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Abstract: In recent years, advances in computer hardware, graphics rendering algorithms and
computer vision have enabled the utilization of 3D building reconstructions in the fields of
archeological structure restoration and urban planning. This paper deals with the reconstruction of
realistic 3D models of buildings facades, in the urban environment for cultural heritage. The proposed
approach is an extension of our previous work in this research topic, which introduced a methodology
for accurate 3D realistic facade reconstruction by defining and exploiting a relation between
stereoscopic image and tacheometry data. In this work, we re-purpose well known deep neural
network architectures in the fields of image segmentation and single image depth prediction, for the
tasks of facade structural element detection, depth point-cloud generation and protrusion estimation,
with the goal of alleviating drawbacks in our previous design, resulting in a more light-weight, robust,
flexible and cost-effective design.

Keywords: 3D facade reconstruction; deep learning; computer vision; geo-referenced data

1. Introduction

The constant differentiation of the number and architectural characteristics of buildings in a city,
has highlighted the necessity of building documentation in order to better organize, plan and control
the structural specifications of each city. The utilization of three-dimensional (3D) photo-realistic
reconstructions of buildings allows the documentation of the architectural (appearance) characteristics
of each building. When accompanied by a detailed reference of the location and dimensions of the
structure, offers a complete overview of all the building’s features. However, the generation of 3D
photo-realistic 3D building facade reconstructions is a challenging task since building facade designs
vary in the number and architectural complexity of their structural components. This attribute becomes
a severe issue in older cities in which historical and modern building designs co-exist, encapsulating
decades of architectural design trends. An ideal automated 3D building facade reconstruction approach
designed for the purpose of providing photo-realistic 3D building facade reconstructions for building
documentation, should exhibit robustness and flexibility against different design characteristics and
be as much as resource and computational cost-efficient as possible.

Over the last decade, numerous 3D building reconstruction approaches have been developed that
exploit terrestrial laser scanning technologies [1,2] and close-range photogrammetry [3,4] to produce
building facade maps and 3D point-clouds, which when combined appropriately are able to produce
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photo-realistic reconstructions of the structure. Of the two directions, the most widely-used is the
utilization of the laser scanning technology [5], known as LIDAR (LIght Detection And Ranging),
due to the density of the generated 3D point-clouds, and the precision in the relative dimension
estimation as well as structural facade component details of the building. Nevertheless, the utilization
of laser scanning data alone is not sufficient to produce photo-realistic and with high precision
reconstructions. The technology is highly susceptible to the existence of gaps along laser points
attributed to surface or material driven laser distortion effects. These gaps lead to reconstruction
distortions in the form of positional offsets between the represented and the actual structure edge
positions. Moreover, to obtain photo-realistic and georeferenced results, textures must be mapped
from images to the geometric models [6,7] and to be registered to the corresponding georeferenced
data points. The data post-processing necessity increases the computational complexity of laser-based
approaches. This factor in conjunction with the high cost of the laser scanning equipment limits the
flexibility and wide availability of laser-based reconstruction systems.

As a solution, recent methods have attempted to extract as much information as possible from
additional sensors, such as geodetic stations or optical camera sensors. Of the two, image sensors
have been the most utilized due to the large amount of existing data, plethora of availability sensors
with high resolution capabilities and wide range of cost. Image data have been exploited, besides as
a texture source, to generate dense depth point-clouds, using an approach known as Structure from
Motion (SFM) [8]. The image-driven point-clouds are then, either combined with the laser scanning
data [9-11] or used solely [12,13] to construct dense and photo-realistic reconstructions.

Regarding building fagades, image data have been utilized as the main information source for the
detection of structural components, such as windows, door, ledges, etc. They need to be isolated for further
assessment of their attributes, such as protrusion, more detailed extraction of textures, explicit estimation
of their relative position, architectural design estimation, etc. To detect and isolate the structural elements,
existing works initially identify relevant image features, either using hand-crafted descriptors [14-16]
or more recently deep learning [17-19], that represent the element’s inherent characteristics. The final
detection of the regions that are most likely to contain each structural element is performed either with
the training of deterministic classifiers, such as Support Vector Machines (SVMs), or in conjunction with
feature learning in an end-to-end pipeline using Convolutional Neural Network (CNN) designs.

Compared to the aforementioned approaches, our current and earlier works on the topic of
photo-realistic 3D building facade reconstruction, are amongst the few that attempt to exclude the
dependence on laser scanning data [12,13]. Our framework combines image and georeferenced data
to extract meaningful attributes for the fagade’s structural elements (positional, appearance and
depth-related features). The crude 3D point-cloud estimates, in a format suitable for import into
graphic rendering and development platforms, such as Unity 3D game engine, allows the creation
of a photo-realistic georeferenced 3D model of the viewed structure. The current version of our
work exploits the recent advances on image segmentation and depth prediction using deep learning,
to increase the robustness and performance of the parts involving the facade element detection,
attribute estimation and the initial image-driven building facade depth point-cloud generation.

The sections of the article are organized as follows. In Section 2 the proposed approach is
presented in more detail, initially providing an overview of the previous version of our framework,
highlighting the limitations and drawbacks, followed by the solutions and theoretical aspects of the
new additions/alterations. Section 3 presents results and comments regarding the performance of
the proposed approach. Finally, Section 4 provides conclusions on the proposed methodology and
possible future improvements that can further increase the robustness and overall performance.

2. Proposed Method

The present work is considered to be an extension to our previous work, with the goal of refining
and strengthening the framework design. We begin with an overview of the overall approach introduced
in [20], presenting its advantages, limitations and highlighting the parts of the methodology that the
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present work aims to improve. The contributions of the present paper lie in eliminating the limitations
of our previous approach. (a) By introducing an auto-encoder neural network architecture for depth
estimation using a single RGB image instead of a stereoscopic image sensor rig design, which can
potentially increase the flexibility and decrease the overall cost of our framework. (b) By incorporating a
deep learning-based fagade segmentation stage based on generative adversarial networks, enabling for
more scalable and robust facade element detection. (c) By integrating computational geometry
techniques and point cloud processing algorithms to produce a detailed reconstructed 3D surface,
enhancing the automation and adaptability of the suggested workflow.

