is tightly connected with 3D
printing technology. Printed object correctness depends on the appropriate slices (G-code). The first
follow-up can be an adjustment of the B-spline slicing method. Furthermore, the visualization of the
scanned objects can be improved. Approximation of the curve points can be added to the triangulation
net. Substantial advance can be an incorporation of the T-splines. T-spline enables irregular grid
and we can represent sharp edges using different local knot vectors. Certainly, many scientific areas
take advantage of huge progress in neural networks and deep learning. Point cloud analysis is not
an exception. We follow the research in this area but the usage is now limited by the sensitivity of
parameters and most methods work just with small point clouds [38].
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Abbreviations

The following abbreviations are used in this manuscript:

RP Rapid Prototyping
RE Reverse Engineering
CAD Computer Aided Design
PCA Principal Component Analysis
STL Standard Tessellation Language
NURBS Non-Uniform Rational B-spline

Appendix A

Table A1. Table of thrθN and percN for all testing point clouds.

thrθN 0.5 2 4 6 14

M1
percN 4.71 1.57 0.47 0.05 0.02

M2
percN 4.34 3.36 1.71 0.85 0.85

M3
percN 26.54 16.38 3.24 0.56 0.01

M4
percN 29.27 18.65 2.87 0.38 ≈ 0

M5
percN 10.41 6.56 4.04 2.03 0.06

M6
percN 67.14 37.25 14.10 5.09 0.09
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Table A2. Table of data and logarithmic regression for all testing point clouds.
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Table A3. Comparison of B-spline curve approximation of testing clouds, CP is number of control
points, wϕ is average weighted error.

C1

CP 4 10 20
wϕ [mm] 2.35 1.15 0.83

C2

CP 4 10 20 40 80
wϕ [mm] 14.01 5.54 2.02 1.25 0.99

C3

CP 20 40 80
wϕ [mm] 3.96 0.96 0.85

C4

CP 80 100 160
wϕ [mm] 0.41 0.37 0.27

C5

CP 10 40 80
wϕ [mm] 2.19 0.67 0.33
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