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Abstract: The all-embracing inspection of geometry structures of revetments along urban rivers
using the conventional field visual inspection is technically complex and time-consuming. In this
study, an approach using dense point clouds derived from low-cost unmanned aerial vehicle (UAV)
photogrammetry is proposed to automatically and efficiently recognize the signatures of revetment
damage. To quickly and accurately recover the finely detailed surface of a revetment, an object
space-based dense matching approach, that is, region growing coupled with semi-global matching,
is exploited to generate pixel-by-pixel dense point clouds for characterizing the signatures of revetment
damage. Then, damage recognition is conducted using a proposed operator, that is, a self-adaptive
and multiscale gradient operator, which is designed to extract the damaged regions with different sizes
in the slope intensity image of the revetment. A revetment with slope protection along urban rivers
is selected to evaluate the performance of damage recognition. Results indicate that the proposed
approach can be considered an effective alternative to field visual inspection for revetment damage
recognition along urban rivers because our method not only recovers the finely detailed surface of
the revetment but also remarkably improves the accuracy of revetment damage recognition.

Keywords: revetment; damage signature; dense point clouds; unmanned aerial vehicle (UAV);
gradient operator

1. Introduction

Revetment systems in urban rivers are constructed to protect riverbanks, infrastructures,
and people, in an effort to control floods. Revetments are usually designed as slope protection
and covered in concrete [1]. Floods can trigger revetment erosion to weaken revetments continuously
and cause damage. In addition, revetments are damaged by complex factors, such as land subsidence,
ground collapse, erosion, vegetation presence, riverbed degradation, and human interference [2,3].
Therefore, monitoring the condition of revetments is an essential task in the management of flood
defense infrastructure and important in providing evidence for maintenance or improvements [4].

At present, some studies have been done to conduct an assessment of the condition of revetments
by the use of remotely sensed data in countries such as England [4] and France [5], but these methods
are not applicable to urban revetment monitoring, and the assessment of the condition of revetments is
visually inspected by the Municipal Engineering Management Agency in China. However, field visual
inspection is time-consuming and technically complex in obtaining complete information on revetments.
Additionally, the assessment of the subsurface condition of revetments is difficult because visual
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inspection is preferred in investigating important signs, such as surface collapse. Notably, early damage
recognition is highly beneficial in enabling maintenance and improvements in advance before further
deterioration occurs [4].

Apart from field visual inspection, remote sensing technologies, such as unmanned aerial
vehicle (UAV)-based photogrammetry, have been useful techniques for the creation of digital surface
models (DSMs) and also widely used in obtaining revetment information due to their advantages
in high-precision three-dimensional (3D) geometry reconstruction [6–8]. Terrestrial laser scanning
is usually used to monitor revetment damage caused by revetment erosion in small areas rather in
large-scale areas [9–11]. This method requires frequent measurements that usually involve expensive
sensors and field logistics when monitoring large areas. For instance, airborne laser scanning was used
to estimate the volume change in river valley walls caused by revetment erosion [12], and point clouds
were used to analyze the protection of a revetment rock beach [13]. Pye et al. [14] assessed beach
and dune erosion and accretion for coastal management. Ternate et al. [15] modeled water-related
structures to assist the design of revetments. Although sensors enable the generation of dense 3D
points for good reconstruction of the geometry structure for revetment monitoring, point clouds cannot
directly provide the color texture of the revetment and are less intuitive in the damage interpretation
of revetments. As a result, the noise in point clouds is difficult to remove. A portion of the revetment
surface may typically be covered with vegetation (e.g., grass), which appears as 3D points in the
fluctuating height values within dense point clouds. Other platforms have been used for revetment
monitoring [16], but these platforms are unsuitable in certain areas with shallow water, such as urban
rivers. Meanwhile, 3D point clouds derived from these sensors may be much more expensive than their
image-derived counterpart, such as low-cost consumer-grade UAV-based photogrammetry [17–19].
In addition, image-derived 3D point clouds from UAV photogrammetry can capture the spatially
detailed structure of the ground surface and offer more competitive accuracy compared with laser
scanning-based products [20]. Compared with laser scanning, ground control points (GCPs) are needed
in aerial photogrammetry and GCP measurement is a time-consuming task. Fortunately, several GCPs
can be marked and measured once in advance, that is, multiple measurements are not required to
collect GCPs for absolute orientation. Therefore, although laser scanning can produce high-resolution
and dense 3D point clouds, this technology requires more complex operations and has a higher cost
when collecting revetment information on urban rivers than the low-cost UAV-based mapping. In this
study, a low-cost UAV platform equipped with a consumer-grade onboard camera (e.g., DJI Phantom
quadcopters) is used to prove that it is suitable for recognizing the damage signatures with respect to
finely detailed revetment surfaces.

