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Abstract: Vehicle mobility generates dynamic and complex patterns that are associated with our
day-to-day activities in cities. To reveal the spatial-temporal complexity of such patterns, digital
techniques, such as traffic-monitoring sensors, provide promising data-driven tools for city managers
and urban planners. Although a large number of studies have been dedicated to investigating the
sensing power of the traffic-monitoring sensors, there is still a lack of exploration of the resilient
performance of sensor networks when multiple sensor failures occur. In this paper, we reveal the
dynamic patterns of vehicle mobility in Cambridge, UK, and subsequently, explore the resilience of
the sensor networks. The observability is adopted as the overall performance indicator to depict the
maximum number of vehicles captured by the deployed sensors in the study area. By aggregating
the sensor networks according to weekday and weekend and simulating random sensor failures
with different recovery strategies, we found that (1) the day-to-day vehicle mobility pattern in this
case study is highly dynamic and decomposed journey durations follow a power-law distribution
on the tail section; (2) such temporal variation significantly affects the observability of the sensor
network, causing its overall resilience to vary with different recovery strategies. The simulation
results further suggest that a corresponding prioritization for recovering the sensors from massive
failures is required, rather than a static sequence determined by the first-fail-first-repair principle.
For stakeholders and decision-makers, this study provides insightful implications for understanding
city-scale vehicle mobility and the resilience of traffic-monitoring sensor networks.

Keywords: vehicle mobility; resilience; spatial-temporal analysis; traffic-monitoring sensors;
sensor networks

1. Introduction

The urban mobility pattern is of interest to a wide range of stakeholders such as policymakers,
businesses, and local transportation authorities as it can provide a detailed and in-depth understanding
of day-to-day vehicle movements, which informs decision making at multiple levels. In this vein,
various types of smart sensors have been deployed all over the world in cities for traffic-monitoring
purposes [1]. The large quantities of data collected by those sensors offer a unique opportunity to
investigate the dynamics of the vehicular movements in a city [2]. For years, many studies have been
dedicated to extracting insights and useful information from large-scale vehicle mobility data.

With an increasing trend of using smart sensors in many cities, especially traffic-monitoring
sensors in urban mobility projects, one particular issue is attracting increasing attention from
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practitioners, that is, “what would happen when sensors fail?” [3] Failures are not uncommon in
traffic-monitoring sensors. Generally, such failures could be a result of aging equipment, random
malfunctions, or human factors (e.g., vandalism). A large number of failures will deteriorate the
probe penetration rate and therefore undermines the system’s effectiveness and reliability in terms of
data monitoring. To mitigate the negative impacts of potential sensor failures, the call for resilience
studies has become prominent [4]. Meanwhile, the network-wide observability plays an indispensable
role in evaluating the effectiveness of a deployed sensor sets, which depicts its power to capture the
vehicle fleet and the vehicle movements. For years, research focus has been on questions such as
how to optimize the geospatial layout of the sensors for a larger observability and how to estimate
travel information using the sensor data. Thus, while resilience studies on infrastructure systems and
networks are not rare in the literature, studies on the resilient observability of traffic-monitoring sensor
networks have been relatively limited. From a long-term perspective, given that sensor networks
are likely to become ubiquitous in managing traffic, a resilient traffic-monitoring sensor network
will be vital. Therefore, there is value in exploring its resilient observability and the corresponding
spatial-temporal features.

In this paper, we aim to address the following two research questions: (1) how resilient is the
deployed traffic-monitoring system in terms of its overall observability? and (2) given a series of
random sensor failures, how can we plan for a recovery strategy to achieve a relatively higher resilience?
To tackle the research questions, we used one week of traffic-monitoring data to reveal the vehicle
mobility patterns in Cambridge, UK, and explored the resilience of the deployed sensor system in
terms of its observability using a simulation-based approach. The sensor system was conceptualized
as directed unweighted networks formed by vehicle movements based on weekday and weekend
cases, and its observability resilience against random failures was quantitatively assessed using a
resilience metric. To address the second research question, we considered different types of recovery
strategies according to the different measures in the resilience simulation, including betweenness
centrality measure and individual sensor-level traffic volume. To compare the performance of the
different recovery strategies, we measured the relative change of the network-wide observability as
the key performance indicator (KPI), which is defined as the maximum number of vehicles captured
by the sensor network. The main contributions of this paper can be summarized as follows:

o This paper improves our understanding of the resilient observability of traffic-monitoring sensor
systems and shows promise for expanding how we make decisions regarding the design and

management of such systems in large-scale projects.
o The identified limitations of the data and the sensor systems could be useful for similar urban

mobility projects. As caveats for future projects, special attention should be paid to these
limitations and implications at the early stages of projects in a more active and cautious way.

