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Abstract: The need to protect critical infrastructures (for short called assets within this paper)
arises because of the hazards they are exposed to. In this article, the hazard is represented by the
landslides. The first part of the paper proposes a scientifically robust method for the identification of
the top-N assets that can be modeled as “points” (mainly buildings). The developed method takes
into account the slope of the terrain, the runout distance of the landslide and its trajectory. The latter
is roughly estimated through the notion of linear regression line. The method is applied to a real
case to carry out a preliminary validation of it. In the second part of the paper, it is formalized the
problem of computing the ranking of assets that can be modeled as “lines” (e.g., highways, power
lines, pipelines, railway lines, and so on, that cross a given territory). The problem is solved in
three steps: (a) Segmentation (it “cuts” each route in segments), (b) Sampling (it extracts points
from each segment), and (c) Calculation (it associates an exposure value to each extracted point
and, then, computes the exposure of the various segments composing the routes). The computation
of the exposure for the points is carried out by applying the method of the first part of the paper.
Both rankings can be used by the local administrators as a conceptual tool for narrowing down a
global problem to smaller, higher exposure, geographic areas where the management of the hazard
is crucial.
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1. Introduction

In recent years, many nations worldwide have recognised the increasing importance to protect
their key infrastructures (such as power plants, bridges, highways, airports, and so on). For example,
in 2008, the European Council issued Directive 2008/114/EC, which required the Member States to
identify European critical infrastructures and assess the needs for their protection. This Directive
defined “critical infrastructure” as: an asset, system or part thereof located in Member States which
is essential for the maintenance of vital societal functions, health, safety, security, economic or social
well-being of people, and the disruption or destruction of which would have a significant impact
in a Member State as a result of the failure to maintain those functions. Setola et al. [1] provide an
up-to-date report of the initiatives of several governments about the protection and resilience of their
critical infrastructures.

The protection of the States’ critical infrastructures is the focus of the present paper, where they are
called assets. The need to protect the assets arises because of the multiple hazards (e.g., earthquakes,
floods, landslides) they are exposed [2]. In the present study, the attention is focused on landslides
which play a very important role in many countries of the world [3]. In Italy landslides are frequent
and cause considerable damage and many casualties each year [4,5]. According to the outcome of a
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study carried out by Jaedicke et al. [6], “Italy has the highest number of people exposed to landslide
hazard among the European countries.”

Landslides become a hazard when they interact with the so-called “elements at risk”.
The evaluation of the side effects caused by landslides is usually referred to as risk assessment.
In mathematical terms, the risk can be computed as in [6]:

Risk = Hazard×Vulnerability× ElementsAtRisk (1)

Hazard = Susceptibility × Trigger. Vegetation cover, soil moisture, slope, and lithology are
usual susceptibility factors, while precipitation is the prominent triggering factor. Vulnerability
denotes the extent of the damage to an element at risk, expressed in a scale from 0 (no damage) to
1 (total destruction). The quantification of the Hazard parameter induced by landslides is a complex
task; reference [6] proposes a method for its determination.

Many publications are available about the assessment of the vulnerability of elements at risk
(for example, [7–9]), as well as on the assessment of the risk caused by landslides (for example, [6,10–12]).
In all the proposals, the identification of the elements at risk of landslides is carried out by computing
the intersection of the geometries modeling the assets and the hazard area (e.g., [13]). The consequence
is that the elements in the region of study are split into two disjoint categories: one containing the
elements that are exposed to the landslide hazard, while the other contains the remaining ones. Notice
that the elements in the former category are all “ex-aequo” with respect to the “level of exposure” to
the landslide hazard.

When the number of assets to be monitored is large (for example, in Italy there are 72,355 schools
located in 43,643 separate buildings, while the total number of public buildings is far greater), returning
to the practitioners in risk mitigation the ranking of the assets they are in charge of guides them in
prioritizing the controls on the field. In fact, in that scenario they may limit the detailed risk assessment
to the assets with a value of the exposure above a given threshold (briefly the top-N assets). This way
the overall processing time required for the computation of the vulnerability, and hence of the risk,
is reduced dramatically.

The present study focuses on assets modeled both as points (i.e., buildings, of any kind), and as
lines (e.g., roads, highways, railway lines, pipelines, power lines). To a preliminary and, necessarily,
high level of abstraction, the problems that are studied can be described as follows. Given a reference
territory (for example an Italian region) and:

• The set of buildings of a given category (for example the railway stations), return their ranking
with respect to the level of exposure to the landslide hazard;

• The set of lines (for example the railway lines) that cross it, return, for each of them, the ranking
of their stretches with respect to the level of exposure to the landslide hazard.

In reference [14], the authors studied the landslide exposure of buildings. Starting from
vector data about the elements at risk, they derive raster data. The latter are used to output a
multilayer-exposure map about potential hotspots for an in-depth analysis of vulnerability and
consequent risk. The disadvantage of this method is that a ranking of hotspots is not possible.
The ranking problem has origin in the Information Retrieval domain, while methods for the ranking of
buildings have been proposed much more recently. In [15], for example, a method has been proposed
to construct the ranking of buildings with respect to the fire hazard, while [16] formalizes a method
to rank the illegal buildings located close to rivers. Another method for ranking the buildings with
respect to their environmental performance can be found in [17]. To the best of our knowledge,
Refs. [18,19] are the first attempt to introduce a method for ranking the buildings present in a large
territory, with respect to the level of exposure to the landslide hazard.

For both the problems studied, the following are given: (a) a theoretical solution, (b) its
implemention with open source GIS software, (c) experimentation through case studies, (d) a
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preliminary validation of the proposed methods and, finally, (e) the discussion of the results.
The formalization of the two novel methods is the actual contribution of the present paper.

The manuscript is structured in two parts, each is a paper in itself. The first one (Sections 2–4)
focuses on assets modeled as points, while the remaining pages concern assets modeled as lines.
The sections about assets modeled as points extend a previous paper [20], by adding the formalization
of the method to compute the ranking and its validation.