In recent years, research on UAV has focused on understanding and modeling revetments,
and high-resolution 3D data derived from low-cost UAV mapping has been widely used in the
efficient and accurate monitoring of revetments for the implementation of relevant maintenance
management strategies [19,21–25]. Hallermann et al. [21] and Kubota et al. [22] used the dense point
clouds derived from low-cost UAV photogrammetry to visualize the deformation of revetments in
the assessment of structural stability. Pitman et al. [19] obtained high-resolution and competitive
accuracy of DSM of revetments derived from UAV-based mapping and compared the results with those
derived from real-time kinematic global positioning systems (RTK GPS) and offered new possibilities
(i.e., using UAVs) for measuring, monitoring, and understanding the deformation of revetments
against the approaches of traditional geomorphology observation. This method achieves high-accuracy
DSM, which are approximately equal to those obtained via airborne laser scanning. Although their
research can reconstruct a good 3D geometry structure of a revetment using UAV-based mapping for
monitoring, they ignored the automatic damage recognition from the image-derived point clouds.
Moreover, photogrammetric surveying using UAV has been often used to monitor the changes in
revetments for river management. Pires et al. [26] combined mapping and photogrammetric surveying
in the revetment model to investigate coastal dynamics and shoreline evolution and contributed to
coastal management. Jayson et al. [25] used UAV photogrammetry to reconstruct the delta revetment
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topography to analyze changes in beach sediments. Although many applications are effective in
revetment monitoring using low-cost UAV photogrammetry, studies on the use of UAV-based mapping
for revetment damage recognition along urban rivers have been rarely reported. Most importantly,
the effectiveness and efficiency of UAV-based damage recognition are two indicators that determine
whether this approach can be applied. Furthermore, the quality and efficiency of point cloud generation
are critical to accurately characterize the surface of a revetment, and the reliability of damage signature
generation from the derived point clouds is also equally important to damage recognition in revetments.

Revetments along urban rivers are usually designed as a relatively flat slope or curved surface,
that is, the revetment surface is generally a simple irregular surface that can be modeled using a
mathematical function. On this basis, this study proposes a dense point cloud-based approach derived
from low-cost photogrammetry to extract the signatures of revetment damage from a slope intensity
image instead of the prerequisite multitemporal data. For revetment damage recognition along
urban rivers, information on damaged and nondamaged revetment surfaces is generally needed for
comparison and analysis. In many cases, prior information on nondamaged surfaces is not typically
obtained or finely reconstructed in municipal engineering management. Failure to accumulate
historical data related to the surface of a revetment may result in poor revetment management due
to unclear understanding of damage signatures. As an alternative to applications dependent on
multitemporal data [20,25], we exploit an approach for revetment damage recognition that does not
require nondamaged surface reconstruction or prior information. On the basis of the assumption that
the surface of the revetment has roughly the same slope, dense point clouds are first transformed
into a slope intensity image, in which feature extraction is then performed to generate the features of
revetment damage. A self-adaptive and multiscale gradient operator (SMGO) is proposed for collecting
damage information by using the omnidirectional (horizontal, vertical, and diagonal) operation,
especially in feature extraction. SMGO is used to ensure that damage of different scales can be
accurately extracted.

This study aims to exploit the workflow of revetment damage recognition along urban rivers
through the dense point clouds derived from low-cost UAV photogrammetry, and the proposed
point cloud and damage signature generation are both introduced to address damage recognition
using UAV-based mapping. The main contribution of this study is the proposed approach based
on photogrammetric point clouds, which offers new possibilities in revetment damage recognition.
In our approach, pixel-by-pixel dense matching is simultaneously used with the combination of
region growing and semi-global matching (SGM), which can reconstruct a finely detailed surface of a
revetment by considering the contributions of adjacent 3D object points. In particular, feature image
generation based on the proposed SMGO is suitable for recognizing the damage signatures on the
surface of a revetment designed with slope protection under the assumption that the majority of the
3D points on the revetment surface remain unchanged and prior information is unnecessary.

2. Study Area and Materials

2.1. Test Site

Nanchang City (28◦42’29”N, 115◦48’58”E) in Jiangxi Province, China (Figure 1a,b), is the study
area of this work. This study used a low-cost quadcopter UAV (i.e., DJI Mavic Air; DJI; Shenzhen,
China) to investigate the revetments along urban rivers, and two parts (with lengths of 450 and
570 m, respectively) of the concrete revetment located in the west of Nanchang City were selected
to test (Figure 1c) for the following reasons: different types of riverbank defense structures have
been constructed along the different portions of the bank to manage the impact of lateral fluvial
erosion, among such structures, the revetment is typically designed with a slope angle to protect
the riverbanks and infrastructures in urban rivers [25]. The waterway is often covered with silt
and gravel materials, and then a large number of sediments may mobilize and cause erosion to the
revetment along with intense rainfall events. In addition to the presence of mass movements, complex
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external factors, such as groundwater penetration, also remarkably contribute to revetment erosion
and damage. Revetments are characterized morphologically by using a slope approximately equal to
40◦. The waterway basement geologically comprised unconsolidated sediments of clay, loose sand,
and gravel deposits. Revetments are usually covered with weeds and continuously affected by lateral
fluvial erosion, ground collapse, and riverbed degradation.

Figure 1. (a) Nanchang City located in Jiangxi Province in southeast China, (b) location of the study
area in Nanchang City, and (c,d) landscape of the study area.