The remainder of this paper is organized as: in Section 2, we perform a literature review on
relevant previous work and identify gaps in the mainstream research, which we aim to address in
this paper. Section 3 describes the methods applied for investigation, including network construction,
resilience paradigm and assessment, and simulation design. In Section 4, we introduce the background
information of the case study in Cambridge, UK, and the large datasets we used for analysis. Section 5
presents the spatial and temporal analyses of empirical vehicle mobility patterns mined from the
collected data, acting as a knowledge foundation for the next section. Section 6 demonstrates the results
of the resilience assessment of the sensor networks based on pre-set simulation scenarios. Finally, in
Section 7, we discuss some potential implications and conclusions that can be drawn from this study.

2. Literature Review

2.1. Data-Driven Analysis on Vehicle Mobility Patterns

Data-driven approaches for understanding vehicle mobility have focused on various types of urban
data and modeling techniques [5,6]. From a data mining perspective, different types of urban data
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have been explored and investigated to build a better understanding of vehicle mobility patterns, such
as smart card data [7], GPS trajectory and smartphone data [8-10], and social media data [11-13].
For example, Kumar et al. [8] used the origin-destination pairs of the passenger taxi trajectory
data to reveal the city mobility patterns, urban hot-spots, and general patterns of movements in
Singapore. Serna et al. [11] collected social media data to identify sustainability issues related to urban
mobility based on perceptions and experiences. The study demonstrates an effective combination of
quantitative and qualitative content analysis, which enriches the data and approaches when analyzing
urban mobility. Tang et al. [14] used taxi GPS data to analyze the travel demand distribution in mobility
patterns and proposed an entropy-based model to estimate the traffic distribution in a city-scale case study
in Harbin, China. Traunmueller et al. [15] proposed a model that uses Wifi probe request data to model
urban mobility and a spatial network approach to identify journey attributes. They also further revealed
the usage and trajectories of road and pedestrian sidewalks at street level. Apart from these uniform
data sources, scholars have also pointed out the necessity for mining mobility patterns from multi-source
data, resulting in an increasing trend of using multi-source data with data fusion techniques [16]. For
instance, Yang et al. [17] described the integration and analysis of smart card data and points of interest from
social media to understand urban mobility in Shenzhen, China. Liu et al. [18] used three types of urban
data (taxi GPS trajectory data, license plate recognition data, and geographical data) to reconstruct
the spatial-temporal patterns of urban vehicle movements and associated traffic emission patterns.
From the models and techniques perspective, multiple modeling techniques have also been applied to
different types of data to reveal the characteristics of urban mobility patterns [19], such as complex
network models [20,21], machine-learning models [7,22], image processing [23], and agent-based
models [24]. Despite numerous data and approaches, investigations based on vehicle recognition data
in conceptualized sensor-monitoring networks have been relatively limited in mobility studies. There
is still a need for such an investigation using traffic-monitoring data in a systems-based approach.

2.2. Resilience in Sensor Systems

Resilience, as an emerging and widely applied system concept, has gained tremendous attention
in recent years. The concept is generally interpreted as a system property that withstands unexpected
internal and external disturbances in the system’s functionality performance [25]. In urban mobility
studies, a large number of researches have focused on investigating the resilient performance of urban
transportation systems [26], such as road topology [27,28], logistic networks [29,30], and day-to-day
congestion in large-scale networks [31,32]. For example, Zhang and Wang [27] utilized the network
theory to propose a metric based on reliability and connectivity to measure the resilience-based
performance of road transportation networks. Luping and Dalin [33] proposed a method for resilience
evaluation on the road network vulnerability. The method uses final travel-time-loss of road users
and takes consideration of the structure of the network and traffic flow. Studies in this stream have
been well-developed and readers can refer to excellent review papers for further details, such as [34-37].
However, these studies do not focus on traffic-monitoring sensor systems in the transportation networks.