In detail, Section 2.1 concerns the formalization of the definitions and notations on which is based
the method for calculating the ranking of buildings, located in the reference territory, with respect
to the level of the potential hazard of being hit by landslides. Section 2.2 proposes the equations for
calculating the level of exposure to the landslide hazard of buildings located within the study area.
Section 2.3 touches on the way the theory was implemented. The core component of the solution is the
DataBase Management System equipped with a Spatial extension (briefly Spatial DBMS). Moreover,
the section lists the tables of the Spatial DataBase (briefly SpatialDB) and the names of the User Defined
Functions that implement the proposed method.

Section 3 presents a case study about the 114 railway stations of the Abruzzo region (Italy).
Section 4 concerns the validation of the results of the case study and, hence, a preliminary

evaluation of the method.
Section 5 focuses on the problem of calculating the ranking, with respect to the landslide hazard,

of assets modeled through the geometric primitive “line”.
The case study adopted for the experimentation of the proposed method (Section 6) concerned

the nine railway lines crossing the Abruzzo region.
Section 7 closes the paper by making a balance between the initial objectives and the results.

2. Materials and Methods for Assets Modeled as Points

2.1. Definitions and Notations

Hereafter are listed the definitions and notations on which is based the method for ranking this
category of assets.

Definition 1. GeoArea. This term denotes the reference territory. The GeoArea can be a region or a state.
GeoArea is defined as the tuple 〈ID, description, boundary〉, where ID is an identifying code, description is a
string that specifies the name of the reference territory and, finally, boundary denotes the geometry of the border
of the aforementioned territory.

Definition 2. Z (Zones) = {zk(k = 1, 2, ...) | zk is a zone in the GeoArea}. card(Z) denotes the cardinality
of set Z . The elements in Z make a full partition of the GeoArea. The generic zone (i.e., zk) can be modelled
as a “simple polygon”, as meant in the OpenGIS Abstract Specification [21]. Each element of Z is defined by
the tuple 〈ID, boundary of zk, Szk〉, being ID an identifying code. Szk is a numerical value that quantifies the
(spatial) probability that zk produces landslides. The value of Szk ranges from 0 to 1. Brabb [3], introduced the
term susceptibility to denote such a quantitative estimate.

Assessing and mapping the landslide susceptibility of a GeoArea have been a relevant issue,
e.g., [22–26]. In the paper, zk is an overloaded notation since it represents the ID of a zone and its
geometry as well. The context suggests the correct interpretation. Our zones are the slope units in [26],
since they are the basic units for assessing landslides. This is the fundamental assumption of the
present paper. Modelling the GeoArea as a partition of slope units ensures that the evaluation results
are more adherent to the reality. This result is not guaranteed by adopting as map units, for instance,
the grid cells. In this latter choice, in fact, the GeoArea is split into regular grids; the limit of this
partitioning method is that it destroys the integrity of the slopes. The greater the slope gradient is,
the bigger is the value of Szk. Set Z is an input dataset of the two problems studied in this paper.
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Therefore, the discussion of the construction algorithm of the slope units that partitions the GeoArea is
out of scope. Reference [26] is a recent reference on the topic.

Definition 3. B (Buildings)= {bi(i = 1, 2, ...) | bi is a building inside the boundary of the GeoArea}. In the
following, the subscript i is used always as a shorthand for the element bi of set B. card(B) denotes the cardinality
of set B. Each building in B is defined by the tuple 〈ID, description, geom, exposure〉. ID uniquely identifies the
building; description is a string that describes the building; geom is the footprint of bi in some reference system;
finally, exposure is a positive numeric value denoting the level of (spatial) exposure of bi to the landslide hazard.

Definition 4. HazardAreai. The method we are going to introduce for the computation of the value of the
exposure of buildings to the landslides is based on the conjecture that only the surroundings zones might pose a
threat to them. This conjecture is inspired by the Tobler’s first law of geography [27]: “Everything is related
to everything else, but near things are more related than distant things.” Within this paper, a circular region
of radius r, centered on the geometric centroid of bi, formalizes this idea. We call it HazardAreai (Figure 1).
An abstract r can be infinite, but for the problem at hand its value is limited.

Figure 1. The HazardAreai around building bi (whose footprint is denoted as a fuchsia pentagon).
A more intense color of the zone corresponds to a greater value of its Szk.

Definition 5. EXP (Exposure) = {expi(i = 1, ..., card(B)) | expi is the value of the exposure of building
bi}. Set EXP collects the values of the exposure of all the buildings in B.

Definition 6. NZ (Nearest Zones) = {nzi,j(i = 1, ..., card(B)), (j = 1, ..., card(NZ))|nzi,j ∈ Z ∩
HazardAreai is a zone located inside HazardAreai}. nzi,j can represent either a whole zone or the portion of it
result of the intersection with the HazardAreai (Figure 2a). nzi,j is an overloaded notation since it rapresents
both the ID of a nearest zone and its geometry.

(a) (b)

Figure 2. The nearest zones (nzi,j) inside the HazardAreai about building bi (a) and their centroids
(the green dots) (b); (i = 1, j = 1.7).
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Definition 7. cnzi,j (Centroid of nzi,j) denotes the geometric centroid of nzi,j. The ground position of this point is
described by its geographical coordinates. Figure 2b shows, with green dots, the centroids of the nz1,j of Figure 2a.

Definition 8. CL = {clp(p = 1, 2, ...) | clp is a contour line of the GeoArea}. A contour line is a
curve that joins points at the same altitude with respect to the sea level. clp is described by the tuple
〈ID, elevation, geometry〉. ID uniquely identifies the curve, elevation the relative elevation and, geometry
its shape.

Definition 9. NCL (Nearest Contour Lines) = {ncli,o(i = 1, ..., card(B)), (o = 1, ..., card(CL)) | ncli,o ∈
CL ∩ HazardAreai is a nearest contour line inside Hazard Areai}. ncli,o denotes either an entire contour line
or portions of it (as the result of the intersection with the HazardAreai). ncli,o is an overloaded notation since
it rapresents both the ID of a nearest contour line and its geometry as well. Figure 3 proposes the four nearest
contour lines ncli,o.

Figure 3. The nearest contour lines (ncli,o; o = 1.4—the dotted lines) to building bi.

