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Abstract: Flow maps are a common type of geographic information visualization in which lines that
symbolize flow are typically varied in width to represent differences in the magnitude of the flow.
An accurate perception of thickness is critical to numerical representation in flow maps. Previous
studies have identified some of the factors, such as horizontal–vertical visual illusions and color size
effects, that affect the perceived size of objects. However, the question of whether multiple visual
variables that encode flow lines, such as length, orientation, and shape, interfere with their perceived
thicknesses, remains unanswered. In this study, we performed a user study to determine the effect of
length and orientation on thickness perception. The result indicates that the horizontal orientation
is perceived to be thicker than the vertical orientation, and a short length is perceived to be thicker
than a long length. Furthermore, we report and discuss other results (e.g., on adjustment direction)
that are consistent with previous work. Although this study constitutes basic research, accumulating
evidence on thickness perception is essential to this field of science. This study may contribute to
our understanding of the factors that influence the perception of the thickness of lines on a flow
map. We provide some concrete guidelines for the design of flow maps that may be beneficial to
map designers.
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1. Introduction

Flow maps are a type of visualization used in geographic cartography that reveal rules or
phenomena describing the movement of things or people from one region to another. Differences in the
magnitude of or amount of migration in a flow are typically represented by variations in the thickness
of connecting lines, as shown in Figure 1. The perception of thickness is essential to an accurate
acquisition of the quantitative information that is represented in a flow map. Previous studies on
thickness perception have focused on identifying illusions of thickness [1] or ranking the effectiveness
of width and other visual variables, such as area, shading, and angle, in numerical representations [2–4].
However, to the best of our knowledge, few studies have addressed the question of whether multiple
visual variables may have a combined effect on perceptions of the thickness of flow lines.

There are three basic types of flow map: network, radial, and distributive. On a flow map, a “line”
is usually used to represent a flow’s orientation, and different thicknesses represent information
about the magnitude of the flow. Shape (straight lines and curves), size (length and thickness),
orientation (horizontal and vertical), and color (hue, saturation, and lightness) are the four fundamental
visual variables that encode lines on flow maps [5,6]. Each visual variable encodes a specific kind of
information; for example, lightness and hue are widely used to distinguish between types and avoid
confusion, respectively. When data range over large magnitudes, visualization designers typically use
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brightness and thickness to represent the amount of flow. As is well known, the representation of a
flow consists of multiple visual variables, but not all of them are used for numerical representation.
Previous studies [7,8] have shown that, for a given task, different visual variables interact with one
another. Bertin believed that lightness and size are dissociative; since these variables affect a symbol’s
visibility, it would be tough to ignore variations in them [9]. However, the question of whether multiple
visual variables that encode flow lines interfere with their perceived thicknesses due to disassociation
remains unanswered.

Figure 1. A flow map.

The motivation for this study is the fact that, while users will estimate the proportional relationships
between different flows, they will also constantly make part-to-whole comparisons based on a reference
line. However, the reference line is not a fixed one, and users will sometimes set as a reference
the thickest line in the global flow or a line near the target flow. Based on the estimation error
reported in our practical experiment, we suspect that the visual variables that encode the reference
line affect comparisons between thicknesses. For example, previous studies have confirmed that
horizontal–vertical illusions [10,11] and color size effects [12] affect users’ perceptions of the thicknesses
of lines. Does the use of different orientations or colors as reference anchors cause errors in the
estimation of a line’s thickness? In this study, we are interested in users’ perceptions of the thicknesses
of lines with different lengths and orientations. We report a psychophysical experiment that may serve
as evidence to support the development of guidelines for the design of flow maps.

The remainder of this article is structured as follows. In Section 2, we review research on
perceptions of the magnitude of flow lines, psychophysics, and graphical perception. In Section 3,
we describe the design and implementation of the experiment. Section 4 reports the metrics and results
of our experiment. In Section 5, we analyze and discuss the experimental results with regard to the
effects of line length and orientation on thickness perception. Section 6 describes the significance of
our findings and provides recommendations for future work.

2. Related Work

2.1. Perception of the Magnitude of Flow Lines

The effectiveness of a perception of the magnitude of a flow line depends on the accuracy of the
perception of the thickness of the flow line. We can consider thickness perception to be equivalent to a
length-based estimation of a part-to-whole comparison [13]. Visual cues [13] are used in cognitive
psychology and play vital roles in the estimation process. Previous studies [13,14] indicate that people
use perceptual anchors as part of the estimation process. Spence [15] suggests that stacked bar charts
have three natural anchors (0%, 50%, and 100%) and pie charts have five natural anchors (0%, 25%,
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50%, 75%, and 100%). Simkin and Hastie [14] held that length does not provide any other notable
visual anchors than a starting point and an ending point.