There are substantial studies discussing resilience issues in wireless sensor networks,
but not in traffic-monitoring sensors and not necessarily based on overall system
performance. Ghose et al. [38] discussed the issue of resilient data-centric storage in wireless
ad-hoc sensor networks. Erdene-Ochir et al. [39] studied the resilient routing problem in wireless
sensor networks. However, in traffic-monitoring sensor networks, the focus has been concentrated on
optimizing the locations of sensors to enhance the overall observability and solving travel demand
estimation problems [40,41]. For instance, Xu et al. [42] developed a location model for network
sensors in complete flow observability with uncertainty on links. Similarly, Bianco et al. [43] solved
the sensor location problem and found that the estimation error in the origin-destination matrix
is always bounded when solving the location problem. Zhou and List [44] focused on the location
problem of a limited number of traffic counting stations and automatic license plate recognition
sensors in a network. Again, the purpose was to solve the estimation of origin-destination demand.
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The discussion of resilience of the sensor networks, nevertheless, has been sparse in this research
stream. One relevant study is from Rinaldi and Viti [45]. They developed a novel methodology to
determine sensor layout for the optimal trade-off solution between the number of sensors needed
and the overall resilience of the sensor set. Using network theory, an optimization approach was
formulated and effective algorithms were proposed to address the maximum independent route set
problem. However, the resilience was adopted as a perspective in this work to study the effects of
sensor failures on network link flows, hence the resilient observability of the sensor networks per se
still needs to be quantitatively benchmarked and studied.

3. Methods

3.1. Sensor Networks and Centrality Measures

We conceptualized the traffic-monitoring sensors into a networked system, consisting of nodes
and edges. In this study, we defined a sensor network as a directed unweighted graph whose nodes
denote monitoring sensors and edges represent vehicle movements between each pair of sensors.
Self-interactions were also allowed in the networks, i.e., nodes can have self-looped edges in the
network. For network construction, a large adjacency matrix [46] is often used to represent the topology
of a network. In a given unweighted network of N nodes with self-loops, the adjacency matrix can be
denoted asa N x N matrix A; j, where Aup=1 if there is an edge between node i and j [47].

Centrality measures can be seen as metrics to benchmark the relative importance of nodes or
edges in a network [48]. There are various centrality measures proposed in network researches such as
degree centrality, betweenness centrality, closeness centrality, etc. Here, we used two nodal centrality
measures, namely degree centrality and betweenness centrality, to depict the importance of nodes
in the conceptualized sensor networks. The node degree measures the total number of connected
neighbors of the node of interest. Thus, this centrality index measures how many sensors are connected
to a given sensor through vehicle movements. For a network of N nodes, the degree k; of node i can be
expressed as:

ki = ZAij- 1)
]

The betweenness centrality plays an essential role in network science, especially in transportation
networks such as road and travel encounter networks [49,50]. This network measure depicts how
important a node could be in terms of shortest paths in a given network, i.e., it is the number of
all shortest paths that pass through that node. Nodes with a high betweenness centrality have a
large influence on the overall network connectivity and accessibility. For example, in transportation
networks, removing those nodes of high betweenness would lead to significant impacts on the vehicle
movements. Thus, it is of interest to consider this centrality measure in sensor networks. The
betweenness centrality of a node i is given as:

i
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where a and b are two nodes of this network that cannot be node i, 7, , is the total number of the
shortest paths from node a to node b and (7; » 18 the total number of those shortest paths that pass
through node i.

3.2. Resilience Paradigm and Assessment

The classic resilience paradigm starts with understandings of a typical resilience profile curve
(Figure 1). Given a generalized system, our aim is to assess its resilience through monitoring the
time-series functionality performance. Let the functionality performance of the system P(t) be
maintained at level 100% without any external disturbance. The expected level of performance
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can be denoted as TP(t). Ty is the time at which an unexpected shock happens. From time Ty, the
system performance P(t) would drop because of the functionality lost. After a certain period, the
system starts to recover and its P(t) would be eventually restored to the original level of 100% at time
T. This whole process is a typical failure-recovery paradigm of the resilience profile [25]. Using this
time-series performance profile, a resilience index can be calculated using a resilience metric.

Shocks
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Figure 1. A typical failure-recovery resilience profile.