Definition 10. ZF (Zone Fragments) = {z fi,j,t(i = 1, .., card(B), j = 1, ..., card(NZ), (t = 1, ...)) | z fi,j,t
is a zone fragment inside the nearest zone nzi,j obtained by splitting nzi,j with the nearest contour lines that
cross it}. ZF is the set of the zone fragments produced by splitting the nzi,j ∈ NZ against the ncli,o ∈ CL.
Figure 4a shows the three zone fragments in which nz1,6 is fragmented by the split operation against the two
contour lines crossing it. Visually, those zone fragments are the areas delimited by nz1,6 and the portion of the
nearest contour lines that cross it.

(a) (b)

Figure 4. The zone fragments (z f1,6,t) of the nearest zone nz1,6 (a), and their centroids (cz f1,6,t) (b);
t = 1.3.
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Definition 11. cz fi,j,t (Centroid of z fi,j,t) denotes the geometric centroid of z fi,j,t whose position is described
by its geographical coordinates, denoted as: (cz f xi,j,t, cz f yi,j,t). Figure 4b shows the three centroids (the green
dots) of the zone fragments z f1,6,t of Figure 4a.

Definition 12. LR (Linear Regressions) = {lri,j(i = 1, ..., card(B)), (j = 1, ..., card(NZ)) | lri,j denotes
the linear regression line of the nearest zone nzi,j}. lri,j passes through the centroid (cnzi,j) of nzi,j and has
angular coefficient m such that, given the t centroids (cz f xi,j,t, cz f yi,j,t) of the zone fragments z fi,j,t, the sum of
their squared residuals is minimal. The line lri,j is described by Equation (2), while Equations (3) and (4) specify
the condition about the sum of the squares of the residuals.

y− cnzyi,j = m(x− cnzxi,j) (2)

S(m, q) =
n

∑
i=0

(m ∗ cz f xj,t + q− cz f yj,t)
2 (3)

where q = cnzyi,j −m ∗ cnzxi,j (4)

The linear regression line is used to estimate the direction of fall of the landslides caused by the zones located near
the assets.

Definition 13. BLR (Buffered Linear Regressions) = {blri,j (i = 1, ..., card(B)), (j = 1, ..., card(NZ)) |
∀lri,j ∈ LR, blri,j is the geometry returned by the operation of line buffering of lri,j}. blri,j models the wake of
the landslide from nzi,j, in case such an unfortunate event takes place. The outcome of the buffering operation is
the construction of a “corridor” (of side 2× l) around the linear regression line lri,j (Figure 5).

Figure 5. Display of the output of the operation of line buffering of lri,j. cnz1,6 (the blue dot) is the
centroid of the nearest zone (nz1,6) where the line runs through.

Definition 14. LS (LandSlides) = {lsi,j(i = 1, ..., card(B)), (j = 1, ..., card(LS))} with LS ⊆ BLR, such
that LS = (BLR∩ geom_o f _bi) 6= ∅. The elements of set LS are the only blri,j that intersect the geometry
of building bi, that is, the only landslides that can hit bi in case of a triggering event. The red corridor in Figure 6
depicts a buffered linear regression that impacts on the (only partially visible) building; while the green corridor
does not constitute a threat to the same building.
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Figure 6. Two examples of Buffered Linear Regressions. The red one is a landslide. The arrows show the
direction of the movement of the landslide, in case of activation.

Definition 15. LSZ (LandSlide Zones) = {lszi,j(i = 1, ..., card(B)), (j = 1, ..., card(LSZ))} with LSZ ⊆
NZ such that LSZ is the set of nzi,j that can generate landslides able, potentially, to hit building bi. lszi,j
denotes the zone from which originates the landslide lsi,j. Since LSZ is a subset of set NZ , it follows that the
element lszi,j is described by the same tuple 〈ID, boundary, Szi,j〉 of nzi,j.

2.2. The Ranking Method

The problem to be solved is the following:
given a reference territory (the GeoArea—for example an Italian region) and the set of assets that can be

modeled as points placed in it (the set B—for example railway stations), calculate their ranking with respect to
the level of exposure to the landslide hazard.

In general, the exposure is evaluated in relation to a potential scenario regardless of the probability
of occurrence of the natural hazard taken into account [2]. In this paper, the exposure is evaluated
considering a scenario defined by the trajectory of potential landslides.

In detail, the developed method takes into account the zone gradient, the runout distance of the
landslide [10], and its trajectory. The gradient is captured through Szk (see Definition 2). The runout
distance of the landslide is implemented by limiting the calculation of the level of exposure of buildings
by examining only the zones that intersect the HazardAreai (Definition 4). Finally, the trajectory of
the landslides is captured through the notion of linear regression line (Definition 12). The landslides’
trajectory is computed by taking into account the contour lines that intersect the HazardAreai, that is
the Nearest Contour Lines (NCL, Definition 9). The latter allow to further subdivide the zones
that intersect the HazardAreai into fragments whose centroids are the basis of the regression line
computation. Once obtained the straight line (lri,j) that estimates the landslide trajectory of the nearest
zone nzi,j, it remains to be determined whether it may hit building bi.

Definition 16. I Ilsi,j (Impact Index) is a decimal value in the interval (0, 1] defined as the ratio between the
area of the geometry result of the operation (geom_o f _bi ∩ lsi,j) and the area of geom_o f _bi, (Equation (5)).
I Ilsi,j = 1 if the landslide corridor covers the whole geometry of building bi. The definition of set LS implies
that I Ilsi,j > 0.

I Ilsi,j =
Area(geom_o f _bi ∩ lsi,j)

Area(geom_o f _bi)
(5)

Figure 7 shows the two types of impact of a landslide on the building bi. The impact index I Ilsi,j has not to
be confused with the magnitude of the impact (if any) of the landslide lsi,j against building bi that we are not
able to compute since the latter depends upon the speed of the landslide material and the building construction
material, factors outside the scope of the present paper.
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(a)I Ilsi,j < 1 (b)I Ilsi,j = 1

Figure 7. Display of two types of impact of a landslide on a building.

The level of potential exposure of building bi to the landslide hazard is equal to the sum of the
partial exposure values p_expi,j (Definition 17) attributable to each of the (seenearest zones whose
(seelandslides lsi,j potentially may hit bi.