2.2. Acquisition of UAV Remote-Sensed Images and Measurement of Ground Control Points (GCPs)

Given its low-cost and flexible operation, a consumer-grade quadcopter DJI Mavic Air (DJI;
Shenzhen, China) [27,28] (Figure 2a) was selected to capture high-resolution true-color remote sensing
images in August 2019. In addition, the DJI Mavic Air is easily carried with its 430 g weight and folding
design, it does not require a professional take-off and landing site, and the aircraft is simple to operate,
allowing flexible flight plans for a variety of missions. The operator can safely monitor the revetment
even under ultralow-altitude photogrammetry in urban areas through signature DJI technologies,
such as obstacle avoidance and intelligent flight modes [27]. The DJI platform is inexpensive, efficient,
and requires minimal expertise. Several user-friendly applications provided by DJI, including Ground
Station Pro and a mission planning software package, were used to conduct autonomous flights with
waypoints and nadir orientation of the consumer-grade camera during the acquisition of UAV-based
images of stereo remote sensing [28]. Figure 2b (Part 1) shows an example of the extent of the
survey and some survey parameters in the graphical user interface of this UAV survey application.
Parameters, such as flight altitude, flight speed, and image overlap, can be obtained on the basis of
the survey mission. To acquire high-resolution and non-blurry remote sensing images, a low-altitude
flight with an above-ground level of 30 m and 2.8 m/s flight speed was conducted to reduce the
atmospheric and environmental limitations. Thus, the ground sample distance was approximately
equal to 2.0 cm/pix. To ensure the reliability of image matching with large overlaps, the front and
side image overlaps were set to 80% and 60%, respectively. Once the flight parameters were set,
the UAV was largely automated with the operator acquiring remote sensing images under a wind
speed <10 m/s and non-rainy conditions. The total surveying flight time of the UAV in the two parts
(450 and 570 m) of the concrete revetment along the urban rivers was around 10 and 14 min (less
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than the maximum flight time of 21 min) and was achievable in one battery charge. The UAV took
approximately 232 and 287 images for the two parts to cover the study area, which also includes
a buffer extent of approximately 15 m near the revetment. Moreover, to improve the performance
of image matching, the system errors and interior orientation of the consumer-grade camera were
eliminated by using the methods in a previous study [28].

Figure 2. Unmanned aerial vehicle (UAV) data acquisition and ground control point measurement.
(a) DJI Mavic Air, (b) DJI graphical user interface for mission planning, (c) ground control point (GCP)
marked by a white cross with a pink center, and (d) field measurement of GCPs.

Additionally, 40 GCPs were evenly distributed on the revetment. The GCPs were placed across the
study area and measured to validate the accuracy of the image-based DSM using RTK GPS. The GCPs
were marked on the site, as shown in Figure 2c. Pixel-by-pixel dense point clouds were georeferenced
with 5 and 7 GCPs for Parts 1 and 2, respectively. The other 28 GCPs (13 and 15 GCPs for Parts 1 and 2,
respectively) were selected as check points (CPs), which were used to evaluate the accuracy of the
surface reconstruction of the revetment.

3. Method

This study aims to exploit the workflow of revetment damage recognition along urban rivers
through dense point clouds derived from low-cost UAV photogrammetry, and the proposed point cloud
and damage signature generation are both introduced to address damage recognition using UAV-based
mapping. The proposed approach demonstrated in Figure 3 mainly includes the following stages:

(1) Photogrammetric technologies are used to generate high-precision pixel-by-pixel dense point
clouds for surface reconstruction of the revetment through a series of steps, that is, feature extraction
and matching, incremental structure-from-motion (SfM), bundle adjustment, and region growing
coupled with SGM.

(2) The slope intensity map of revetment is calculated and generated in terms of the height of the
dense point clouds. The areas of revetment on both sides along the urban river are then extracted by
segmenting and merging the superpixels, which are generated on the slope intensity map by using a
simple linear iterative clustering (SLIC)-based algorithm.

(3) The signature of revetment damage is generated from the slope intensity image through
vegetation removal, omnidirectional gradient operation and nonmaximum suppression, and denoising.

(4) Accuracy assessment is performed to validate the accuracy of the dense point clouds derived
from the algorithm (i.e., region growing coupled with SGM) and evaluate the performance of revetment
damage recognition along the urban rivers with quantitative analysis (e.g., indicators such as Precision,
Recall, and F1_score) and visual assessment (i.e., ground field observation).
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Figure 3. Workflow of the revetment damage recognition along urban rivers through dense point
clouds derived from low-cost UAV photogrammetry.

3.1. Surface Reconstruction of Revetment

The camera mounted on the low-cost UAVs (e.g., consumer-grade DJI Phantom quadcopters)
has large perspective distortions and poor camera geometry [28,29], which may cause systematic
errors that need to be eliminated by using distortion correction for each UAV remote sensing image.
Similar to previous studies [18], the digital camera should be calibrated strictly before the operation
of aerial photography. Distortion correction is then performed by using the camera parameters and
two radial and two tangential distortion coefficients, which are calculated from several views of a
two-dimensional (2D) calibration pattern. These parameters will be further optimized by the following
self-calibrating bundle adjustment.

Similar to previous studies, feature extraction and matching are performed using a sub-Harris
operator coupled with the scale-invariant feature transform algorithm, which can find evenly distributed
corresponding points even in the overlapping areas of remote sensing images with illumination change
and weak texture [30]. In traditional aerial photogrammetry, the poses of the airborne camera, that is,
positions and orientations, must be known to provide the parameters of initial exterior orientation for
performing aerial triangulation. However, low-altitude platforms, such as low-cost consumer-grade
UAVs, are usually not mounted on high-precision equipment when obtaining the information of
positions and orientations of cameras. Hence, traditional aerial triangulation relying on the parameters
of initial exterior orientation may be unavailable for UAV-based aerial triangulation. UAV-based SfM
algorithms have been applied to bank retreats at streams, and this study can generate DSM with smaller
errors compared with the use of terrestrial laser scanning [31]. Therefore, SfM is used to estimate
the poses of the airborne camera and reconstruct a sparse 3D geometry for the overlapping images
without the help of initial exterior orientation parameters [18]. Notably, incremental SfM [32,33] is
employed in this study to reconstruct the sparse 3D model increasingly and iteratively because it
allows 3D reconstruction in an incremental process for repeated self-calibrating bundle adjustments
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(i.e., sparse bundle adjustment software [34]) to optimize the 3D model and interior and exterior
orientation parameters.