Many resilience metrics have been built for various infrastructure systems, such as urban road
systems [4], energy systems [51], and cyber systems [52]. Apart from those context-dependent resilience
metrics, several generic resilience metrics have also been proposed for generalized systems, which
are particularly suitable for our purpose of assessing the resilience of sensor networks. We selected
the generic metric proposed by Ouyang and Duefias-Osorio [53] for two reasons: (1) this metric is
one of the most popular and widely applied tools for resilience assessment, which features high
effectiveness and simplicity. (2) this metric confines its numerical range within [0, 1] as a ratio between
the actual performance level (P(t)) and the target performance level (TP(t)), which is intuitive and
easy for comparative analysis across different cases. The metric quantifies the system resilience with a
Resilience Index (RI) and it can be expressed as follows.

L Jg, P(t)dt

_ ) 3
J TP(t)dt ®

where, T is the total time of observation, P(t) is the actual performance level at time ¢, and TP(t) is
the target or expected performance level at time ¢.

3.3. Resilience Simulation

The resilience assessments of sensor networks were carried out through simulations to obtain
the aforementioned resilience profiles (Figure 1). The simulation framework consists of two stages:
(1) simulations of attack and (2) simulations of recovery. In theory, both stages can be simulated
based on different strategies. We focus on the resilience assessment of the sensor networks under
random attacks (i.e., failures) with different recovery strategies in this study. Random attacks could
effectively simulate the situations of aging equipment, random malfunctions due to technical or natural
factors, or vandalism. Comparing with deliberate systemic attacks such as terrorist attacks, we believe
that random attacks would better represent the actual malfunction situations in traffic-monitoring
sensors. For simulating the recovery process, we proposed two different strategies in light of real-world
experiences, namely first-fail-first-repair and preferential recovery, respectively. Figure 2 illustrates the
workflow of a designed simulation process.
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Figure 2. Workflow of one simulation round in the resilience simulations.

There are several assumptions in the simulations: (1) attacks are simulated by removing node(s)
and recovery is simulated by restoring the removed nodes [54]; (2) only one attack or restoration
can occur within one time step [55]; (3) recovery only takes place after the completion of a series of
consecutive attacks, i.e., we do not consider multiple attack-recovery cycles [25]; (4) for consistency
of comparison, the frequency of attacks (time between attacks) and the time required for repair are
constant; (5) the total number of sensors remains constant during the simulation—this is to ensure the
consistency of the selected KPI across simulations. The hypothesis we would like to test in this study
is that the selection of the recovery strategy would affect the resilience of the sensor network in terms
of the overall observability. Two scenarios of three cases were designed for testing this hypothesis
as follows.

e Scenario 1—Control case: the control case is designed as random attacks with first-fail-first-repair
recovery. This scenario simulates the most intuitive and basic strategy [56], where one can repair
the failed sensors according to the sequence of their failures, i.e., in turn, sensors failed first
would be repaired first, after the initial set of failures were completed.

e Scenario 2—Comparative cases: this scenario is designed as random attacks with preferential
recovery [57] and consists of two comparative cases. Comparative case 1 is to recover with a
preferential sequence of failed sensors according to the betweenness centrality of the sensors
in the network, i.e., the sequence of restoring the failed sensors follows the descending rank of
betweenness centrality of the failed sensors. Comparative case 2 is to recover with a preferential
sequence of failed sensors according to the sensor-level traffic volume, i.e., the restoring sequence
follows the descending rank of observability of each individual sensor.

Because we randomly select sensors to fail in the network, each simulation would yield a slightly
different outcome. Thus, we applied Monte Carlo techniques to offset the uncertainty of randomness
when simulating the random failures in sensor networks. The merit of this method is that meaningful
results can be obtained through repeated random sampling. Technically, given that we simulate m
random attacks on a sensor network of n nodes (N = {1,2,3, ..., n}) and we repeat j times of random
sampling in Monte Carlo simulation, it can be executed as the following pseudocode (Algorithm 1). For
each run, we can use Equation (3) to calculate one RI. The area under the curve was calculated using
the Trapezoidal Numerical Integration function in Matlab. This function computes the approximate
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integral of a function using the trapezoidal method with unit spacing [58]. The numerical mean of
resilience scores can then be obtained for j times of repetitions in each scenario to achieve a meaningful
final RI.