Definition 17. p_expi,j (Partial Exposure), (i = 1, ..., card(B)), (j = 1, ..., card(LSZ)), is the value of the
partial exposure of building bi to the landslide lsi,j.

Equation (6) computes the value of the partial exposure, where Arealszi,j
, Szi,j, and I Ilsi,j denote,

in order, the extension of the area of the landslide zone lszi,j, the susceptibility value of lszi,j, and the
value of the impact index.

p_expi,j = Arealszi,j
× Szi,j × I Ilsi,j (6)

Equation (7) computes the total value of the level of exposure of building bi, where n =

Card(LSZ).

expi =
n

∑
j=1

p_expi,j (7)

Algorithm 1 (ComputeBuildingExposure) lists the steps for computing the exposure of a generic
building (bi).

Algorithm 1: ComputeBuildingExposure
Data: GeoArea, Z , bi, CL, r, d
Result: expi

1 HAi ← Compute a buffer of radious r around bi;
2 NZ ← Compute the Nearest Zones set;
3 NCL ← Compute the Nearest Contour Lines set;
4 expi ← 0;
5 foreach zj in NZ do
6 p_expi,j ← 0;
7 ZF ← Compute the set of fragments for zone zj;
8 BLR ← Compute the buffered linear regression line;
9 if (BLR intersects geom_o f _bi) then

10 p_expi,j = Arealszi,j
× Szi,j × I Ilsi,j

11 end
12 expi = expi + p_expi,j;
13 end
14 return expi;
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The formalization of the problem and the solution proposed in this paper are a consolidation of
what is proposed in [18,19]; consolidation achieved by taking into account the altimetric evolution of
the reference territory.

2.3. Spatial DataBase and Implementation of the Method

PostgreSQL/PostGIS is the software technology we have chosen for carrying out the
implementation of the developed theory. Reference [28] lists the multiple advantages that the Spatial
DBMSs technology offers in the processing of geographical data.

The design of the SpatialDB was articulated in the usual two steps: Conceptual Design and
Logical Design. The four tables of the SpatialDB are shown below. The underlined attribute denotes
the primary key of the table it belongs to.

• GeoArea(id, geom);
• Zones(id, Szk, geom);
• ContourLines(id, elevation, geom);
• Buildings(id, name, geom, exposure).

The implementation of the theory took place using the PL/pgSQL language of PostgreSQL
for writing User Defined Functions. Six UDFs have been written: _NearestZonesFinder();
_NearestContourLinesFinder(); _ZoneFrangmentFinder(); _BufferedLinearregressionFinder();
_LandSlideFinder(); and _ContributionOfLandSlide(). Their execution in sequence returns the
value of the exposure parameter for the current building and its storage into the exposure column of the
Buildings table of the SpatialDB.

3. Case Study: The Railway Stations of Abruzzo

In [19], Di Felice et al. have experimented their ranking method on the public schools in the
Abruzzo region. In the present work it was decided to stay within the borders of Abruzzo, but to refer
to another category of public buildings: the railway stations. To achieve an effective and complete
presentation of the results by means of maps, we put a GIS software beside PostgreSQL/PostGIS.
The choice fell on QuantumGIS. It guarantees full compatibility with PostGIS.

3.1. The Input Data

GeoArea. It coincides with the boundary of the Abruzzo region; an area of 10,800 km2 and
1,330,000 inhabitants.

Set B. Figure 8 shows the map about the 114 railway stations in the Abruzzo region.
CL. The shapefile of the contour lines of the Abruzzo territory have been generated (through QGIS)

from a raster data of such a region. Then, the contour lines (returned by QGIS) have been intersected
with the geometry of the boundary of the Abruzzo region (the GeoArea).

Z . The set Z comes from a shapefile courtesy of the Abruzzo region. Below, we summarize
what we have learnt by reading the metadata about such a shapefile. It is composed of 22,121
records (our zones) having an average area of 0.49 km2. In the scholarly jargon, this shapefile
represents the landslide susceptibility of the Abruzzo region. It was carried out by implementing
the steps of the statistical classification method proposed by Guzzetti et al. [23] and applied to
prepare the landslide susceptibility for the Collazzone study area (in the Umbria region of Italy).
The data used to produce the shapefile concerned the landslide inventory of the Abruzzo (a database
about the distribution and characteristics of 3236 landslides occurred in the area from 1946 to
2018) and a set of landslide influencing factors. The categories of causative factors are: geological
(e.g., lithology), geomorphological (e.g., slope degree, slope length, altitude), environmental (e.g., land
use), and hydrological (e.g., distance from rivers).

The shapefile is delivered with the value of three different metrics measuring its ability to classify
the landaslides collected in the inventory database. The metrics are the Cohen’s Kappa index, the True
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Positives and the True Negatives. Their values are, in order: 0.66 (range: (−∞, 1]), 0.76 (range: [0, 1])
and 0.81 (range: [0, 1]). These values are similar to those obtained by Guzzetti et al. with regard
to the susceptibility model they proposed and adopted to produce the susceptibility map of the
Collazzone area [23]. References [25,29] report that frequency ratio methods are able to produce better
landslide susceptibility files; but at the time of writing, this kind of shapefile was not available for the
Abruzzo region.

The value of r can be set as large as you want, but this has repercussions on the CPU time. We set
r = 500 m taking as starting point the report by Konagai and colleagues about a landslide occurred
in 2001 in El Salvador, that covered a runout distance of 500 m [30]. The estimate of the minimum
extension of the radius (r) of the HazardAreai (Definition 4) is hard because of the different types of
landslides (see, for example [31]) and the many physical and environmental variables that are involved
in such events.

Figure 8. The railway stations along the railway lines of the Abruzzo region.