2.1. Fusing Georeferenced and Stereoscopic Image Data for 3D Building Fagcade Reconstruction

In [20] we introduced a multi-modal 3-D building reconstruction approach that combined
information from image sensors and ground control points. The motivation behind the approach
stemmed from the assumption that the pipeline of a 3D building model reconstruction system could be
simplified and become independent of laser-based depth sensors, by replacing them with stereoscopic
image sensor systems for the generation of crude reconstructions. The reconstructions are refined
with the combination of the 3D approximation with estimated morphological attributes extract from
georeferenced data and morphological image processing techniques applied to the RGB images.

In more detail, the initial stage of our approach involved the generation of the outer-skeleton of a
mosaic building view, using morphological image processing methods. The mosaic view was produced
by stitching together multiple overlapping images of the building, in order to accommodate for large
structures. Subsequently, in the second stage of our pipeline, a georeferenced 3D point-cloud was
generated, by associating the 2D skeleton (connected line-segments generated from the facade views)
from the previous stage with existing georeferenced point data of the building. The 3D point-cloud
served as an initial crude 3D building reconstruction. In the third stage, the 3D reconstruction was further
refined with facade structural element incorporation, such as windows or doors, whose location and
protrusion were generated using image processing techniques. These techniques enabled the detection
and segmentation of the structural elements from RGB-D image data provided by the image sensors.
Depth information was acquired using a stereoscopic camera rig. Finally, the generated 3D reconstruction
was further refined with the addition of textures sourced from the image data. The overall pipeline of our
approach is depicted in Figure 1. For more details about the methodology please refer to [20].
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Figure 1. The pipeline of the proposed method in [20] for generating a realistic 3-D building model
and fagade reconstruction, by combining image and georeferenced point data.
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The proposed methodology was modular, simple and low-cost. However, there existed key
requirements and potential limitations which reduced its robustness and capabilities. As most
prominent we can consider, (a) the requirement of a stereoscopic rig for depth estimation, (b) the
hand-crafted methodology for the detection and segmentation of fagade structural elements, and (c) the
separate, not automatic incorporation of the detected feature protrusion data in the 3D data set at a later
stage. In this paper we attempt to provide solutions to these issues, with the goal to further increase the
robustness, automation and cost effectiveness of our framework.

2.2. Depth Estimation Using a Single RGB Image

Recent advances in deep learning have lead to the rise of methodologies that provided solutions
to problems considered to be ill-posed and unsolvable up until now. One such problem is single
image depth estimation (SIDE), which is considered as an ill-posed problem since an infinite number
of distinct 3D scenes can be the source for a single 2D image. However, exploiting the deep neural
network (DNN) capabilities several methods have been proposed that attempt to solve this problem,
with considerable accuracy and efficiency ([21,22]).

Following these advances, we opted on using the work of Laina et al. [21] to extract the depth
maps and formulate the corresponding 3D point-clouds. The selection of this approach was based on
the following attributes. The deep architecture design is light-weight, allows for end-to-end training,
achieves top-ranking scores on both indoor and outdoor depth map estimation data sets. It was trained
for and finally, according to the authors, the model can achieve real-time performance.

The architecture presented by Laina et al. [21] based on Fully Convolutional Residual Network
(FCRN), which will be referred from now on as FCRN-Depth, is essentially an auto-encoder DNN
that uses Residual Network (ResNet-50) [23] as the encoder network, and a custom DNN architecture
for the decoder network. Regarding the decoder network, the authors introduced and structured the
architecture design with a set of up-projection blocks. Each block consists of a sequence of un-pooling,
convolution layers enriched with residual connections that enables the flow of high-level information
as the size of feature maps increases. This attribute is the key factor that differentiates the specific
architecture from standard decoder designs. This relies only on standard up-sampling layers to
increase the output resolution, and allows for more accurate depth prediction.

The learning process in FCRN-Depth involves the minimization of the mapping discrepancy
between the estimated depth-map and the ground-truth, which was expressed in the paper using
the reverse Huber loss [24]. The authors opted for this loss function instead of a classic euclidean
norm due to the observation of heavy-tailed distribution of depth values in the examined data sets,
which indicated that the effect of boundary or outlier values must be considered.

Finally, compared to the use of a stereoscopic approach the FCRN-Depth has the following
advantages and limitations. As for the cost of the equipment it is simple that the equipment requirement
is reduced to a single high resolution image sensor, reducing the total cost. In addition, in terms of
depth prediction quality, a stereoscopic approach leads to better and even more rigorous estimates of
the overall scene. However, as we will show in Section 3, when the estimates are used to determine the
relative depth of specific building elements in contrast to the overall building the difference has little
impact for simple yet realistic 3D reconstructions.

2.3. Fagade Structural Element Detection

Our previous work was limited to detecting windows and doors on the fagades of buildings
based on shape characteristics and using candidate site suggestions generated by an active contour
methodology. Specifically, provided that these structural components are usually rectangular,
the approach combined a rectangle approach with a non-zero point population criterion to detect the
corresponding structural component candidates. This approach was, however, restricted by the shape
assumption, and applied to specific building fagade designs and only to two particular structural
component classes, windows and doors, without explicit discrimination between them. Moreover,
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the success of detection was widely affected by output of the region proposal stage which was based on
an active contour approach [25]. The performance of the active contour approach is heavily depended
on the initialization stage of the method, as well as the texture of the building facade. Dense and stone
wall textures (mainly found in older buildings) lead to over-segmented regions, which can potential
impede the algorithm from successfully completing the segmentation in the predefined epoch number.

As a solution to the aforementioned limitations and in order to increase robustness, flexibility to
deploy more building structural components we decide to use a DNN for fagade structural component
detection. There exist a number of deep learning building facade component classification approaches
which can roughly be grouped into two categories based on the general core network designs. The first
category consists of approaches that follow a pixel-wise classification employing auto-encoder network
designs to perform semantic segmentation ([19,26]). The second consists of approaches that reformulate
the problem as an instance detection task and re-purpose object detection and image segmentation
neural networks to the specific task using transfer learning ([27]). However, this learning direction
is not flexible and not relevant to existing data sets since detection-oriented neural networks require
bounding box annotations for each structural component class, a characteristic that is absent from
existing building facade component segmentation data sets.