Algorithm 1: Pseudocode for Monte Carlo simulations.

initialization;
for Repeat the simulations for j times do
Randomly select m unrepeated numbers from N as the attack sequence M, which contains
Ml, Mz, ...Mn,‘

for Each removed sensor from My, My, ...M,, do

if M; matches sensor ID N; from dataset then

1. Remove all vehicles captured by this sensor N; from the dataset;
2. Count the total number of vehicles as the overall observability of the network
after removing M;;

end
end
1. Return the results of observability in attack simulations;
2. Determine restoration sequence R based on the simulation scenario;
for Each restored sensor from Ry, Ry, ...Ry;, do

1. Recover vehicles captured by R; from the dataset;

2. Count the total number of vehicles as the overall observability of the network after

restoring R;;

end
1. Return the results of observability in recovery simulations;
2. Integrate both results to form a complete attack-recovery resilience profile;
3. Calculate the resilience index using selected metric (Equation (3));
4. Start the next simulation;

end
Return the resilience profiles of total j times of Monte Carlo random simulations;
Return the resilience indexes for each run and calculate the mean value;

4. Study Area and Data Description

The study area selected is Cambridge, UK (the county town of Cambridgeshire), which is located
approximately 80 km north of London. The datasets contain detailed trip chain information derived
from the Automatic Number Plate Recognition (ANPR) sensors. There are in total 96 camera sensors
deployed within the study area with labeled IDs ranging from 1 to 96. Figure 3 shows the geographic
layout of the study area and locations of the ANPR sensors.

Vehicle data was collected from 11th to 17th June 2017 (seven days from Sunday to the following
Saturday). All camera sensors record continuously from 00:00:00 to 23:59:00 throughout a day to
capture all recognizable vehicles and their trips based on the temporal trajectory stamps within the
area. Vehicle ID and sensor ID were also particularly recorded. We performed the data treatment and
cleaning with the following methods: (1) Invalid data points due to sensor failure and transferring
errors were excluded, such as records with a failed identification on vehicle ID and other information
variables; (2) In order to capture the meaningful vehicle mobility patterns in the study area, vehicles
that entered the study area at an unusual time and stayed for a short period were eliminated. Based on
origin-destination trip chain information, we excluded vehicles that first-time entered the study area
between 4:00 PM to 5:00 AM (next day morning). In addition, we also eliminated those vehicles that
have a trip chain duration less than 5 h (the time between its first entry and the last exit within the
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study area), i.e., temporary drop-by vehicles, ad-hoc vehicles such as garbage trucks and HGVs, and
suburb buses could effectively be filtered out.

@ ANPR Cameras

A

0 2km
AN

1
[ |

Figure 3. The study area and overview of the Automatic Number Plate Recognition (ANPR) sensors
(base road map was downloaded from OpenStreetMap and filtered with speed limit > 20 mph. The
location data of the ANPR sensors was downloaded from Cambridgeshire Insight Open Data [59]).

To perform a detailed diagnosis of sensor captures and facilitate the construction of sensor
networks, we further segmented the trip chains into one-way journeys based on the sensor records
of each trip chain. For example, one origin-destination trip chain made from origin sensor A to
destination sensor D via B and C will be segmented into three one-way journeys: A to B, B to C, and
C to D. Note that each segmented journey has one journey duration and the trip chain duration of
this vehicle is the sum of these segmented journeys. Thus, the final datasets contain six descriptive
variables, including Timestamp of vehicle entry (the time at which a vehicle enters the monitoring area
of a sensor), VRN (anonymized vehicle ID), Entry camera ID, Timestamp of vehicle exit (the time at
which that vehicle exits the monitoring area of that sensor), Exit camera ID, and Journey time between
its entry and exit (see Table 1).

After removing null data points, the total vehicle counts for all seven days can be obtained
(Figure 4). The maximum number occurs on day 6 (Friday, total daily count: 114748) and the minimum
appears on day 1 (Sunday, total daily count: 71165). The weekdays have more vehicles than the
weekends (on average, 33,163 more vehicles per day). Regarding the construction of the sensor
network, there are two irreparable issues in the datasets due to missing data: (1) Six camera sensors
failed during the data collection period. We, therefore, make use of the data from the remaining 90
cameras. (2) The “exit camera ID” attribute for day 2 (Monday) was invalid in the original data due to
coding issues, so we exclude day 2 when constructing the aggregated sensor network in later analysis.
However, this does not affect the vehicle count for day 2 as the VRN information is in good order.
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Table 1. An illustrative example of ANPR data after the data treatment.