3.2. The Results

The map of Figure 9 shows the results obtained by executing the implemented PL/pgSQL code.
Beside the symbol denoting each station, you can see the exposure value. Table 1 shows the ranking
of the 114 railway stations of Abruzzo. For the sake of brevity, the stations are identified by the ID
internal to the SpatialDB rather than by their name. The results returned by the proposed method are
grouped in the exposure classes: High, Medium and Low, drawing inspiration from a widespread
practice for risk classification studies (e.g., [32]). These three classes are matched, respectively, to the
color red, yellow and green. The criteria used to group the 114 numeric values of Table 1 into the three
classes is the following: the assets whose exposure is above 1.0 go to the High class, the assets whose
exposure is below 0.4 go to the Low class, all the remaining assets go to the Medium class.
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Figure 9. A pictorial representation of the ranking of the 114 railway stations of Abruzzo.

Table 1. The ranking of the 114 railway stations of Abruzzo.

ID Exposure ID Exposure ID Exposure ID Exposure
44 1.75 78 0.56 6 0.30 108 0.08
65 1.52 97 0.56 15 0.29 28 0.07
62 1.51 88 0.54 11 0.29 23 0.07

114 1.24 68 0.54 98 0.28 103 0.07
82 1.17 94 0.53 73 0.27 37 0.07
38 1.15 102 0.53 47 0.26 25 0.05
81 1.06 60 0.52 30 0.26 21 0.04
66 1.04 85 0.51 104 0.25 106 0.02
54 1.01 69 0.51 29 0.25 46 0.02
33 0.98 72 0.50 100 0.22 17 0.01
92 0.90 55 0.49 22 0.20 16 0.01
91 0.89 86 0.48 18 0.19 113 0.01
41 0.83 32 0.48 79 0.19 56 0.01
84 0.81 45 0.45 13 0.19 2 0.00
80 0.78 111 0.44 71 0.18 77 0.00
53 0.76 89 0.43 48 0.18 75 0.00
74 0.73 76 0.42 107 0.17 1 0.00
67 0.71 34 0.42 93 0.16 87 0.00
52 0.70 105 0.41 42 0.16 24 0.00
83 0.68 109 0.39 36 0.14 8 0.00
90 0.67 31 0.37 35 0.14 61 0.00
63 0.65 95 0.35 26 0.13 7 0.00
43 0.64 50 0.34 27 0.12 59 0.00
39 0.63 12 0.33 20 0.12 58 0.00

110 0.60 70 0.32 5 0.11 49 0.00
51 0.59 99 0.32 10 0.11 4 0.00
40 0.58 96 0.32 57 0.11 19 0.00

112 0.57 9 0.31 3 0.09
101 0.57 64 0.31 14 0.08

The mapping from a ranking (e.g., about exposure values) to classes (e.g., High, Medium and
Low) is a crucial issue whatever domain is about. In [33], for instance, a web survey is used to rank
and classify finance journals by quality and importance. In defining the journal classes, Currie and
Pandher adopt thresholds that are consistent with established practice and previous studies on journal
assessment. Unfortunately, in our case no established thresholds are available, therefore any definition
of the intervals is questionable. However, this does not nullify the value of the study whose main focus
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is on the ranking itself. As mentioned in the Section 1, the availability of a ranking about strategic
assets inside a GeoArea enables to overcome data intensive assessments on that scale. In fact, especially
when the number of assets to be monitored is large, returning to the practitioners in risk mitigation
the ranking of the assets they are in charge of guides them in prioritizing the controls on the field.
In essence, they may limit the detailed risk assessment to the assets with a value of the exposure above
a given threshold (i.e., the top-N assets). Two reasons motivate the mapping of ranking values into
classes. One reason deals with the prodution of coloured exposure maps that are of great practical
utility to the stakeholders involved in environmental protection programs (see, for instance [14]).
The other reason relates to the validation of the adopted classification algorithm. Section 4 is about
this point.

Among the stations, Sant’Ilario is characterized by the highest value of the exposure parameter
(1.75). The three maps of Figure 10 give a visual explanation of such a result. In [34], Di Felice reports
about the same case study, but carried out by applying the method in [19]. According to such a ranking,
the station at the first position is Quadri, while Sant’Ilario is in the third position. The three maps of
Figure 11 are about the Quadri station. The visual comparison of the maps in Figure 10 and those in
Figure 11 proves that the new result is much more plausible than the previous one. The inconsistency
arises because the method in [19] does not take into account the terrain elevation.

Figure 10. Three images of the terrain around the Sant’Ilario station. From left to right: a 2D map
showing the contour lines near by the station; an up 3D map, and a frontal 3D map.

Figure 11. Three images of the terrain around the Quadri station. From left to right: a 2D map showing
the contour lines near the station; an up 3D map, and a frontal 3D map.

The ranking returned by the proposed method provides support:

• To the analysis techniques aimed at assessing the level of vulnerability of assets;
• To the quickly identification of the buildings most exposed to the landslide hazard, among those

located within the GeoArea;
• To set up a plan of actions aimed at the protection/evacuation of the buildings that are primarily

exposed to the hazard because of a meteorological emergency alarm.

4. Validation of the Method for Ranking Assets Modeled as Points

In the Machine Learning domain the notion of “confusion matrix” (also called “contingency
table”) was introduced to assess the performance of a classification algorithm with respect to some test
data. It is a two-dimensional matrix, indexed in one dimension by the true class of an object and in the
other by the class that the classifier assigns [35].
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The simplest way to validate the proposed ranking algorithm is to reduce the problem of the
classification of experimental values to the case of binary contingency tables; that is, to the case in
which only one class at a time is involved. Therefore, the validation problem can be formulated
as follows.

Given n values (v1, v2, . . . , vn) and a class (C), construct the binary contingency table that
summarizes how those values are classified both in the real world and as estimated by the algorithm
of which we want to “measure" the effectiveness. Evidently, the value v1 may fall in C or not, the same
holds for v2, . . . , vn.

The main diagonal of the contingency table has the number of elements predicted correctly.
The total number of elements belonging to a real class is equal to the sum of the values on the
corresponding row of the table. The total number of the elements present in the set involved in the
classification operation is equal to the sum of all the totals.

Table 2 shows the structure of a generic binary contingency table. In the following the terms true
positives, false positives, true negatives, and false negatives are defined (they are positive integers):

• True Positives (TP). This quantity denotes the cases that the classification algorithm has recognized
correctly belonging to the class.