Unlike DSM generation via interpolation of point-based elevation data [35], a novel method of
region growing coupled with SGM for dense matching illustrated in Figure 4 is exploited to generate
the pixel-by-pixel dense point clouds and reconstruct the finely detailed surface of the revetment.
The SGM algorithm is a popular technique to minimize the image matching cost along several
one-dimensional path directions through the images for image-based 3D reconstruction, and it may
significantly increase the computational expense for most mapping applications which mainly deal
with sets of overlapping images. Damage recognition of revetments along urban rivers requires high
implementation efficiency, which is also highly valuable in enabling maintenance and improvements in
advance before further deterioration occurs. SGM-based matching is one of the most time-consuming
steps in photogrammetric point cloud generation, and thus it is of great significance to improve the
efficiency of this step.

In this paper, to reduce the computational expense of redundant point clouds, an object space-based
dense matching approach is exploited to satisfy the need of rapid 3D reconstruction for revetments.
Unlike in photogrammetry software, such as Agisoft Metashape and Pix4Dmapper, the height of each
grid in the revetment is utilized to calculate the pixel-by-pixel dense matching while considering
the impact of adjacent 3D object points and obtaining the finely detailed surface of revetments.
Different from many computer vision applications, our study on the surface of the revetment is focused
on 3D construction (i.e., height value) of the top surface of the ground. This approach is not to generate
normalized image stereo pairs, but to perform dense matching in the voxel object space. On this
basis, there is no need to derive the matching cost of image space. Instead, all images can be used to
represent the matching cost directly on each voxel, which is more suitable for UAV-based mapping
applications. That is, semi-global optimization can be performed in voxel space, and image-based
dense point clouds can be obtained directly. Unlike most SGM-based image matching [36,37], the sparse
point clouds obtained from bundle adjustment can be used to simplify the image-based point cloud
generation procedure. To be specific, by using prior knowledge of reconstructed objects, the search
scope of the corresponding points can be narrowed in the voxel space, which contributes to improving
the accuracy and efficiency of reconstruction. In this regard, the height values on the vertical sides
are not essential. The object space-based approach can only compute the height values on the
top surface and helps to reduce the computational expense of redundant point clouds. That is,
the object space-based dense matching approach used in this paper is suitable for accurate, rapid,
and cost-effective revetment damage recognition. The proposed region growing coupled with SGM
mainly includes: (a) a triangulated irregular network (TIN) in 3D space is generated to initialize the
3D object surface; (b) inverse distance weighted interpolation is used to obtain initial height values;
and (c) a region growing strategy is explored to gradually generate the pixel-by-pixel dense point
clouds for surface reconstruction of revetment considering accuracy and efficiency.

Figure 4. Object space-based surface reconstruction of revetment.
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The innovation of our method is that we assume that the set of 3D sparse points objsparse
set is derived

from SfM, and then we denote it by using the Pi
obj(X, Y, Z) cell in the set objsparse

set in the ith 3D point at
the object position (X, Y, Z) with i ∈ {1, . . . , N}. As shown in Figure 5a, an object point obtained from
the sparse 3D model is relevant to n 2D UAV remote sensing images, where n could be ≥2. We then
denote pi→ j

img(x, y) position in the jth UAV remote sensing images at the image position (x, y). In this
study, the corresponding points in the UAV remote sensing images reprojected from the 3D sparse
points are considered salient correspondence and seeds, which are extended through region growing
in the four neighborhoods illustrated in Figure 5b. Then, the pixel-by-pixel dense point clouds are
iteratively determined by using the cost function and SGM algorithm with a known epipolar geometry,
shown in Figure 5c.

Figure 5. Region growing coupled with semi-global matching (SGM). (a) Object point backprojected
onto multiple views. (b) Region growing in the four neighborhoods. (c) Process of candidate matches
determined by using the cost function under the constraint of epipolar lines in two views.

Specifically, a set objdense
set of dense point clouds is initially assigned by using the set objsparse

set .

Assuming that all 3D points Pi
obj(X, Y, Z)

∣∣∣∣i ∈ {1, . . . , N} in the objdense
set are seeds and backprojected

onto the relevant images, the pi→ j
img(x, y) position in the first relevant image is considered the seed

and extended with region growing in the four neighborhoods R4. For example, the query point
px is fixed in Image1, and the correspondences in other relevant images are determined by using
the SGM algorithm with a known epipolar geometry. On the basis of the SGM algorithm [36,38],
the 3D points in the direction of region growing are determined and saved in set objdense

set . We repeat
these dense matching steps until no 3D point can be added into the set objdense

set . Although the SGM
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algorithm can appropriately generate dense point clouds, some local areas with weak texture are likely
reconstructed poorly.

In this study, we introduce a novel approach of 3D scene patching to generate the 3D points in
these local areas. A triangulated irregular network (TIN) is established by using the set objdense

set of
dense point clouds. Subsequently, the coordinates of 3D points within the TIN can be calculated by
using the weighted interpolation of inverse distance, which is expressed as

Z =
1
m

m∑
i=1

wiZi,
(
wi =

1
di

)
, (1)

where Z is the height value of an unknown 3D point, m is the number of surrounding 3D points of the
unknown 3D point, Zi is the height value of the ith surrounding 3D point, wi is the weight corresponding
to Zi, and di is the distance between the unknown 3D point and the ith known surrounding 3D point.
The algorithm of the proposed dense matching method is expressed below.