Date Timestamp of VRN Entry Timestamp of  Exit Journey
Vehicle Entry  Vehicle SensorID Vehicle Exit Sensor ID Time
(h/m/s) ID (h/m/s)
17/06/2017  11:05:00 10001 4 11:13:12 83 0:08:12
17/06/2017  11:13:12 10001 83 11:15:12 56 0:02:00
17/06/2017  11:15:12 10001 56 12:45:12 3 1:30:00
17/06/2017  11:15:00 10002 20 11:16:00 19 0:01:00
17/06/2017  11:16:00 10002 19 14:16:00 9 3:00:00
17/06/2017  14:16:00 10002 9 18:20:00 1 4:04:00
140000
120000 108167 111244 113029 113623 114748

Number of Vehicles

100000 86833
80000 | 71165
60000
40000
20000
0

Day 1 (Sun) Day 2 (Mon) Day 3 (Tue) Day 4 (Wed) Day5 (Thu) Day 6 (Fri) Day 7 (Sat)
Observation Days

Figure 4. Total number of vehicle count in each day of the week.

5. Spatial-Temporal Vehicle Mobility Patterns

We start from the understanding of the temporal and spatial features of the vehicle mobility
patterns in this section. The section acts as a foundation for the following resilience simulations and
the implications.

5.1. Temporal Analysis

An hourly count of vehicle numbers in each day reveals the temporal traffic patterns in the study
area (Figure 5—column I). As an example, we present days 1 (Sunday) and 2 (Monday) to represent a
typical weekend and weekday here. The temporal patterns of the other days can be found in Appendix
(Figure A1). The hourly distribution of the total vehicle number in the study area roughly follows a
skewed bell-shaped distribution with the accumulated vertex at around 13:00 PM to 14:00 PM. The
hourly variations of vehicle count were also calculated to depict the changes of vehicle numbers in the
study area at each consecutive hour (see column II—the hourly differences from the column I). We can
see that the morning peak has a relatively steeper formation curve than the evening peak, implying a
quicker build-up of traffic volume in the morning peak. Cross-comparing days 1 and 2, it is obvious
that the morning peak on day 1 (weekend, at around 10:00 AM) was about three hours later than it of
day 2 (weekday, at around 7:00 AM). However, there is no significant difference when comparing the
evening peaks.
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Figure 5. Hourly vehicle count and variations on days 1 and 2.

Figure 6 illustrates the distributions of journey duration on days 1 and 2. From subplots (a) and
(c), the majority of the journeys only lasted for a short period of time. Subplots (b) and (d) show the
probability distribution of the journey duration in a log-log scale, where we can see the tail sections
could be approximated by a power-law distribution. Comparing with subplot (b) and (d), we can
see such a power-law tail is more prominent on day 2 (weekday) than day 1 (weekend). It implies
the distinct vehicle usage patterns between weekends and workdays. In these subplots, we can also
observe that some journeys were extremely short (less than nine seconds) while some other journeys
lasted for a relatively long time (close to 24 h). With a close inspection, we found that those long
journey durations are attributed to stopped vehicles such as long-time parking vehicles. Those very
short journeys are highly related to the maldistribution of the ANPR sensors (two cameras being
placed so close to one another that vehicles pass through with a short journey time between these
two cameras) and U-turn vehicles at roundabouts and junctions. These results demonstrate that the
journeys took place with a great variety of durations, and the power-law tails imply a non-trivial
dynamics of the journey time. Figure A2 in the appendix shows the same analysis for the rest of the
days, where similar patterns can be identified.
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Figure 6. Distribution of journey duration on day 1 and day 2. Note that exponential distribution is
apparently not capable to fit with the heavy tail in day 2. However, a power-law demonstrates a better

distribution fit on the tail section.

5.2. Spatial Analysis

We aggregated the data on weekdays and weekends to construct the sensor systems as directed
unweighted spatial networks (Figure 7). The size and color of the nodes are proportional to the total
nodal degree (red color indicates a high degree, green color indicates an intermediate degree, and
blue color represents a low degree). A higher degree denotes a fact that this camera has a higher rate
of vehicle connections with many other cameras in the study area. We can see that the nodal degree
varies significantly in some particular nodes (e.g., camera 25, 28, and 16) while some nodes remain
rather the same degree throughout weekday and weekend (e.g., camera 19, 20, and 13). Both networks
have a relatively dense core of edges in the city center area while the edge density is much lower
on the periphery. Such a pattern indicates that there are more active mobility movements in the city
center than the city fringe. However, relatively sparse vehicle movements do not necessarily indicate
lower importance of nodes around the city fringe. As can be seen from the spatial distributions of
betweenness centrality and traffic volume (Figure 8), some nodes on the periphery areas are constantly
of high importance in both measures (e.g., cameras 23, 4, and 19). These nodes are located at the main
corridors of the city of Cambridge, which play an important role in inbound and outbound vehicles to
reach other places in the city center. It is clear that vehicle movement patterns in the study area are
highly heterogeneous in both weekday and weekend cases and can vary significantly across different
spatial areas.
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Figure 7. (a) Directed and aggregated weekday network. (b) Directed and aggregated weekend
network. Size and color of node are proportional to nodal degree centrality, with red as high degree,