• False Positives (FP). This quantity denotes the cases of wrong classification. In practical terms,
a false positive constitutes a false alarm.

• True Negatives (TN). This quantity denotes the cases that the algorithm has recognized correctly
not belonging to the class.

• False Negatives (FN). This quantity denotes the cases for which the algorithm has confused the
class to which an element belongs to. In the context of this article, these are cases of non-alarm.
An error of enormous potential gravity.

Table 2. Structure of a binary contingency table.

Predicted Class
Total

Class No Class

Actual Class
Class TP FN P = TP + FN

No Class FP TN N = FP + TN

Total TP + FP FN + TN P + N

4.1. Validation Metrics

Many metrics have been proposed to judge the goodness of an algorithm that reconstructs the
observed reality (reference [36] is an authoritative source on the subject). The most common of them
are listed below. The value of the metrics expresses a marginal probability, between 0 and 1.

The True Positive Rate (TPR, often called Recall) is defined as the percentage of positive cases
correctly recognized as such (by the adopted classification method). In formulas:

TPR =
TP

TP + FN
(8)

The True Negative Rate (TNR) denotes the percentage of actual negatives that are correctly
identified as such. In formulas:

TNR =
TN
N

=
TN

FP + TN
(9)

The Precision (P) is defined as:

P =
TP

TP + FP
(10)
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The Accuracy (Acc) is defined as:

Acc =
TP + TN

P + N
=

TP + TN
(TP + FN) + (TN + FP)

(11)

4.2. The Expected Ranking

The 114 railway stations of the case study were classified, with respect to level of exposure
to the landslide hazard, by exploiting the high degree of detail of the territory offered by Google.
The buildings located on steep terrain were placed in the High class, in the Low class those located
on flat land; while the Medium class was attributed to the hybrid situations (Table 3). In Table 3,
the stations are identified by the ID internal to the SpatialDB. The match between the ID and the name
is shown in Table 4 for the six stations that fall in the High class of exposure.

Table 3. The manual classification of the stations.

Class Number of Railway Stations List of Their ID

High 6 38, 44, 62, 65, 82, 114

Medium 36 32, 33, 39, 40, 41, 43, 51, 52, 53, 54, 55, 60,
63, 66, 67, 68, 69, 72, 74, 78, 80, 81, 83, 84,
85, 86, 88, 90, 91, 92, 94, 97, 101, 102, 110,
112

Low 72 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 34, 35, 36, 37, 42, 45, 46, 47,
48, 49, 50, 56, 57, 58, 59, 61, 64, 70, 71, 73,
75, 76, 77, 79, 87, 89, 93, 95, 96, 98, 99, 100,
103, 104, 105, 106, 107, 108, 109, 111, 113

Table 4. The most exposed stations.

ID Name of the Railway Station

44 Sant’Ilario
65 Aversa
62 Vigliano d’Abruzzo
114 Acciano
82 Canistro
38 Pettorano sul Gizio

The map of Figure 12 shows the 114 stations and their level of exposure (highlighted by the color)
to the landslide hazard. Comparing this map with the knowledge of the elevation of the terrain of the
Abruzzo region, there is a first confirmation of what was reasonable to expect, namely that the stations
located on the part of the Region that faces the Adriatic sea do not run any landslide hazard and this
because the ground is flat. Moreover, from this map we learn that the number of the most exposed
stations is low (six out of 114) and, as it was predictadable, they are located in the hinterland of the
Region that is mountainous and, therefore, subject to landslides during prolonged rains.
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Figure 12. The railway stations of Abruzzo and their expected level of exposure to the landslide hazard.

4.3. Evaluation of the Stations’ Ranking

The 3-class contingency table of Table 5 summarizes the result of the comparison between the
manual ranking (Table 3) with that returned by the proposed classification algorithm (Table 1). Overall,
13 cases (out of 114) of classification mismatch arise from the comparison. In detail, from Table 5 it
follows that the proposed algorithm:

• Classifies correctly 64 stations (out of 72) as belonging to the Low actual class, while it assigns the
remaining eight to the Medium class;

• Classifies correctly 31 stations (out of 36) as belonging to the Medium actual class, while it puts
two stations in the Low class and three in the High class;

• Classifies correctly the six stations belonging to the High actual class.

Table 5. The 3-class contingency table for the railway stations of Abruzzo.

Predicted Classes
Low Medium High Total

Low 64 8 0 72
Medium 2 31 3 36Actual Classes

High 0 0 6 6
Total 66 39 9 114

From Table 5 it is possible to derive the binary contingency Tables 6–8, and from them Table 9.
The latter reports the quantitative assessment of the goodness of the results returned by the proposed
ranking method as expressed by the metrics of Section 4.1.

Table 6. Binary contingency table for the class (of exposure) Low.

Predicted Class
Low No Low Total

Low 64 8 72Actual class
No Low 2 40 42

Total 66 48 114

Table 7. Binary contingency table for the class (of exposure) Medium.

Predicted Class
Medium No Medium

Total

Medium 31 5 36
Actual Class

No Medium 8 70 78
Total 39 75 114
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Table 8. Binary contingency table for the class (of exposure) High.

Predicted Class
High No High Total

High 6 0 6Actual Class
No High 3 105 108

Total 9 105 114

Table 9. Values of the metrics TPR, TNR, Precision and Accuracy for the Case Study.

Low Medium High
TPR 0.889 0.861 1
TNR 0.952 0.897 0.972

P 0.970 0.795 0.667
Acc 0.912 0.886 0.974

The value of metric TPR is very good for the classes Low and Medium, optimal for the class High.
The value of the TNR metric is also very good for the three classes. The Precision is very satisfactory for
the class Low, while it decreases for the other two classes. The lowest value of the Precision (p = 0.667)
occurs for the class High, although in that case the number of False Positives is not the highest of the
three classes. This effect is determined by the fact that the most exposed stations are much less than
those categorized in the Low and Medium classes (six vs. 72 and six vs. 36, respectively).