Furthermore, people can also use external anchors, such as reference objects, to make estimations.
Taking reference objects that encode different visual attributes as visual cues will affect the perceived
size of a target object. Jordan and Schiano [16] studied the effects of relative size and spatial separation
on parallel-line illusions. They found that changing the spatial separation (distance) between two lines
has an assimilating or contrasting effect on the estimation of length. Regarding size, Steven’s law [17]
states that when an object is viewed with reference to a larger object, the object itself will seem to be
larger. The opposite effect is obtained when an object is viewed with reference to a smaller object.
Regarding orientation, thickness estimations can be subject to vertical–horizontal illusions [18] and
anisotropy bias [11]. Regarding color, the color size effect [12] describes how the perceived size of an
object is affected by its apparent color. K Xiao [19] revealed a relationship between apparent size and
lightness in which stimuli with a larger size appear to be lighter. Tedford et al. [20,21] studied the effect
of hue on apparent size and concluded that warm and light colors make objects look larger, while cold
and dark colors provide a sense of contraction and make objects look smaller. These effects may be
explained by the fact that cones and rods are not uniformly distributed throughout the human retina,
leading to a difference in the appearance of a color between the fovea and the peripheral retina [12].
The color size effect is often used in the design of spaces to obtain a visual balance. However, it should
be used with caution in data visualization, since the fundamental principle of data visualization is to
faithfully represent numbers without causing confusion or misunderstandings.

Few experimental studies have been performed to verify whether reference and stimulus lines
with different lengths and orientations affect the perceived thicknesses of these lines. We performed a
psychophysical study on perceptions of the thicknesses of lines with a high degree of detail. In particular,
our experimental materials represent a range of lines and perception tasks that are commonly used in
flow maps.

2.2. Psychophysics and Graphical Perception

Psychophysics is a research field that focuses on measuring the relationship between the perceived
size (P) and the physical size (Π) of an object. For objects with different dimensions, the psychophysical
relation is usually nonlinear, and P = Πe, in which the exponents (e) are referred to as Steven’s
law exponents [22–24]. Lines are a particular case wherein the relationship is approximately linear.
Spence [25] studied the apparent and effective dimensionality of representations of objects. Cleveland
and McGill [26] did pioneering work on the evaluation of graphical perception. They evaluated the
graphical perception of 10 elementary graphical encodings and established a ranking. The results of
the crowdsourced experiment by Heer and Bostock [3] validated prior work.

Of all of the psychophysical methods that are used in visualization evaluation, the most relevant
to our research are magnitude estimation and magnitude production [27]. Magnitude estimation is a
task in which an individual estimates the proportion of a part to the whole of an object. The magnitude
production method requires users to proportionally adjust the intensity of a graphical encoding to
the target intensity. Previous studies have used these two methods to measure a user’s ability to
visually perceive a numerical representation encoded by various graphics (e.g., [2,25–29]). One of
the studies that is most relevant to our research is that by Saket and Srinivasan [4]. They ranked the
effectiveness of 12 different interactive graphical encodings by using a magnitude production task.
In their experiment, participants were asked to use a mouse to adjust the magnitude of graphical
encodings to a target value. Compared with the staircase procedure [30], which is another commonly
used psychophysical evaluation method, a magnitude production task is more efficient. Magnitude
production is a prototypical method for the task of assigning numbers in proportion to the magnitude
of the stimulus [4,31]. To measure the effectiveness of perceptions of thickness under different levels of
stimulus, we used a magnitude production task on account of the scale of the experiment.
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3. Methods

3.1. Experimental Design

The experiment aimed to help us achieve a better understanding of the issues raised above,
and provide scientific evidence for or against the effectiveness of perceptions of the thicknesses of
lines in flow maps. In this experiment, we measured how well users estimated the thicknesses of flow
lines in scenarios where stimulus lines had different lengths and orientations relative to the reference
line. As shown in Figure 2, two sets of experimental materials were used to measure the effects of
the two factors on perceptions of thickness. The experimental materials that were presented on the
screen were two lines. The line at the top was the reference line; the line at the bottom was the stimulus
line. Both groups of experimental materials had a corresponding control group in which the stimulus
and reference lines had the same length (2:2) and orientation (0◦). To determine whether length and
orientation affect perceptions of thickness, we set up four other experimental groups and compared
them to the control group. All stimulus lines had the same initial thickness as their corresponding
reference lines. Each participant was required to adjust the thickness of a stimulus line to a target value
based on the reference line. In order to be able to generalize the results, we tested stimulus materials
with three different thicknesses, which represent a range of line thicknesses that are commonly used in
flow maps.