blue as low degree, and green as intermediate degree.
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Figure 8. Spatial distribution of betweenness centrality and traffic volume of the sensors in the city’s
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weekday; (c) betweenness of the sensors on weekend; and (d) traffic volume of the sensors on weekend.
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6. Resilient Observability of Sensor Networks

Having analyzed the basic spatial-temporal features of the sensor networks, in this section we
consider the resilience of those sensor networks in terms of their observability against random failures.
We perform the resilience simulations following the recovery scenarios and cases described in Section 3.
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6.1. Scenario 1: Control Case

For a standard resilience quantification, the KPI on the y-axis needs to be normalized for
comparing calculations across cases. We normalized the observability by calculating the observability
ratio of the sensor networks using observed vehicle number divided by the total number of vehicles,
that is, for ith attack, the observability ratio can be calculated as V;/V;,;, where V; is the observed
vehicle number after ith attack and V,,,; is the total number of vehicles captured by all 90 camera
sensors. For each simulation round, 10 repetitions of Monte Carlo simulations were applied to both
weekday and weekend networks with 85 simulated random failures.

Using the RI metric, the resilience indexes of each case were calculated and the mean values were
taken for benchmarking. As shown in Figure 9a,c, even though we can see simulations yielded slightly
different curves, the mean value of resilience obtained for weekday and weekend are not significantly
different (Mean RI are 0.515 and 0.524 for weekday and weekend, respectively). This indicates that the
resilience of these two sensor networks is only at a moderate level (considering the scale of Rl is from 0
to 1) and does not drastically alter in terms of the overall observability ratio. Subplot (b) and (d) show
the negative effects of different sizes of random failures on the overall system resilience by tuning
the number of random attacks. We simulated 1 to 90 random failures with an incremental step of 1
for both networks. It is clear that resilience decreases as the number of failures increases. The overall
decreasing trends in both cases demonstrate an approximated linear degradation relationship between
resilience and the number of failures. This indicates that a linearly increasing number of random
failures in monitoring sensor networks would result in a linearly deteriorated observability. Therefore,
keeping the sensors functioning and avoiding the possible failures by improving their reliability are
key actions to maintain a high level of resilience.
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Figure 9. (a,.c) Resilience assessments for weekday and weekend with random failures and
first-fail-first-repair strategy; (b,d) resilience of the sensor network with different number of failures.
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6.2. Scenario 2: Comparative Cases

Figure 10 demonstrates the results obtained from the two simulations using scenario 2. Subplots (a)
and (c) are results of comparative case 1, and (b) and (d) are results of comparative case 2, respectively.
To facilitate cross-comparisons, we set the number of failures and the number of repetitions in Monte
Carlo simulations as the same as the control simulations. In comparative case 1, the resultant RI clearly
show that the overall resilience of the sensor networks can be increased from around 0.5 in control
case to about 0.7 (0.656 and 0.662 for weekday and weekend, respectively), suggesting that repairing
according to the betweenness centrality of the sensors could improve the resilience of the observability
of the sensor networks on both weekend and weekday cases.

In comparative case 2, we found similar results but with slightly improved RI values (0.700
and 0.693 for weekday and weekend, respectively). We can see that repairing the failed sensors
according to their individual-level observability could improve the recovery strategy, and it is also
obvious that the overall slopes of the recovery portions are more smooth and steep compared with
those of the control cases and comparative case 1. This finding confirms our hypothesis and leads
to a moderate proposition: When making decisions about how to recover traffic-monitoring sensors
from a large number of random failures, if there is limited knowledge on detailed vehicle mobility
patterns, a preferential recovery strategy developed according to topological betweenness centrality
could provide a good solution. However, if detailed information is available, it is recommended to
show considerations to both topological features and spatial-temporal vehicle patterns captured by
the deployed sensors, and a preferential recovery strategy should be prioritized. Given the traditional
focus of previous researches lies on studying the network topology, what we have explored here can
be an alternative perspective for managing the effectiveness of traffic-monitoring projects.
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Figure 10. Resilience assessments for weekday and weekend with random failures and preferential
recovery strategies. (a,c) Preferential recovery strategy using topological betweenness centrality; (b,d)
Preferential recovery strategy using sensor-level traffic volume.
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7. Discussion and Conclusions