Algorithm 1: Region growing coupled with SGM

Input: 3D sparse points objsparse
set , exterior orientation parameters EOP, and UAV remote sensing images.

Parameters: 3D dense points objdense
set , four neighborhoods R4, query point px, relevant images pi→ j

img(x, y),

disparity d, minimum cost path Lr(px, d), new 3D point Pnew
obj (X, Y, Z), and unknown 3D points

objdense,unknown
set .

Initialize objdense
set ← objsparse

set .
repeat

for each 3D point Pi
obj(X, Y, Z)

∣∣∣∣i ∈ {1, . . . , N} in set objdense
set do

Assign Pi
obj(X, Y, Z) as a seed.

Reproject Pi
obj(X, Y, Z) onto pi→ j

img(x, y).

Compute epipolar geometry based on EOP.
for k = 1 to R4 do

Calculate Lr(px, d) corresponding to px in pi→ j
img(x, y) with known epipolar geometry.

end for
Compute the coordinate of Pnew

obj (X, Y, Z) using SGM and aerial triangulation.

Update objdense
set by adding the new 3D point.

end for
until no 3D point need to be added.
Find objdense,unknown

set in the local areas that have not been reconstructed well.
Establish TIN.
for each 3D point in objdense,unknown

set do
Compute the coordinate of the 3D point by inverse distance weighted interpolation.
Update objdense

set by adding the 3D point.
end for

3.2. Damage Signature Generation

Dense point clouds derived from UAV photogrammetry can generate a finely detailed geometry
structure of the revetment and be regarded as an alternative to the visual inspection method.
The categories of revetment damage are mainly collapse and crack. On flat ground, the place
of collapse is usually characterized by an uneven region below the surface height of the ground with
an irregular boundary, and a crack is typically shown as a linear object.

Unlike flat ground, revetments along urban rivers are built in a sloping pattern.
Therefore, we attempt to transform the dense point clouds into a slope intensity image for damage
recognition in this study on the basis of the assumption that the revetment is constructed with a
fixed slope angle. Ideally, the values of the slope intensity image located in the revetment regions
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are approximately equal in this case. Then, a slope intensity image is generated via slope calculation,
which is performed to identify the slope in each cell of the rasterized surface of the dense point
clouds using the slope module of the ArcGIS software. A portion of the revetment surface may
likely be covered with vegetation (e.g., grass), which appears as the 3D points of the fluctuating
height values within the dense point clouds. UAV photogrammetry clearly has limitations in
surveying the surface of the revetment in the presence of vegetation, thus possibly affecting the
accuracy of revetment damage recognition. To eliminate the influence of vegetation in the slope
intensity image, vegetation removal is preliminarily conducted with a gamma-transform green leaf
index [39]. Subsequently, damage recognition is performed using a proposed operator called SMGO,
which is designed to extract the abnormal regions with different sizes in the slope intensity image.
Specifically, omnidirectional (horizontal, vertical, and diagonal) gradient operation is conducted using
a self-adaptive operator with degraded weights. Hence, a variable gradient operator is used in each
cell to determine whether it belongs to the damaged or nondamaged region. A multiscale architecture
is introduced into this operator for the recognition of damaged regions with different sizes.

The main goal of this study is to identify the damaged areas of the revetment. Thus, automatic
revetment recognition is an essential task in determining the dense point clouds. In this study,
we extract the area of interest (AOI) or the area covered by the revetment from the slope intensity image.
On the basis of the assumption that the AOIs of the revetment have approximately equal slope angles,
previous studies [39] using SLIC and superpixel merging are jointly used to extract the revetment
regions from the intensity map, as shown in Figure 6. First, the slope intensity image is segmented into
a set of superpixels in terms of similar slope values. Second, the superpixels are merged into a series
of regions on the basis of the approximately equal slope values. Third, the AOI of the revetment is
determined by using the average slope value of the slope intensity image. The following are the main
steps of revetment region extraction.

Figure 6. Area of interest (AOI) extraction.

Step 1: The dense point clouds derived from low-cost UAV photogrammetry are rasterized using
the grid size ∆d× ∆d, where ∆d is the resolution of the UAV remote sensing images.

Step 2: The slope of the rasterized image is computed, and the intensity image Islope(x, y) of the
slope is generated using ArcGIS software.

Step 3: The intensity image Islope(x, y) is segmented into superpixels with the SLIC algorithm,
and the superpixels are merged into a series of regions on the basis of the approximately equal
slope values.

Step 4: The AOI of the revetment is determined by using the slope value of the region within
[slope_value−10◦, slope_value+10◦], where slope_value is the average slope of multiple samples in
this study.