As usual, also in our proposal the result of the validation phase depends on how the numeric
values are grouped into the classes. For example, let us suppose that the criteria for grouping the 114
numeric values of Table 1 are modified as follows: the assets whose exposure is above 1.10 go to the
High class, the assets whose exposure is below 0.4 go to the Low class, all the remaining assets go
to the Medium class. Table 10 shows how the 3-class contingency table (Table 5) is affected by the
criteria. Now, 10 cases (out of 114) of classification mismatch arise. Most relevant is the fact that there
are no more false positives about the assets of the High class. Table 11 shows the values of the four
metrics based on the values in Table 10. From the comparison of the two pairs of tables (i.e., Table 10
vs. Table 5 and Table 11 vs. Table 9) it emerges that the second hypothesis of classification is better than
the previous one. Unfortunately, given a generic case study, it is not possible to know in advance what
would be the best classification criteria to be used. Our experience suggests to pay attention to the
values of the interval about the High class. This is because it is a more desirable situation having false
positives than false negatives for the assets in the top positions of the ranking, since a false positive
means a false alarm, while a false negative means a missing alarm.

Table 10. An alternative 3-class contingency table for the railway stations of Abruzzo.

Predicted Classes
Low Medium High Total

Low 64 8 0 72
Medium 2 34 0 36Actual Classes

High 0 0 6 6
Total 66 42 6 114

Table 11. Values of the metrics TPR, TNR, Precision and Accuracy based on Table 10.

Low Medium High
TPR 0.889 0.944 1
TNR 0.952 0.897 1

P 0.970 0.809 1
Acc 0.912 0.912 1
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5. Materials and Methods for Assets Modeled as Lines

The formalization of the problem of computing the ranking of assets that can be modeled using
the geometric primitive line and the proposal of a solving method constitute a consolidation of an
article by Di Felice et al. [37]. The consolidation was achieved by taking into account the altimetric
evolution of the GeoArea and extending, in an easy way, the ranking method formalized, implemented
and validated in the first part of this paper. Preliminarily, it is necessary to introduce new definitions
and notations.

5.1. Definitions and Notations

Definition 18. R (Routes)= {rk(k = 1, ..., card(R)|rk is a route that crosses the GeoArea}. Route is a
generic line (e.g., a railway line, a highway, a power line, a pipeline, and so on) described by the tuple
〈ID, name, geometry〉. A route can be modeled as a “simple line”, i.e., as a curve with two disconnected
end-points, which does not pass in the same point more than once [21].

Definition 19. RS (Route Segments) = {rsk,s(k = 1, ..., card(R)), (s = 1, ..., card(RS)) | rsk,s is a route
segment of rk}. Route segment rsk,s is described by the tuple 〈ID, route_ID, geometry, exposure〉.

Definition 20. RSP (Route Segment Points) = {rspk,s,p(k = 1, ..., card(R)), (s = 1, ..., card(RS)), (p =

1, ..., card(RSP)) | rspk,s,p is a route segment point of rsk,s}. A generic rspk,s,p is described by the tuple
〈ID, segment_ID, geometry, exposure〉.

5.2. The Ranking Method

The method for computing the exposure values of the route segments of each route that crosses
the GeoArea is composed of the three steps discussed below.

The first step (called Segmentation) “cuts” each route rk in segments of length v. The number of
segments (denoted as mk) is given by Equation (12); mk = card(RS).

mk =

⌈(
Length(rk)

v

)⌉
(12)

Figure 13 exemplifies the “cutting” operation of a route. The segments have length v with the
exception of the last that might be shorter.

Figure 13. Segmentation of a route (r1).

The second step (called Sampling) extracts points (rspk,s,p) from each segment rsk,s; where q
(called the sampling step) denotes the maximum distance between two consecutive points of the same
segment: q << v. The number of points returned by the sampling operation of segment rsk,s is given
by Equation (13); nk,s = card(RSP).

nk,s =

⌈(
Length(rsk,s)

q

)⌉
(13)
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Figure 14 exemplifies the “sampling” operation of a segment.

Figure 14. Sampling of a segment (rs1,3).

The third and last step (called Calculation) associates an exposure value to each point extracted
from the previous step and, then, computes the exposure of the various segments composing the routes.

The computation of the exposure for the points rspk,s,p is carried out by applying the same method
of Section 2.2.

Equation (14) computes the value of the exposure of the generic segment rsk,s of the route rk.
In the equation, exp_rspk,s,p denotes the value of the exposure of point rspk,s,p.

exp_rsk,s =
1

nk,s

( nk,s

∑
p=1

exp_rspk,s,p

)
(14)

5.3. Extension of the Spatial DataBase to the Routes

Below is shown the correspondence between the definitions in Section 5.1 and the names of the
entities of the E-R schema that integrates that of Section 2.3.

• Routes↔R;
• RouteSegments↔RS ;
• RoutePoints↔RSP .

Tables below integrates the SpatialDB of Section 2.3.

• Routes(id, name, geom);
• RouteSegments(id, route_id, geom, exposure);
• RoutePoints(id, segment_id, geom, exposure).

6. Case Study: The Railway Lines of Abruzzo

The Abruzzo railway network consists of nine lines, for a total of about 685 km (Table 12).

Table 12. The railway lines of Abruzzo.

Route Name Extension (km)

Bologna–Bari 124
Ortona–Crocetta 36
Marina di San Vito–Castel di Sangro 103
Roma–Pescara 170
Avezzano–Roccasecca 46
Archi stazione–Atessa 15
Sulmona–Carpinone 85
Rieti–L’Aquila–Sulmona 81
Teramo–Giulianova 25
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The data about the Abruzzo railways were acquired from the Region homepage as shapefiles;
then, they were validated, filtered, and stored into the PostgreSQL table Routes.

6.1. The Ranking of the Railway Lines: Summary of the Results

The nine railway lines were segmented into 460 stretches of 1500 m that, in turn, were sampled
with a step of 300 m giving rise to 2740 points. For the points: (0 <= exposure <= 2.66), while for the
segments: (0 <= exposure <= 2.43).

The maps of Figure 15 propose an overview of the results about the level of exposure to the
landslide hazard (highlighted through the colors) of the Abruzzo railway lines. The three classes of
exposure are the same of buildings (High, Medium and Low).