One of the advantages of building smart infrastructure assets is that it will allow stakeholders to
gain increased capacity, efficiency, reliability and resilience [60]. The concept of resilience is increasingly
becoming a ubiquitous system property in a wide range of urban infrastructure systems [61,62]. In
order to better understand this concept in transportation systems and their associated smart sensor
networks, it is also important to understand the spatial-temporal mobility patterns of the city in
advance. This study thus focuses on the analysis of the spatial-temporal patterns of car trips in
Cambridge using the ANPR data and testing how different sensor recovery schedules may affect the
resilience of sensor networks in terms of overall observability.

The analysis confirms the difference in terms of traffic volume and peak time between weekdays
and weekends. For investigating the variations of journey duration, we did not eliminate long-haul
journeys as outliers but analyzed their distributions. The analyses indicate that the distribution of
long-haul journeys has a fat-tail effect with a power-law feature. Combining the results from the spatial
analysis, it demonstrates that the vehicle movements are highly dynamic and heterogeneous across
both spatial and temporal dimensions. The significant variation observed in terms of journey duration
suggests that the ANPR sensors provide a new and complementary source of data for investigating
the short-term dynamics of car use in the city, which are hard to capture through mechanical vehicle
counters and sample-based travel surveys. The investigation of the short-term dynamics of car use may
shed light on how to encourage active modes of travel (e.g., walking and cycling) for short-distance
travel and improve the last-mile accessibility for travelers.

For the resilience of sensor networks, the previous studies on network resilience have been focused
on structural resilience and robustness [54,56,63], using network-based connectivity and topological
characteristics as the key indicators. In this study, we found that the observability of traffic-monitoring
sensors is determined not only by its topological characteristics in the sensor network, but also largely
by the dynamic vehicle mobility. The traffic-monitoring sensors are not homogenous in terms of their
contribution to the overall observability. It thus requires a corresponding prioritization for recovering
the sensors from massive failures. This implies that how to determine the maintenance schedule (i.e.,
the sequence of repairing faulty sensors) plays a significant role in affecting the restoration efficiency
of the deployed monitoring sensor systems, especially considering that the preferential scenario would
enable a faster recovery of the overall observability of the sensor network. In other words, in light of the
shrinking budget among local authorities in the UK, a prioritized sensor maintenance scheme/recovery
plan would enable more efficient use of public resources.

There are several limitations in this paper, mainly due to the availability and quality of the
datasets. (1) The invalid data of exit camera reference on day 2 is so substantial that we can only
eliminate the entire day 2 data when constructing the aggregated network for the weekday case. It
might be possible that its topology structure could slightly change if those invalid data points can be
restored. (2) Due to the technical issue of the ANPR sensors, the accuracy of the plate recognition is
around 80% of the entire fleet size. A higher recognition rate would increase the size of the captured
fleet and, therefore, might improve the ground-truth spatial-temporal patterns. (3) The ANPR data
does not provide detailed information on vehicle types. We, therefore, only applied a rough method to
eliminate other vehicle types. If sufficiently detailed information is available, we could provide a more
precise analysis of the spatial heterogeneity of the vehicle mobility for each vehicle type. Finally, (4)
due to the maldistribution of the ANPR sensors, it is possible that some particular interesting spots
might be missing from the city’s ground-truth mobility patterns. Thus, we will focus on optimizing
the spatial layout of those smart sensors in our future work.
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The study enriches the empirical mobility studies and quantitative assessment of resilience in
traffic-monitoring sensor networks. Unlike other traditional resilience evaluations in networks, we
study the resilience of sensor networks through focussing on their observability, bridging a gap
between network resilience assessment and smart traffic sensor studies. The investigation approach we
demonstrated here can be applied to other cities and could be useful for the decision-making process
when deploying sensors in new projects. For future work, we will focus on tackling the acknowledged
limitations and exploring other alternative recovery strategies to further explore what-if practices and
their practical implications.
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Figure A1. Hourly vehicle count and variations on Day 3 to Day 7.
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