To relieve our framework from the instance bounding box annotation constraint and increase its
learning flexibility, we followed the modelling direction of the first category. To this end, we opted on
using a generative adversarial network (GAN) architecture, which generates the segmented facade
component image. Such network does not require label or bounding box annotations, and can be
easily trainable for tasks that involve mapping data to lower dimensional spaces, like in our case from
a 2D RGB image to a finite number of classes. In addition, compared to mainstream auto-encoder
designs it does not require the incorporation of elaborate de-convolution approaches such as dilated
convolutions ([26]) or the introduction of predefined shapes into the learning loss function ([19]) to
produce accurate segmentations for the problem of facade parsing.

Instead of designing and training from scratch a GAN for the task of generating building facade
component segmentation images, we opted on using Pix2Pix GAN architecture [28]. The network
design and layer specifications were maintained the same with minor changes, presented in the
follow-up section, to adapt the network output to the specific task. In brief, Pix2Pix, as every GAN,
consists of two sub-networks, (a) the generator network, G, which is an auto-encoder network whose
task is to produce a building fagade segmentation image to the desired class set, with input the raw
RGB image, and (b) the discriminator network, D, which is a relatively simple DNN, that is insertet with
the generated building fagade segmentation image and whose task is to decide whether this image
is real or fake (i.e., generated by another network). The goal in a GAN is to fool the discriminator,
and the learning process involves minimizing the following loss:

L = argmin mngGAN(G/ D) + ALyeg(G) (1)
G

The GAN loss consists of two components: (a) a data loss, Lgan/(-), which aims to train the generator
network to produce an output to classify it as real, and, (b) a regularization loss, L,eg(-), usually an
L1 or L2 norm, whose purpose is to force the output of the generator to be as close as possible to a
real /expected appearance of the ground-truth image.

For our task, Pix2Pix was retrained from the beginning using the eTRIMS Image Database [29],
which consists of eight classes, namely being sky, building, window, door, vegetation, cat, road, and,
pavement, of which three belong to fagade elements. It is simple that we can replace eTRIMS with any
fagade dataset to increase or decrease the number of component classes that need to be identified.
For example, CMP Facade Database [30], can be considered as a better alternative as it mainly consists
of facade element classes.
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Utilizing Pix2Pix Facade Segmentation in an Automated 3D Facade Reconstruction System

In order for an automated 3D building fagade reconstruction system to produce photo-realistic
and precise reconstructions information, the relative dimensions and protrusion of each facade element
at an instance level must be available. In a deep learning fashion, an instance-based object detection
network, such as Mask-RCNN [31], can be incorporated after the pixel-wise segmentation Pix2Pix
architecture. Compared to classic hand-crafted instance detector designs, an instance-based object
detection DNN is more precise and flexible, in order to train such network architectures bounding
box annotations is required. However, the majority of existing facade segmentation data sets do not
provide such information. Since the number of instance classes and their morphological attributes
(shape and geometry) are constrained (doors, windows and ledges have finite designs and specific
shape geometry) we retained the classical hand-crafted detector design that we introduced in our
earlier work [20]. Our design combines a blob detection approach with a rectangle fitting approach,
under an element rectangle shape assumption, in order to isolate for each facade element class the
existing instances.

2.4. Creation of the Georeferenced Feature Infused 3D Facade

The previous approach dealt with the incorporation of heterogeneous data sources in the workflow.
A mapping scheme was utilized in order to combine 2D image data with 3D spatial information,
which involved the creation of a fictitious space aiding the assignment of the third (depth) coordinate.
Furthermore, the inclusion of depth based protrusion estimation was implemented at a later stage,
in the already georeferenced enhanced building skeleton 3D data set. The approach consisted of
consecutive but, at times, separate steps. Specifically, the diverse information sources required a fusion
process stage and the inner feature protrusion refinement step was performed as an extension to
the creation of the building skeleton. This approach although highly effective, could be enhanced
by automation.

The newly adopted 3D reconstruction pipeline focuses on processing the image-based DNN
results in an adept manner in order to generate a feature infused 3D point cloud. Taking as input the
depth estimation, the segmentation results and georeferenced data, the implementation merges them,
refining the 3D structure along the process while attempting to preserve a high level of automation
with minimum external intervention.

2.4.1. Automated Identification of the Detected Features in a Unified Data Set

Compared to the previous approach, deep learning architectures have increased the range of the
produced estimations, with fagade structural element detection, depth and protrusion data available.
This aspect provides the opportunity to take advantage particularly of the depth based 3D point
clouds, which are employed as the spatial basis of the reconstruction. Our aim is to exploit this already
formed 3D data set in order to include the provided structural element detection results, unifying all
the feature information in a single data set, for the purpose of further processing.

Working towards this aim, point cloud processing techniques and computational geometry
principals were employed. Our initial step is to project the Pix2Pix element detection results, which are
in image form, on the depth point cloud. Exploiting the one to one 3D depth point and segmentation
pixel position correspondences, we referenced each point in the depth cloud with the equivalent pixel
in the segmentation image. Then the RGB pixel information was passed as a color attribute in the depth
point cloud, creating a data set that combines both the depth and the structural element detection
estimations. The next stage involves the point cloud filtering with the goal to preserve the building
information and remove point cloud areas that belong to the sky and road element classes. Since the
segmentation classes are depicted and parsed in the cloud in a color based way, color filtering was
used to identify and separate those belonging to facade elements.
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Considering that the depth values in the cloud provide information pertaining to features,
we decided to fuse that information with the actual structural element detection results,
augmenting both the estimations’ fidelity. Each real-life fagade feature is considered as an aggregation
of the structural element detection estimation and selected depth values, a condition that leads to a
more robust feature identification on the cloud. Utilizing the depth values from the application of
FCRN-Depth, we categorized parts of the cloud as areas of interest, based on a specified depth value
limit, i.e., areas with high depth values were considered to depict features. Regarding the facade
segmentation, a color based detection was employed to identify the feature segmentation classes.
The union of those results improves the feature identification, as the depth information augments the
segmentation data.