Figure 2. The two factors in the experiment. Each factor used a control group and two experimental
groups. The gray color indicates a reference line and the black color indicates a stimulus line.

To reduce the number of required trials, we would have ideally used an orthogonal experimental
design. However, considering the possibility that the effects of these two factors may interact with other
potential effects, we performed the experiment using a within-subject design. As shown in Figure 3,
participants first completed tasks in the length group and then completed tasks in the orientation
group according to the requirements. The tasks that the study participants performed were similar
to a magnitude production task [27] (as described in Section 2.2). During each trial, participants
were required to change the thickness of a stimulus line to a target value (e.g., 200% of the reference
thickness), and we set three different target values (50%, 150%, and 200%). Participants accomplished
the adjustment operation by using the up and down arrow keys on a keyboard.

3.2. Design of Stimulus Materials

Each stimulus contained two gray lines (100 cd/m2) on a black background (<0.5 cd/m2). Examples
of the experimental materials are shown in Figure 2. The reference line had a length of 600 px and a
horizontal layout. In the two experimental groups for length, the lengths of the stimulus lines were half
and twice that of the reference line, respectively. We selected these two lengths to represent short and
long lines. In the two experimental groups for orientation, angles between the stimuli and reference
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lines were 45◦ and 90◦, respectively. The stimulus line was 120 px away from the reference line and
aligned at the center.

Figure 3. Schematic outline of the order of tasks in the experiment. During each trial, after a blank
display (500 ms), stimulus materials were shown on the screen, and subjects were instructed to adjust
the thickness of a stimulus line to a target value.

To be able to generalize our results, the stimulus materials needed cover those thicknesses that
are frequently used in flow maps. However, no guidelines currently exist that specify the range of
thicknesses to be used in flow maps. We investigated the attribute descriptions of “minThickness”
and “maxThickness” in flow maps from Tableau, Power BI, and D3. These descriptions state the
minimum/maximum thickness of the line that represents the flow. The investigation showed that the
minThickness is 1 px, and the maxThickness ranges from 40 to 50 px. In this study, we chose 4, 20,
and 40 px to represent three typical thickness classes (thin, medium, and thick, respectively). These
three classes represent a good range of line thicknesses, from ≈10% to 90%. This method for taking
values is similar to the one used in Redmond [13].

3.3. Participants

Participants were undergraduate or graduate students recruited from a research university. A total
of 30 students participated in the study (M = 25.8, SD = 3.1). Eighteen participants were female, and 12
were male. All participants reported frequent Internet use and proficiency in computers. Eighty percent
of the participants knew about visualizations, and 73% occasionally used maps. All participants
had normal or corrected vision without color blindness or color weakness. Because our research
focused on how multiple visual variables affect perceptions of thickness, rather than how well different
members of a user community perceive thickness, the choice of a homogeneous cohort was considered
to be acceptable.

3.4. Apparatus

The graphical stimuli were generated using JavaScript. The experiment was conducted
in a human–computer interaction laboratory under normal lighting conditions (about 300 lux).
The computers we provided were running the Mac OS operating system and used a 2 GHz Intel Core
i7 processor. The display was a 23.8-inch LCD monitor (Dell u2414 h). The graphics adapter had a
resolution of 1920×1080 pixels and a frame rate of 60 Hz. The screen was made to be perpendicular to
the participant’s line of sight, at a distance of approximately 95 cm from the eyes, by adjusting the
seat height.

3.5. Procedure

Participants were placed in a quiet, interference-free room during the course of the experiment.
Before the experiment, participants were introduced to the aim of the study and their rights with
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respect to participation in it. In order to familiarize each participant with the functions and interactions
of the test system, participants were given 1–3 minutes to read the instructions displayed on the screen
and completed four practice tasks. The tasks involved adjusting the thickness of a stimulus line to a
target value.