Then, the feature image Idamage(x, y) of damage is generated from the intensity Islope(x, y) via the
proposed operator SMGO. Mathematically, the gradients grad(x, y) in each cell (x, y) are computed as

grad(x, y) =
∂Islope

∂x
i +

∂Islope

∂y
j +

∂Islope

∂diagL
k +

∂Islope

∂diagR
l, (2)

where
∂Islope
∂x ,

∂Islope
∂y , and

∂Islope
∂diag are the gradients in the horizontal, vertical, and diagonal directions,

respectively. The multiscale architecture in SMGO is illustrated in Figure 7, and two scales are shown.
The adjacent areas surrounding the cell p ∈ Islope(x, y) are defined on the basis of the following equation:

r = INT(k · σ+ 0.5), (3)
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where r is the radius of the area surrounding the cell p, INT(.) is the integer operation, and σ is the initial
scale factor of the SMGO, set to 1.6 in this study. k ∈ {1, 2, 3, . . . s|s ≥ 2 } is the set of multiple factors,
which are key values in determining the scope of the area surrounding the cell p. Gradient calculation
is performed on each scale on the basis of suboperators, which are illustrated in Figure 7c–f (Scale 1)
and Figure 7h–k (Scale 2). The gradient of each suboperator is mathematically calculated using the
following convolutional operation:

grad(x, y) = G(x, y, kσ) ∗ Islope(x, y), (4)

where G(.) denotes the matrices of weights in the gradient operator and is defined by the nonlinear
inverse distance as

G(x, y, kσ)⇐
8

√

πk2σ2
e−

(∆x2+∆y2)
2k2σ2 , (5)

where (∆x, ∆y) is the shift between the adjacent cell and the center (x, y). Then, the matrices
of the suboperators can be determined. For example, Figure 7c–f are represented by the

matrices


−1.91 −2.32 −1.91

0 0 0
1.91 2.32 1.91

,

−1.91 0 1.91
−2.32 0 2.32
−1.91 0 1.91

,


0 0 −1.29 0 0
0 −1.91 0 0 0
−1.29 0 0 0 1.29

0 0 0 1.91 0
0 0 1.29 0 0


, and


0 0 −1.29 0 0
0 0 0 −1.91 0

1.29 0 0 0 1.29
0 1.91 0 0 0
0 0 1.29 0 0


, respectively. Similar to the output of the neural network, a

max activation function is utilized to determine the gradient of cell p by using the maximum value of
all the suboperators. The mathematical expression of the max activation function is

max grad(x, y) = max
{∣∣∣∣∣∣∂Islope

∂x

∣∣∣∣∣∣,
∣∣∣∣∣∣∂Islope

∂y

∣∣∣∣∣∣,
∣∣∣∣∣∣ ∂Islope

∂diagL

∣∣∣∣∣∣,
∣∣∣∣∣∣ ∂Islope

∂diagR

∣∣∣∣∣∣
}

. (6)

Notably, the number of scales is not fixed but adaptive. If the gradient G is less than the given
value tgradient, then the value k is not increased. In this study, at least two scales of SMGO are needed
to establish the multiscale architecture. The algorithm of the proposed SMGO is given as Algorithm 2.

Algorithm 2: Gradient calculation using SMGO

Input: intensity image Islope(x, y) with width W and height H, constant value σ, and gradient threshold
tgradient.
Parameters: multiple factor k and radius r of the area surrounding the cell p.
for col = 1 to W do

for row = 1 to H do
repeat

r← INT(k · σ+ 0.5)

suboperators⇐ 8
√

πk2σ2
e−

(∆x2+∆y2)
2k2σ2

Compute the gradients grad(x, y) using suboperators.

Gradient G located in (x, y)← max
{∣∣∣∣ ∂Islope

∂x

∣∣∣∣, ∣∣∣∣ ∂Islope

∂y

∣∣∣∣, ∣∣∣∣ ∂Islope

∂diagL

∣∣∣∣, ∣∣∣∣ ∂Islope

∂diagR

∣∣∣∣} .

k← k + 1 .
until gradient G < tgradient and k > 2.

end for
end for
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Figure 7. Multiscale architecture of the proposed self-adaptive and multiscale gradient operator
(SMGO) and damage signature generation. Scope of the area surrounding a cell in (a) Scales 1 and 2 for
gradient computation and (b) Scale 1. (c–f) Kernels of the gradient computation in Scale 1. (g) Scope of
the area surrounding a cell in Scale 2. (h–k) kernels of the gradient computation in Scale 2. The white
and nonwhite grids denote the null and nonzero values, respectively.

After the damage signature generation, the damaged regions Rdamage are determined by a binary
operation based on a given condition, which can be defined as[

gradR(x, y) −mean
(
gradimg

)]
> 3.0 · std

(
gradimg

)
, (x, y) ∈ Rdamage, (7)

where mean(·) and std(·) denote the calculation of mean and standard deviation in the damage
signature map. If the gradR(x, y) satisfies this condition, it is considered to be within a damage
region. Then, the collapse and crack are separated from the damaged regions via two criteria,
i.e., if Area

(
Rdamage

)
> 0.25 m2 and Perimeter

(
Rdamage

)
/Area

(
Rdamage

)
< 1.5, then the damaged region

Rdamage is defined as a collapse; otherwise, the Rdamage is considered to be a crack, where Area(·) and
Perimeter(·) denote the calculation of area and perimeter that can be conducted using ArcGIS software.