The combined results although on the biggest part consistent to the structural features,
include parts of erroneous detection, mainly due to extrapolated depth values. Firstly, there are
minute parts throughout the cloud (in cases even single points) with high depth values which pass the
previously mentioned feature identification process. These outliers are filtered and removed from the
results [32]. Furthermore, in order to eliminate larger erroneous detections (consisting of more than a
few cloud points), computational geometry techniques are employed. More specifically, the remaining
identified feature data set designates the creation of an alpha shape, which allows us to carry out
geometric queries [33].That data set consists of clusters distanced from one another, which creates
a morphology that makes the alpha shape consist of separate regions, which are sorted according
to region volume. The largest regions, which are considered to belong to features, are singled out
while the rest are excluded from the identification. The final data set simulates the real fagade features.
This identification provides the opportunity to process the feature area individually and refine it with
the corresponding protrusion estimation. The resulting data set is distinguished by a different color
attribute on the depth point cloud, displaying the final feature identification.

2.4.2. Georeferenced Based Incorporation of Semantic Information in the 3D Point Cloud

One of the key aspects of this approach is to reduce the complexity of the methodology, as well
as to minimize the application constraints. Transformations between spatial spaces, as well as the
separate coordinate computations, i.e., the z (depth) coordinates are calculated separately from the x
and y coordinates.

While the deep learning approaches produce detailed attributes for the fagade’s structural features,
this reformed proposal tackles the issue of discerning semantic details in the facade’s parts where
structural information isn’t available from the image based analysis. Namely, surface deformities
don’t differentiate texturely from their surrounding areas and can’t be detected from image processing
techniques. Such example is the two ledges on each side of the door of a building. The required
information for the extraction of those surface details, of course, is sourced from the building’s initial
topographic survey [34]. The acquired georeferenced points, expressed in the form of Greek Geodetic
Reference System 87 (GGRS87) coordinates, as in [20], reflect the geometric reading of the structure
and reference the mesh formation. In this particular case study, the selection of the survey data was
based on the criterion of emphasizing the detailed geometric elements.

Registration between the georeferenced data and the depth point cloud is unavoidable. It requires
a data preparation step for creating comparable entities. The procedure augments and refines the
point cloud according to georeferenced data with focus the increase in adaptability and automation.
Specifically, an iterative process is employed, where for each point in the depth cloud, the distance to its
nearest georeferenced point is computed. The depth point cloud is then recalculated according to those
distances. The process runs continuously, as each time the depth point positions change, results in an
updated distance calculation to new nearest georeferenced point. In each iteration, the depth cloud
spatially approximates the morphology of the georeferenced data. The iterative process comes to a
halt when there are no new changes in the calculated distances.
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An issue that arises from the implementation, is the orientation of the position change of each
cloud point. The distance value should be signed indicating the spatial direction of the point shift.
This concern becomes evident in the position modification of the x,y dimensions of each point, as the z
(depth) dimension in non feature areas has almost always a positive direction. The solution to this issue is
given by utilizing the algorithm developed by Frisch D. [35]. The face normals of a newly triangulated
surface created by the georeferenced points are used to sign the computed distances, in order to determine
on which side of that surface the cloud point resides. For every point, the algorithm calculates the distance
to the nearest surface triangle, along with the distance to the nearest vertex, compares them and the
minimum distance value is returned.

Regarding the deep learning based protrusion estimations, the feature identification in the depth
point cloud of the previous step is utilized for the corresponding refinement. More particularly,
the feature previously detected, determines the region to be processed by protrusion-adding. In order
to further refine the approximation, georeferenced data belonging to the contour of the feature were
additionally employed. To elaborate, we determined which georeferenced points of the survey data
lie inside the detected region (the data sets are registered and in the same coordinate system) [36].
These georeferenced data, that outline the feature, form a boundary which is used as a filter to indicate
which detected points actually belong in the feature area. The protrusion estimate is then added to
those points.

2.5. Pipeline

The proposed method refines the previous approach by tackling feature shape constraints, cost and
automation concerns via utilizing detailed DNN based data and georeferenced information. The overall
workflow is shown in Figure 2. FCRN-Depth produces a 3D depth point cloud which is fused with
Pix2Pix feature detection data by one to one associations between the two sets. Georeferenced data
further refine the cloud by iteratively correcting the spatial position of 3D points. A suitable surface
reconstruction algorithm and texturing techniques produce the final realistic 3D facade model.

3D Reconstruction

©

Figure 2. The updated pipeline of the current workflow for generating a 3D building model utilizing
DNN based techniques and georeferenced data.

3. Experimental Results

This section presents the experimental results for each of the proposed methodological direction
towards the refinement of our framework. In our experiments, we assess the performance of each
method in well-known data sets and finally, in two case studies.

These case studies involve two building structures located at the city of Chania, in the province
of Crete, Greece. The first building corresponds to a modern structure, located in the campus of the
Technical University of Crete, which exhibits uniform fagade color characteristics, and smooth surfaces,
so called modern building in this study. Contrary the second case study refers to one of the famous
Neoria buildings, a historic monument built during the Venetian occupation of Crete (around the 15th
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century), so called Neoria. This specific monument contains rock-textured wall fagades, with irregular
and coarse surfaces. Example images are illustrated in Figure 3a,d.

The final set of our experiments, involves the incorporation of the new methodologies in the
overall framework, and the comparison, in terms of quality, of the final 3D building reconstruction to
the reconstruction produced by our previous work [20].

3.1. DNN Training Specifications

Before proceeding with the presentation and commenting of the experimental results, we will
first provide a brief overview of the changes and training specifications that were followed for the
deep learning models mentioned in the previous section. Regarding the depth prediction, we used the
pre-trained weights of FCRN-Depth [21], in the Make3D dataset [37]. This data set consists of outdoor
scene images, a majority of whom are building facades, which made ideal the model for our case of
study. Moreover, the depth data were selected with LiDAR systems allowing for dense depth map
estimates to be produced by the model. Regarding the general aspects of the deep architecture, the
input is RGB image data resized to 304 x 228 pixel resolution, and the output depth map resolution
is 160 x 128. In order to produce one-to-one depth and fagade element class correspondences we
up-sampled using bi-linear interpolation the output to 256 x 256 pixels, similar to the output of Pix2Pix.

Concerning the facade segmentation and fagade element detection, as previously stated, we
retrain Pix2Pix to eTRIMS. Retraining was performed with batch size set to 4 samples per batch, and
for 15K epochs, with data augmentation (rotation, shifting and zooming effects) and using the Adam
optimizer with a 0.0002 learning rate.