To avoid the order effect, we randomized the order of the trials in each group. Participants were
allowed to have a rest at the midpoint of the experiment to stay relaxed. Each participant was required
to complete 45 trials (5 groups × 9 trials) in the main experiment. The entire experiment took about
20 minutes, and participants received a reward of 30 RMB after completing all trials. For each trial,
the test system logged the target value and the response value. Finally, we evaluated the effects of
length and orientation on perceptions of thickness based on the results.

4. Results

In this section, we describe the metrics that we used in this study and then provide an overview
of the data and the statistical analysis. The data we collected comprised 1350 answers (45 trials × 30
participants).

Similar to previous magnitude estimation studies [2,29,32], we used the Absolute Error (AbsErr)
and Perception Bias Error (BiasErr) metrics in our analysis. AbsErr is the absolute percentage of
perceived error in an actual value and is used to measure accuracy. AbsErr is defined as:

Absolute Error =

∣∣∣response value− target value
∣∣∣

target value
× 100. (1)

BiasErr is a metric that measures perception bias; that is, the tendency to overestimate or
underestimate magnitude and by how much. It is defined as:

Bias Error =
response value− target value

target value
× 100. (2)

BiasErr > 0 when the thickness is overestimated; BiasErr < 0 when the thickness is underestimated.

4.1. Task Performance: Data Analysis

First, outlier handling was performed by using boxplots in SPSS based on 1.5 times the interquartile
range (IQR), and no outliers were excluded. The independent variables in this experiment were length,
orientation, and apparent thickness. We then conducted chi-square tests to check whether different
adjustment directions (e.g., a decrease to 50% or an increase to 200%) had an effect on perception
bias (see Table 1). A Chi-square test compares the frequency of overestimation to the frequency of
underestimation. The results showed a significant difference between the two directions with respect
to perception bias when participants were asked to decrease the thickness value in the length group.
According to the BiasErr, the participants’ responses were subject to underestimation. This result
supports evidence from Saket et al. [4]; however, the causes of these biases require further study.

Table 1. Chi-square tests for perception bias. Significant differences are indicated by an asterisk (*).

Visual Variable Direction Overestimated Underestimated Chi-square Test

Length Decrease 40.0% 50.7% χ2 = 14.4, p < 0.05*
Increase 38.7% 43.0% χ2 = 2.3, p = 0.12

Orientation Decrease 53.0% 46.3% χ2 = 3.7, p = 0.07
Increase 37.2% 41.5% χ2 = 0.3, p = 0.51

To test the combined effect of length/orientation and apparent thickness, we performed a two-way
factorial analysis of variance (ANOVA). Before performing the test, we checked whether the collected
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data satisfied the assumptions of the statistical tests. We used the Shapiro–Wilk test to test the normality
of the data and Levene’s test to check for homogeneity of variance. The results of the two groups of
ANOVAs are described in Sections 4.2 and 4.3, respectively.

4.2. The Effect of Length

Figure 4 shows an overview of the results of the task performance analysis. We consider the
results in terms of AbsErr and BiasErr.

Figure 4. AbsErr (a) and BiasErr (b) of stimuli with different lengths and apparent thicknesses.

AbsErr. We detected a significant interaction between length and apparent thickness for accuracy
(F (4,801) =5.840, p < 0.001, η2 = 0.028). The results of the main effects analysis show that length (F (1,801)

=14.644, p < 0.001, η2 = 0.035) and apparent thickness (F (1,801) =14.644, p < 0.001, η2 = 0.035) had a
significant effect on AbsErr.

To investigate the results of the main effect analysis for each category further, we performed
Bonferroni-corrected posthoc comparisons. First, the thin stimulus line group had a significantly higher
AbsErr than the other two groups. For the medium stimulus line group, pairwise comparisons showed
that the AbsErr of the short stimulus line group (M = 7.41%, SD = 5.31%) was significantly higher
than that of the control group (M = 5.01%, SD = 4.26%) and the long stimulus line group (M = 4.58%,
SD = 4.32%). For the thick stimulus line group, the AbsErr of the short stimulus line group (M = 6.56%,
SD = 4.41%) was significantly higher than that of the control group (M = 4.37%, SD = 2.95%).

BiasErr. The results of the analysis showed a significant interaction between length and target
thickness for BiasErr (F (4,801) =18.010, p < 0.001, η2 = 0.083). The main effect of length (F (1,801) =14.644,
p < 0.001, η2 = 0.035) and apparent thickness (F (1,801) =14.644, p < 0.001, η2 = 0.035) on BiasErr was
statistically significant. The unweighted marginal mean BiasErrs of thin, medium-thickness, and thick
lines were 94.50% ± 7.96%, 100.30% ± 8.12%, and 104.83% ± 7.85%, respectively.