4. Results

In the experiments, dense point clouds are generated by using the proposed method and
implemented through C++ programming and an open-source library (i.e., OpenCV). Our software
mainly includes distortion correction, sparse matching, dense matching, absolute orientation,
image stitching, DSM generation, and orthophoto generation. The sparse matching module includes
two ways, i.e., match all images without any supporting information and GPS/IMU supported trajectory
matching, and the dense matching module is run based on the sparse matching results. The performance
of low-cost UAV-based (i.e., DJI Mavic Air) mapping is critical in the accurate reconstruction of the
revetment surface for damage recognition. Take Part 1 as an example, the distribution of the GCPs
and CPs (i.e., check points) are laid out widely and evenly in the survey areas, as shown in Figure 8.
The residual error and root mean square error (RMSE) were calculated on the basis of 13 and 15 CPs for
Parts 1 and 2, respectively, and measured on RTK GPS. Their corresponding 3D points were determined
from the dense point clouds. The X, Y, and Y RMSE values are calculated using Equation (8), and the
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error statistics of the CPs are summarized in Figure 9 and Table 1. Additionally, the re-projection
errors RMSEimg of the check points (CPs) are calculated using Equation (9), and the error statistics
are summarized in Table 2. Figure 10 (Part 1) illustrates the pixel-by-pixel dense point clouds
textured with colors from the UAV remote sensing images. The revetment consists of 1.96× 107 points,
which correspond to the density of approximately 963 points/m2 and the grid size of 3.2 cm × 3.2 cm.
The use of the proposed dense matching method reconstructs the fine details of the revetment
surface. The results show that the X and Y RMSE values obtained via the proposed dense matching
method were less than 4 cm, which is a relatively small horizontal error. Moreover, the vertical
RMSE value or the Z RMSE value was less than 6 cm and the re-projection errors are less than one
pixel. Therefore, these RMSE values seemed fairly satisfactory for high-precision reconstruction of the
revetment surface. The accuracy was deemed sufficient for recognizing damage signatures on the
surface of the revetments along urban rivers.

RMSEX =

√∑
(Xdense−XGCP)

2

n

RMSEY =

√∑
(Ydense−YGCP)

2

n

RMSEZ =

√∑
(Zdense−ZGCP)

2

n

, (8)

RMSEimg =

√√√ n∑
i=1

m∑
j=1

ρi j

∥∥∥∥P
(
Xi, C j

)
− xi j

∥∥∥∥2
/

n∑
i=1

m∑
j=1

ρi j, (9)

where Xi and C j denote a 3D point and a camera, correspondingly; P
(
Xi, C j

)
is the predicted projection

of point Xi on camera C j; xi j is the observed image point; ‖·‖ denotes the operation of L2-norm; ρi j is an
indicator function with ρi j = 1 if point Xi is visible in camera C j; otherwise, ρi j = 0.

Figure 8. Placements of ground control points and check points.

Table 1. Comparison of the obtained RMSE values of CPs via Pix4Dmapper 4.4, Agisoft Metashape
Professional 1.5.3, and the object space-based approach.

Area Method RMSE X (cm) RMSE Y (cm) RMSE Z (cm) Total RMSE (cm)

Part 1
Pix4Dmapper 3.85 3.84 5.70 4.56

Agisoft Metashape 5.08 4.53 6.59 5.47
object space-based 3.76 3.72 5.67 4.48

Part 2
Pix4Dmapper 3.83 4.27 5.07 4.42

Agisoft Metashape 4.89 4.63 6.43 5.38
object space-based 3.49 3.30 5.31 4.13
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Figure 9. Residuals of 28 check points (CPs) for Part 1 and Part 2 measured on real-time kinematic
(RTK) GPS and their corresponding 3D points determined from the dense point clouds. Residuals X, Y,
and Z are shown in (a–c) respectively.

Table 2. Comparison of the re-projection errors RMSEimg of CPs via Pix4Dmapper 4.4, Agisoft
Metashape Professional 1.5.3, and the object space-based approach.

Area Method RMSE (Pixel)

Part 1
Pix4Dmapper 0.611

Agisoft Metashape 0.679
object space-based 0.597

Part 2
Pix4Dmapper 0.752

Agisoft Metashape 0.783
object space-based 0.730
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Figure 10. Dense point clouds derived from UAV photogrammetry. (a) Top view of the dense point
clouds. (b) Oblique view of the dense point clouds. The viewpoints of the camera are marked by
blue dots.

We also compared the performance of surface reconstruction with that of the commercial
software such as Agisoft Metashape Professional 1.5.3 (www.agisoft.com) and Pix4Dmapper 4.4
(www.pix4d.com), which are widely used photogrammetric software for 3D surface reconstruction
and revetment monitoring [19,23]. In order to balance accuracy and efficiency, medium precision is set
to perform sparse and dense matching in Agisoft Metashape Professional 1.5.3, and the default settings
are used in Pix4Dmapper 4.4. To evaluate the effects of the multiscale architecture in the proposed
SMGO, the non-multiscale gradient operator (NMGO) is compared with our method. The gradient
intensity images with the values normalized from 0 to 1 shown in Figure 11h,i are correspondingly
generated by the non- and multiscale gradient operators, respectively.

www.agisoft.com
www.pix4d.com
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Figure 11. Cont.
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Figure 11. Revetment damage recognition along an urban river. The dense point clouds, depth map,
and slope intensity image of the subarea in Figure 10a are shown in (a,b,e), respectively. (c) Cross-section
without damage. (d) Cross-section with a collapse. (f) Superpixels marked by the cyan boundaries
that are generated via the simple linear iterative clustering (SLIC)-based algorithm. The true color
(RGB) point cloud of the revetment is exhibited in (g), and the enlarged three damaged regions of I,
II, and III from the ground field observation are also shown in (g). In addition, the gradient intensity
images generated using the non-multiscale gradient operator (NMGO) and SMGO are shown in
(h,i), respectively.