3.2. Depth Map and Protrusion Estimation

This subsection presents the experimental results of applying FCRN-Depth to our case studies.
Figure 3 depicts the depth map estimates using FCRN-Depth for the modern building and Neoria
buildings as well as their respective point-clouds. We can observe that FCRN-Depth provides dense
estimates with a relative structural-related consistency between the pixel-wise depth values.

|

Depth in color map

(a) Original image (b) Depth map

Depth in color map

Distance in mm

ra ‘:

(d) Original image (e) Depth map (f) 3D point-cloud

T
0 0 20 3 4 S0 60 70O 80 90 100

Figure 3. Depth map and corresponding 3D point-cloud for modern building and Neoria building side
views. Depth maps were generated using the work of Laina et al. [21].
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We can observe that for the case of the modern building the depth map estimate of FCRN-Depth
is affected by the existence of perspective projection distortion, due to the oblique viewing angle
as well as the size of the structure. This kind of distortion is common in cases of photos of large
structures [38]. Our experiments indicate that removing this distortion and examining of isolated sides
of the building appears to improve the depth map estimate of FCRN-Depth. This is highly justifiable
since FCRN-Depth has been trained with building facade images of Make3D that depict front-facing
unique sides. In order to correct the perspective distortion for a multi-view image of a building,
we manually defined corner points for each specific view, and then cropped and wrapped the image
based on the estimated geometric transformation computed using the control point pairs (manually
selected corners and an ideal rectangle parallelogram) that alleviates the perspective distortion.

Figure 4 illustrates the FCRN-Depth map estimation improvement for the case of the modern
building. We can observe that despite the obvious improvement in the depth prediction, depth estimates
about previously ignored fagade elements, such as for the case of the small window underneath the
main window opening in the right side view of the building. Moreover, by reformulating the multi-view
single image depth estimation problem into a side-specific depth estimation problem increases the
overall depth estimation accuracy for fagade elements.

Depth in color map

Distance in mm

(a) Original image, modern building (b) FCRN-Depth map estimate

Depth in color map

\ i

Distance in mm

(c) Right side view, perspective undistortion (d) FCRN-Depth map estimate

Figure 4. FCRN-Depth map estimation difference, by perspective projection distortion correction and
side view isolation for the multi-view modern building image.

Compared to the depth maps produced and utilized in our previous work, the estimates of
FCRN-Depth are denser and cascade the structural coherency of pixels belonging to specific facade
elements, into their depth values. These two factors will be presented in the subsequent paragraph
lead to better protrusion estimates for the facade elements. However, the derived depth maps cannot
at this point be used for initial crude 3D reconstructions as the depth value estimates are not very
accurate and consistent especially in the areas of skeletal building components. This limitation is
alleviated with the incorporation of the georeferenced data.

Fagade element protrusion estimation: In our previous work, the protrusion attribute for each
of the detected fagade elements is derived based on the depth map generated by the stereoscopic
image sensor rig. The protrusion of a fagade element, such as a window;, refers to the relative depth
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difference between the building wall and the fagade element. This information is complementary to
the 2D location of the facade elements, derived from the facade segmentation and element detection
stage, and is incorporated to the final 3D model to provide a more realistic reconstruction. The depth
difference is computed based on the mean depth value of the pixels belonging to the facade elements
and the pixels belonging to building wall in a neighboring to the facade element region (threshold set
to pixels) [14].

Based on the aforementioned exploitation of the depth map, in Table 1 we compare the
accuracy of the relative depth difference estimate, computed using (a) the stereoscopic depth map
estimate combined with a rectangular fitting for facade element detection, and (b) the depth map by
FCRN-Depth combined with the fagade element segmentation masks generated by Pix2Pix, as opposed
to the ground-truth. Our experiments were applied only on the Neoria building case, since the modern
building does not contain actual windows with finite protrusion.

Table 1. Protrusion estimate using (a) stereoscopic depth map, and (b) FCRN-Depth map, regarding

the Neoria building.
Case Study Stereoscopic Protrusion FCRN-Depth Protrusion = Ground-Truth
Neoria front view (left bottom window ) 0.544 (meters) 0.540 (meters) 0.520 (meters)
Neoria front view (right bottom window ) 0.712 (meters) 0.636 (meters) 0.580 (meters)
Neoria front view (middle up window ) 0.894 (meters) 0.718 (meters) Unavailable
Neoria side view (door) 2.412 (meters) 1.831 (meters) 1.750 (meters)

We can observe that the protrusion estimates generated with the utilization of the depth map
by the stereoscopic image sensor rig leads to an average 0.038 meters absolute average deviation
from the ground-truth cases regarding the examined facade elements (windows), and a 0.081 meters
for the Neoria door case. Moreover, it is highly affected by perspective distortion affects, which
is obvious in the increase of estimation deviations for the upper window cases. On the contrary,
the deep learning-based approach leads to lower deviations which overall can lead to better protrusion
incorporation scales into the 3D reconstructed model.

In conclusion, our experiments present the superiority of the deep learning-based approach
compared to the stereoscopic-based depth estimation process in terms of estimation robustness,
simplicity and relative estimation deviation compared to the ground-truth. These observations
in accordance with the single camera sensor requirement, the camera calibration absence and the
reduction of the amount of data acquisition process specifications and limitations, results in considering
end-to-end deep learning-based SIDE methodologies, such as FCRN-Depth, as an excellent and
promising choice on the way to developing an automated and relatively economical system.

3.3. Fagade Element Detection

Regarding the facade element detection, as we retrained Pix2Pix in the eTRIMS Image Database,
leading the network to produce fagade segmentation images of 8 classes of which 3 of them correspond
to building structural elements (building, window, door). For our 3D reconstruction we only retain
these 3 classes. Figures 5 and 6 illustrate original images and the corresponding facade segmentations
produced by Pix2Pix. The first figure presents the estimates from the test image set of eTRIMS,
for which we also provide the ground-truth segmentation. The second figure depicts the segmentation
estimates for the building cases examined in our case of study.
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Figure 5. Sample images from the eTRIMS Image Database (first row), corresponding facade

segmentations generated by Pix2Pix (second row), and, ground-truth fagade segmentations (third row).