Because the method that ranks the routes makes use of the method for ranking the buildings,
the latter already validated with satisfactory results (Section 4), it was not necessary to carry out
its validation.

Figure 15. Two different views of the level of exposure of the railway lines of Abruzzo.

The results provide a confirmation of what was reasonable to expect, namely that the railway
lines located along the part of the Region that faces the Adriatic sea do not run any landslide hazard
and this because the ground is almost flat. Another finding, deriving from the examination of the maps
of Figure 15, is that the number of the most exposed segments in the nine railway lines is small and,
as was predictable, they are located in the hinterland of the Region that is mountainous and, therefore,
subject to landslides in periods of prolonged rains.

Tables 13 and 14 provide, respectively, data about the distribution of the segments of the nine
Abruzzo’s railway lines and the corresponding sampled points, into the three exposure classes.
These global data create an overall picture about the segments of the Region’s network that are
most exposed to the landslide hazard. The numbers inside Tables 13 and 14 were extracted by querying
the SpatialDB.

Table 13. Distribution of the segments inside the three classes of exposure.

Railway Line Segment High Medium Low

Archi stazione–Atessa 10 0 1 9
Avezzano–Roccasecca 31 3 22 6
Bologna–Bari 83 0 0 83
Marina di San Vito–Castel di Sangro 71 0 24 47
Ortona–Crocetta 24 0 9 15
Rieti–L’Aquila–Sulmona 54 13 11 30
Roma–Pescara 113 14 32 67
Sulmona–Carpinone 57 17 22 18
Teramo–Giulianova 17 0 0 17

460 47 121 292
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Table 14. Distribution of the sampled points inside the three classes of exposure.

Railway Line Points High Medium Low

Archi stazione–Atessa 60 0 6 54
Avezzano–Roccasecca 184 14 134 36
Bologna–Bari 496 0 0 496
Marina di San Vito–Castel di Sangro 413 0 158 255
Ortona–Crocetta 143 0 50 93
Rieti–L’Aquila–Sulmona 324 71 81 172
Roma–Pescara 678 75 194 409
Sulmona–Carpinone 341 102 131 108
Teramo–Giulianova 101 0 0 101

2740 262 754 1724

6.2. Ranking of Railway Lines: Detailed Analysis

Table 15 shows the four Abruzzo railway lines having segments with value of the exposure falling
into the High class. The table contains, for each line, the relative length (in kilometers), the number of
segments most exposed to the landslide hazard, the total length (in kilometers) of these segments and,
finally, the percentage value of the length of the segments with respect to the entire length of the railway
line they belong to. The lines Sulmona–Carpinone, Roma–Pescara and Rieti–L’Aquila–Sulmona contain
about 94% of the most exposed segments. These lines cross the interior of the Abruzzo region where
are present the greatest asperities of the terrain.

Table 15. Number and total length of the most exposed segments.

Railway Linee
Line Number Segments

Length %Length of Segments in in the
(km) the High Class High Class

Avezzano–Roccasecca 45.91 3 4.50 9.8
Rieti–L’Aquila–Sulmona 80.89 13 19.50 24.1

Roma–Pescara 169.91 14 21.00 12.4
Sulmona–Carpinone 85.08 17 25.50 30

Below, insights for the Rieti–L’Aquila–Sulmona railway line are given. It contains the 13 most
exposed segments (Table 15), of which one has the maximum value of the exposure parameter (2.43).
From the joint examination of the two maps of Figure 16, we learn that the exposure peak is located in
correspondence of the segment that goes from km 13.5 to km 15.

Figure 16. Few segments of the line Rieti–L’Aquila–Sulmona (Left) and the associated exposure
values (Right).
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By examining the altimetric trend of the Abruzzo’s territory in correspondence of the most
exposed segment (see the map of Figure 17), there is a further confirmation of the correctness of
the diagnosis returned by the proposed method. In fact, they show that this segment of the line
Rieti–L’Aquila–Sulmona crosses a gorge with two rather steep walls.

Figure 17. 3D rendering of the segments of Figure 16.

By querying the SpatialDB, it is also easy to knows the geographical coordinates of the end-points
for each of the most exposed segments of the railway lines. Such data are fundamental when, in periods
of prolonged rain in the GeoArea, it becomes necessary moving from the “control room” to the
territory for inspecting the stability of the railway segments that are exposed to the highest level of
landslide hazard.

7. Conclusions

The article’s aim was the computation of the ranking of the assets present in a large territory with
respect to their level of exposure to the landslide hazard. Assets that can be modeled as points and as
lines were taken into account. For both the problems studied, an original method of resolution was
proposed. The solution of the first problem is an important step for the solution of the second. Both the
proposals constitute an improvement of what is already known in the literature on the subject.

The work began with the study of the state of the art, then it continued with the formalization of
the two problems by means of equations, their transformation into algorithms, and their subsequent
implementation. Then, the experimental phase was conducted at a geographical scale allowing a
preliminary validation of the proposed methods. The ranking returned by the proposed methods is
dramatically affected by the completeness and the quality of set Z . In simple words, the ranking does
not make much sense if, for the area of interest, there is not available a dataset Z built in terms of slope
units as defined, for instance, in [26]. In the near future, we plan to carry out further case studies, as
soon as other Italian regions will make available the shapefile implementing the Z dataset. The final
goal is to make an accurate validation of the two prososed methods.

Our approach implements the adage “do more with less”, well-known to public administrations
which are experiencing budgetary contractions from many years. The list of the top-N assets most
exposed to the landslide hazard appears the only viable way for these administrations to make the
need for safety coexist with the containment of the time of controls and interruptions in service delivery
and, therefore, with the costs to be paid.

Being able to use the results provided by methods such as those proposed in this paper is also of
interest to private companies responsible for the safety at the national scale. For example, the Italian
Railway Company operates a railway network of 16,734 km and more than 3000 stations located
throughout the country (301,340 km2). Implementing a periodic prevention business plan for each
station and each kilometer of the railway network seems impractical.

Future work will focus on the integration of the GIS and the Wireless Sensor Network technology
to set up a cooperating framework for the monitoring of the lines. In doing so, the ranking of the
hotspots’ level of landslide hazard will become dynamic, following environmental events in real-time.
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