The indicators Precision, Recall and F1_score are used to evaluate the proposed method in our
experiments as follows:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1_score = 2 ·
Precision · recall

Precision + recall
, (12)

where TP is the number of damaged regions that are correctly identified, FP is the number of damage
regions that are incorrectly identified, and FN is the number of unrecognized damaged regions.
Table 3 lists the statistical results of Precision, Recall and F1_score for collapse and crack recognition.
Furthermore, the field visual inspection, NMGO-based damage recognition, and the proposed method
are compared in Table 3. It should be noted that the true value of the collapse and crack is obtained
through manual inspection. To be specific, the experimental areas are divided into grids on the map,
and then the professionals check in detail whether there is any collapse or crack in each grid. If there is,
the coordinates are marked using a GPS measuring instrument. For a fair comparison, field visual
inspection is conducted according to the commonly used process by three different surveyors, and the
average values of TP, FP, and FN are calculated.

Table 3. Comparison of the three indicators obtained through field visual inspection, NMGO-based
method, and our method.

Site Category Number Indicator (%)
Method

Field Visual
Inspection NMGO-Based Our Method

Part 1

Collapse 14
Precision 86.67 73.33 92.85

Recall 92.85 78.57 92.85
F1_score 89.66 75.86 92.85

Crack 36
Precision 91.18 79.41 89.18

Recall 86.11 75.00 91.67
F1_score 88.57 77.14 90.41
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Table 3. Cont.

Site Category Number Indicator (%)
Method

Field Visual
Inspection NMGO-Based Our Method

Part 2

Collapse 18
Precision 84.21 73.68 89.47

Recall 88.89 77.78 94.44
F1_score 86.49 75.67 91.89

Crack 54
Precision 88.46 82.97 90.91

Recall 85.18 72.22 92.59
F1_score 86.79 77.23 91.74

5. Discussion

In this study, the proposed dense matching method performs better at surface reconstruction
than Pix4Dmapper and Agisoft Metashape in terms of the RMSE values shown in Tables 1 and 2.
Notably, the time consumption of the proposed method is only 87% of Pix4Dmapper and Agisoft
Metashape in the same operating environment. These results can be attributed to the dense matching
achieved by the object space-based approach, which only computes the height values on the top
surface of the ground and reduces the computational expense of redundant point clouds. To offer
a detailed description, as shown in Figure 10a, the extracted subarea illustrates the details of the
geometry structure, and Figure 11a,b present the corresponding results of the subarea. Two examples
of cross-sections of dense point clouds derived from UAV mapping are demonstrated in Figure 11c,d
with (marked by a red line) and without damage (marked by a yellow line), respectively. Subsequently,
Figure 11e,f show the slope intensity image generated via the slope calculation and the superpixels
segmented with the SLIC-based algorithm [39], respectively. Figure 11g exhibits the revetment regions
obtained through superpixel merging on the basis of similar gradients and adjacency, and the enlarged
three damaged regions of I, II, and III from the ground field observation (i.e., RGB ground photos) are
also shown.

In terms of visual assessment, the profile in Figure 11d is the geometry structure corresponding
to region I. In Figure 11h,i, it can be seen that the region detected by the SMGO algorithm is more
consistent with the geometric structure than that detected by the NMGO. The NMGO has difficulty
identifying all the damaged regions and ignores the spatial continuity of cracks or can even cause edges
in over-recognition. By comparison, the proposed SMGO can extract the damaged regions within
accurate boundaries and improve the accuracy of the revetment damage recognition by highlighting
the gap between the damaged and nondamaged areas. Therefore, the proposed SMGO enables collapse
and crack with a height drop relative to the surrounding areas to be detected. This finding is attributed
to the revetment damage recognition using the proposed SMGO, which can achieve feature extraction
in all the orientations with the multiscale operator in the horizontal, vertical, and diagonal directions.
Notably, the strip regions with vertical drop (e.g., region III shown in Figure 11h) close to the river are
also detected but not considered damaged regions in this study. In addition, the proposed method
achieves better performance than the two other methods in terms of Precision, Recall and F1_score,
especially in crack recognition. For field visual inspection, the inconspicuous cracks may easily be
ignored and manual recognition is easily affected in this case, that is, crack damage often exists in other
types of damage (e.g., collapse). As mentioned above, the NMGO-based method ignores the feature of
damage and performs poorly.

6. Conclusions

This study aims to achieve revetment damage recognition along urban rivers through dense point
clouds derived from low-cost UAV photogrammetry. In this study, two improvements of the proposed
approach confirm that our method can be used as an effective alternative to field visual inspection for
revetment (with slope protection) damage recognition along urban rivers. (1) Region growing coupled
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with SGM is proposed to generate the pixel-by-pixel dense point clouds from UAV remote sensing
images and reconstruct the fine details of the high-precision revetment surface. This reconstruction is
considered satisfactory in terms of the horizontal error <4 cm and vertical error <6 cm relative to GCPs.
(2) On the basis of the in situ visual assessment and quantitative analysis (e.g., at least 90% of the
Precision, Recall, and F1_score values), the accuracy of revetment damage recognition is confirmed after
comparing the results of the field visual inspection and the NMGO-based method. Notably, UAV-based
mapping can offer a new possibility in fully measuring, monitoring, and understanding revetment
damage with low-cost operation. UAV-based mapping presents a technology that has the potential
to transform how revetment damage recognition is observed and investigated. Furthermore, it could
help the government and local authorities develop revetment management plans and provide evidence
for maintenance or improvements.

This study is suitable for recognizing the damage signatures in revetments designed with slope
protection. The use of the proposed method on revetments with steep slopes still needs further
investigation because the nadir orientation of a camera for photogrammetry has difficulty achieving
high-precision surface reconstruction of steep revetments. In future studies, we will optimize the
proposed approach by using oblique photogrammetry and deep learning to achieve satisfactory
damage recognition of steep revetments.
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