(a) Original image, modern building (b) Segmented facade

(c) Original image, Neoria front view cropped (d) Segmented facade

=

(e) Original image, Neoria front view enlarged (f) Segmented fagade

Figure 6. Facade segmentation estimates of Pix2Pix on the modern and Neoria buildings.
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Concerning the estimation error in the eTRIMS image dataset, Pix2Pix resulted in 0.7185 MSE
score, leading to fairly accurate estimation. To evaluate the performance we followed a 90:10 split ratio.
Figure 5 displays sample image cases from the test set of eTRIMS, for which as it can observed the
segmentation performance is very close to the actual ground-truth. As for the in the wild images used
in our case of study, we can observe that the generated segmentations are fairly accurate mapping of the
original RGB images. In fact, we can observe that the model is able to produce accurate segmentations
independent of the textures of facade elements. Additionally, this approach is more robust to affine
transformations (shift, rotation) as well as zooming affects, compared to the approach that was used in
our previous work. The performance of the rectangle fitting approach would be severely affected by
zooming effects and view change, a problem that can be addressed on deep learning models through
data augmentation.

Finally, since the SIDE method provides dense depth map estimates we can define one-to-one
associations between the depth and facade element class for each pixel, which allows for 3D model
development platform, such as Unity 3D, to be introduced with dense 3D point clouds, infused with
pixel-wise class attributes.

Pix2Pix fagcade versus Color-based segmentation and Rectangle fitting: At this point to further
highlight the benefits from introducing Pix2Pix for the problem of fagade segmentation, we proceed
to a comparison to the methodology followed in our previous approach. The approach followed in
our previous work, as stated earlier, is limited by the shape assumption and, thus it is bound to fail
in cases of non-rectangular windows or doors. However, Pix2Pix does not contain any shape-related
assumptions and thus, is not limited by such shape cases. Figure 7 illustrates the comparison between
the two approaches for the Neoria side view building case and a typical rural house located in the
United Kingdom (UK).

(a) Original image view of a (b) Fagade element detection (c) Fagade element detection
typical UK building with rectangle fitting with Pix2Pix

(d) Original image of Neoria (e) Facade element detection (f) Facade element detection
building side view with rectangle fitting with Pix2Pix

Figure 7. Facade element detection comparison between the rectangle fitting approach in our previous
work [20], and the Pix2Pix neural network. Comparison refers to window and door cases. In Pix2Pix
dark blue indicates detected window regions, light yellow indicates door detections and green indicates
vegetation. For rectangle fitting, bounding boxes indicate detected windows and doors without
discriminating between the two classes. In this case the detection is heavily affected by the initialization
of the active contour stage.



ISPRS Int. ]. Geo-Inf. 2020, 9, 322 14 of 24

We can observe that the approach followed in our previous work failed to detect every window
element for the UK house. This detection failure can be mainly attributed to the low performance of
the active contour method preceding the rectangle fitting approach, and whose task is to generate
candidate rectangle region proposals introduced to the rectangle fitting stage. Poor initialization and
dense and complex textures highly affected the overall performance of this stage. Moreover, in our
previous work there is no explicit discrimination between doors and windows (a solution can be to
apply a color-based Support Vector Machine classifier to discriminate between the two classes). Both of
them are considered the same facade element based only on the rectangle shape assumption. This fact
beside the facade element discrimination limitations also limits the detection of doors with rectangular
shapes leading to door cases such as the ones of the building cases of Figure 7, not being detected due
to the arch shape of the door.

On the other hand, we can observe that Pix2Pix is able to detect with a relatively dense pixel-wise
mask for each facade element, discriminating between the fagcade element classes, even for oblique
view cases. However, in order to be useful in an automated 3D building facade reconstruction system,
an instance segmentation stage must follow, to isolate each facade element instance. As mentioned,
a simple blob detection approach for each facade element class is adequate for such task, and is a
strategy that we follow in our current version of our framework.

3.4. Georeferenced 3D Fagade Reconstruction

The depth related computed data and the facade element detection, as shown in the previous sections,
are combined to aid the production of the feature enhanced reconstructed facade. The experimental
results of the incorporation of the identified features in the semantic enriched point cloud, as well as the
reconstruction of the final 3D mesh surface are presented in the following subsections.

3.4.1. Identification of the Pix2Pix Detected Elements in the Depth Point Cloud Data Set

The inclusion of the detected feature elements in the 3D point cloud data set fulfills the purpose of
the creation of a unified data set which will provide the basis for the fagade reconstruction. By passing
the color of the segmentation as an attribute to the depth point cloud, we are provided with the
opportunity to perform a color based filtering and remove the classes that don’t belong to the building
structure, e.g sky (blue) and road (orange). As mentioned previously, the union of the segmentation
and depth value estimation results constitute the structural features. In that way depth map estimation
data can compensate for plausible fagade element detection discrepancies. However, by including
in the data set areas with a specified depth limit, data noise is created in the form of small point
batches in the cloud. In order to remove them, geometric queries were performed using alpha shapes.
Alpha shapes groups neighbouring points in clusters, giving as the option to examine each one
separately. At the Neoria building case study, we identified the largest one of those clusters as the
door and removed the rest. There are gaps observed in the door area caused from the segmentation
class filtering, which will later be filled during the triangulation process. An example of this feature
identification method is shown in Figure 8. The inclusion of the depth estimation in the data establishes
a more robust feature detection.

Regarding the modern building analysis, there was a modification of the approach. In that case
study, the Pix2Pix segmentation estimates produce a relatively accurate mapping of the real features.
On the other hand, the projection distortion in the analyzed images affects the depth map estimates.
As it is demonstrated in Figures 4b and 6b there is a heterogeneity in the outcome of the procedures,
tampering with the aggregation of the data sets. However, due to the accuracy of the segmentation
results, the depth map estimates are deemed redundant and a color based filtering on the cloud is
considered sufficient for the feature identification. The results had only minor outliers which were
filtered and removed (Figure 9).
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(a) Display of Pix2Pix fagade element detection on the (b) Pix2Pix facade element detection combined with
depth map depth value filtering

(c) Feature identification after noise clearing

Figure 8. Neoria building. In (a) the Pix2Pix facade element detection on the depth point cloud
is displayed. (b) shows the detection combined with depth estimation data affected with outliers,
and (c) displays the final feature identification after computational geometry clearing.

(a) (b)
Figure 9. Feature identification on the modern building. Identified features on the point cloud
generated from (a) the original image, and, (b) from the isolated side.

3.4.2. Georeferenced Based Formulation of the 3D Fagade Surface

The facade parts void of structural elements (doors, windows, etc.), that are beyond the range of
the feature detection process contain semantic information as well, especially in cases of old buildings,
such as the Neoria case study. The extraction of that information, is driven by the incorporation of
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georeferenced data in the workflow. The analysis of the 3D depth point cloud in accordance with the
georeferenced data requires the registration of the two sets, transforming them in comparable entities
under one homogeneous coordinate system. As indicated in our previous study, the 3D depth point
cloud is registered with the georeferenced data via a spatial transformation driven by the Equation (4)
in [20].

The newly georeferenced 3D depth point cloud is imported as input in the formerly explained
iterative algorithm. The minimum signed distance of each point to the survey georeferenced data set is
computed and its spatial position is recalculated according to it. Each iteration alters the morphology of
the cloud by shifting the points accordingly in the 3D space, resulting in different 3D surface instances
(Figure 10). The iteration stops when the highest calculated distance is the same as the previous
iteration. It was observed that due to the value type, i.e., the GGRS87 coordinates have accuracy
of 9 decimal points, the minute differences in the calculated distances prevent the algorithm from
stopping. Thus, the termination condition is fulfilled with a tolerance of 0.5% of the max value between
the highest distances in the last two operations. In Figure 10b the semantic enriched point cloud of the
Neoria building is shown, where structural fidelity is achieved. The algorithm executed 12 iterations
to match the termination condition.

i

(a) (b)
Figure 10. Neoria building. Demonstration of the morphological difference of the generated point-
cloud after (a) a single algorithm iteration, and, (b) the final semantic estimation after 12 iterations.

Next, the protrusion estimation is integrated in the cloud. The feature element information
previously detected is passed in the cloud as color attribute, while establishing a region of interest.
The refinement of the protruded area is achieved by figuring which survey georeferenced points
are inside the region of interest, creating their outline and subsequently filtering out the feature
element points that fall outside the georeferenced outlined area. The feature identification in Figure 8c
drives the establishment of the georeferenced outline. More specifically, the blue cloud points that
represent the feature identification are checked in order to determine if they reside in the georeferenced
outlined region. The blue points included in the region are augmented with the protrusion estimation.
Cloud points that lie inside the georeferenced outline but are not detected (i.e., not blue) are discarded.
Figure 11 demonstrates the outcome of this process. The blue area that corresponds to the feature
identification encloses the georeferenced points outlining the door. Only the blue points residing in
the georeferenced formed region are protruded.

The distorted image data of the modern building case study, hinder the proper implementation
of the suggested workflow. The perspective distortion of the image in Figure 4a which is passed in
the 3D depth point cloud (Figure 9a), restraints the correct geographical mapping. This is due to
the fact that while the input data represent two perpendicular sides of a building, the depth point
cloud approximates in fact a planar surface. Another reason is that the parallelism and angles of the
structural elements are not preserved due to the viewing position, prohibiting the correct assignment
of the geographic coordinates on them. Bypassing these concerns and for the sake of argument, the
cloud of Figure 9a was parsed as input to the iterative algorithm. The inaccurate mapping, as well
as the inconsistency of the georeferenced points with the point cloud (large distance calculations),
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prohibited the process from terminating and fell in an eternal loop. The analysis of the distorted
modern building case study was inconclusive.

P
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(@) (b)
Figure 11. Neoria building. The refined door feature displayed on the point cloud before (a), and, after
(b) point removal.

The workflow focuses mainly on fagades, i.e., front facing structures, thus the isolated and
perspectively corrected side of the building (Figure 4c) provides us with the chance to examine the
modern building case. The depth cloud of Figure 9b is parsed as input to the iterative algorithm.
The notable aspect of that case, is that the algorithm operated as a rectification of the depth point cloud.
Since we examine a modern building with smooth, flat exterior, the surveyed points of the facade
coincide with a plane surface. The iterative process of shifting the points of the cloud according to the
georeferenced data, conduce to the improvement of the initial depth estimation. Thus, surface areas
with no structural elements and depth inconsistency, are refined. The algorithm terminated after
10 iterations. There are two identified features in that facade: the main wide window and the small
one underneath. In order to proceed, we need to separate the two identifications, which is achieved
with the utilization of the already mentioned alpha shapes. The alpha shape of the points representing
the identified features (blue points), contains two regions. The distinction of these regions guide
the protrusion refinement. The outline of the georeferenced points that reside in the regions, filter
the cloud points to be protruded. Another noteworthy issue in this case is that both windows are
hollowed. That means that the points shouldn’t be augmented with protrusion estimation but removed.
However, the removal of the feature points will create gaps in the point cloud which will be filled
during the triangulation process. To bypass this issue, it is decided to protrude the feature points
with an arbitrary value instead of removing them (Figure 12), thus the triangulation process will fill
plausible erroneous gaps created from the color based filtering of the identification procedure and
retain the feature structure (Figure 13a). After the surface triangulation the mesh area belonging to the
features is removed (Figure 13b).

Point cloud to mesh reconstruction: The morhologically enriched point cloud is subsequently
parsed as input in a surface reconstruction algorithm. Having considered the Poisson surface
reconstruction algorithm [39] as an alternative to the Delaunay triangulation [40], it was eventually
dismissed as it is better suited for closed 3D surfaces with minimum sharpness. Delaunay retains
the angles and is better suited for more planar surfaces [41], as is the case in this study. The deep
learning based results of the current approach, combined with the iterative algorithm contributes to
the materialization of a detailed data set which in turn results in a Delaunay triangulation with high
geometric fidelity, requiring minimal post processing refinement (Figures 13 and 14).
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Figure 12. The feature enriched point cloud of the front facing single side of the modern building.
The two features are identified and protruded instead of removed, in order to retain their structural
form during triangulation.

@ (b)
Figure 13. The 3D reconstructed surface of the modern building, (a) Triangulation with the arbitrary
window protrusion, and, (b) Triangulation with windows removal.

Figure 14. The 3D reconstructed surface of the Neoria building.

Texture mapping concludes the workflow by simulating the real surface. The two stage procedure
(also implemented in [20]) involves diffuse mapping, which defines the facade’s main color through
image sampling and normal mapping which gives the impression of realism by using the pixel RGB
values of said image sampling to orient the surface normal. The normal is used during illumination
calculations in Unity 3D enhancing the perception of surface details [42] (Figures 15 and 16).



ISPRS Int. ]. Geo-Inf. 2020, 9, 322 19 of 24

Figure 15. The final textured Neoria facade after diffuse and normal mapping.

Figure 16. Th final textured modern building (front facing view) after diffuse and normal mapping.

Current facade reconstruction workflow versus [20] approach: The advantages of the newly
examined facade reconstruction process are evident through the comparison with the previous
approach. The formulation of a unified data set impacts the fidelity of the final model by reducing
dissimilar data merging and transformations between different coordinate systems. The FCRN-Depth
produced 3D point clouds provided the initial data set upon which the examined methods were
tested and presented. Feature identification was carried out and projected on the cloud which itself
was filtered according to the segmentation classes and morphologically processed. The outcome
was the creation of a single data set which contained depth, feature and protrusion information.
In contrast, the previous approach began with 2D information which was mapped to 3D space with
an augmented third coordinate and integrated spatial information through a created georeferenced
infused interpolated surface. The data composing the surface’s semantic information were derived
from a mixture of sources, the x, y dimensions from morphologically processed image data, while the
z dimension was acquired from the georeferenced interpolated surface. The introduction of depth
point cloud based process eliminated the need for the creation and use of the interpolated surface.
To summarize, the previous approach generated georeferenced based information and fused it with
image data, while the current deep learning methodology provided 3D data in its entirety, the spatial
and geometric processing enhances the fagade semantic information.

To quantify the comparison, we conducted a geometric evaluation of the semantic enhanced
final facade [43]. To juxtapose the approaches we imitated the assessment used in the previous
work, a comparison between the reconstructed 3D model and geometric raw data of the same type
used in the methodology. The employment of this evaluation, not only can underline the effect the
process has on the final spatial information but also emphasizes the deep learning based data quality.
The amalgamation of different data origins can yield errors which can be carried throughout the
workflow, whilst a unified data source minimizes the effect of external parameters. We compare the
final 3D model with tacheometry measurements of the same type used in the workflow, which have
considered the reference ground truth. The deviation of the two data sets illustrates the effectiveness
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of each method. Each point of the compared 3D model is assigned the distance to its nearest neighbor
in the reference georeferenced raw data cloud. The deviation is visualized as a color scalar field on the
facade surface.

The assessment highlights the geometric fidelity achieved with the current approach.
The employment of the depth point cloud as a basis unifying the morphological and spatial information
under one coordinate system on a single dataset, erases the possible transformation errors of multiple
data sources. The workflow performed on the Neoria building (Figure 17) upholds the structural
fidelity across the surface and eliminates the deformations on plane areas where no georeferenced
information is employed. Since the protrusion estimation of the door feature is not included in
the geographical reference data, the observation of deviation on that area can be omitted from
consideration. The accuracy of the feature is assessed in Table 1.
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(a) Data deviation of the previous workflow. (b) Surface point deviation distribution histogram
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Figure 17. Visualization of the deviation of the Neoria building 3D model from the reference geographic
data. The variation of the deviation values is illustrated with a color scalar field (blue < green < yellow <
red). Histograms with the distribution of the deviation across each surface are also presented regarding
the previous workflow (b), and the current workflow (d).

In Figure 18, the workflow outcome of the modern building case is geometrically assessed.
Although the topology of the structure and the difficulties in acquiring proper image data (due
to projection distortion) impact the results, there is an observable improvement. Areas with high
deviations are minimized and the introduction of deep learning based element detection in the current
process, makes possible the identification of minor features (small window), not previously inspected.
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(a) Data deviation of previous workflow (b) Surface point deviation distribution histogram
Figure 18. Cont.
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Figure 18. Modern building deviation depiction. The variation of the deviation values is illustrated
with a color scalar field (blue < green < yellow < red). Figure illustrates the corresponding histograms
regarding the previous (b), and, the current workflow (d). Histograms demonstrate the improvement
of the current workflow.

4. Conclusions and Future Work

This paper is presented as an extension of our previous approach [20], enhancing the robustness
and limiting its constraints. The utilization of a deep learning based procedure expands the applicability
range and fulfills the requirements in terms of data to be produced and exploited. The utilization of
FCRN-Depth minimizes the input cost by eliminating the need for a stereoscopic camera rig, eliminates
the depth estimation deviation from the ground truth and provides dense and relatively coherent data
clouds, facilitating the mesh reconstruction.

The GAN-based segmentation procedure erases the notion of initial shape assumption and
robustly detects structural elements independent of textural semantics, something that our previous
work was prone to. The application of the Pix2Pix network increases the number of segmentation
classes, refining the detection and making the discrimination between features possible. As a last stage,
the 3D reconstruction is assisted by one-to-one association between depth and feature segmentation
data, which adjusted with georeferenced data, enhance the final fidelity of the model.

Overall, the proposed workflow enhances the automation, economy and applicability of the
previous system. However, future studies will aim to decrease the system dependence on georeferenced
data, expanding the range of structural attributes acquired from image driven methodologies.
The exclusion of the georeferenced data registration step from the system will completely diminish
plausible discrepancies on the final data quality. The goal is to employ georeferenced data only in
the form of ground control points as a closing step for the final facade georeference. In regards to
the utilization of deep learning, the results of the present work, indicate the robustness, scalability,
flexibility and applicability of these methods to the fagade element detection and protrusion estimation
tasks. Future work on these tasks will aim to further expand the number of fagade element classes
being identified as well as the detection accuracy, by (a) utilizing deeper and more complex DNN
architectures, and, (b) exploiting and possibly combining various facade element segmentation data
set. The goal is to expand the training sample pool, allowing the DNN architecture to gain access to a
wider range of information.

Finally, future work will also focus on (a) expanding the case studies for which the proposed
framework is tested, (b) utilize end user expertise feedback, and (c) include extensive quantitative and
qualitative experimental results and comparisons between the proposed methodology and existing
higher accuracy laser scanning results for a larger and more diverse building facade cases.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep Neural Network
FCRN-Depth  Deeper Depth Prediction with Fully Convolutional Residual Networks

MSE Mean Squared Error

SFM Structure from Motion

SVMs Support Vector Machines
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