Pairwise comparisons were performed to determine the difference in BiasErr between stimulus
lines with different lengths in each group. The results are shown in Table 2. Interestingly, significant
differences in BiasErr were detected in all groups. Compared with the control group, long stimulus
lines had a higher BiasErr, and short stimulus lines had a lower BiasErr. In Figure 4 can be seen a
clear trend that, as the stimulus line length increased, participants’ responses became biased towards
overestimation. To test for a correlation between stimulus line length and BiasErr, we performed
Pearson’s correlation analysis. The results showed a significant positive correlation between the two
factors (p < 0.001).
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Table 2. Pairwise comparisons between stimuli with different lengths and thicknesses. Significant
differences are indicated by an asterisk (*).

Thickness
(I)

Length
(J)

Length

Mean
Difference

(I-J)

Std.
Error

Sig.

95% Confidence
Interval for Differences

Lower
Bound

Upper
Bound

Thin short control group –12.037* 3.138 0.001 –19.694 –4.380
long –33.889* 3.317 0.000 –41.983 –25.795

control group long –21.852* 3.439 0.000 –30.243 –3.460

Medium short control group –3.620* 0.707 0.000 –5.346 –1.895
long –8.491* 0.870 0.000 –10.615 –6.367

control group long –4.870* 0.817 0.000 –6.864 –2.876

Thick short control group –3.778* 0.650 0.000 –5.363 –2.192
long –8.111* 0.850 0.000 –10.184 –6.038

control group long –4.333* 0.742 0.000 2.192 5.363

4.3. The Effect of Orientation

Figure 5 shows the participants’ performance in the test on the perceived thickness of lines with
different orientations.

Figure 5. AbsErr (a) and BiasErr (b) of stimuli with different orientations and apparent thicknesses.

AbsErr. The main effect of orientation on AbsErr was not significant for both the thin (F (2,178) = 1.035,
p = 0.418) and medium (F (2,178) = 1.089, p = 0.366) stimulus lines. Significant effects of orientation on
AbsErr were detected for the thick (F (2,178) = 4.157, p < 0.05, η2 = 0.293) stimulus lines. In the thin and
medium-thickness stimulus line groups, the results of pairwise comparisons showed that the 45◦ and
90◦ lines had a higher AbsErr than 0◦ lines.

BiasErr. The results of the within-subjects effect test showed that for the thin stimulus line group
(F (2,178) = 54.194, p < 0.001, η2 = 0.378), the medium-thickness stimulus line group (F (2,178) = 56.571,
p < 0.001, η2 = 0.389), and the thick stimulus line group (F (1.864,165.893) = 58.323, p < 0.001, η2 = 0.396),
there was a significant main effect of orientation on BiasErr.

To further investigate the effect of orientation on perceived thickness, we performed pairwise
comparisons of stimulus lines with different orientations separately for each of the three thicknesses.
The results, which are presented in Table 3, show that for stimulus lines of all apparent thicknesses,
the reported thickness of vertical lines was significantly overestimated compared with that of horizontal
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lines. These results are consistent with those observed in previous studies [1,11], and indicate that
there was a thickness illusion: lines in the horizontal orientation were perceived to be thicker than lines
in the vertical orientation. Perceptions of the thickness of 45◦ lines are biased towards overestimation,
and the degree of bias appears to fall between the degree of bias for horizontal lines and the degree
of bias for vertical lines. However, we did not detect significant differences in all of the comparisons
between 45◦ lines and lines in other directions.

Table 3. Pairwise comparisons between lines with varying orientations and thicknesses. Significant
differences are indicated by an asterisk (*).

Apparent
Thickness

(I)
Orientation

(J)
Orientation

Mean
Difference

(I-J)

Std.
Error

Sig.

95% Confidence
Interval for Differences

Lower
Bound

Upper
Bound

Thin 0◦ 45◦ –18.898 3.557 0.405 –30.021 6.493
90◦ –25.998* 3.039 0.003 –40.145 11.439

45◦ 90◦ –7.100* 3.178 0.012 –11.938 3.023

Medium 0◦ 45◦ –12.212* 1.702 0.041 –13.439 11.145
90◦ –14.831* 1.893 0.000 –17.115 10.271

45◦ 90◦ –2.619 1.645 0.157 –4.021 1.918

Thick 0◦ 45◦ –7.615 0.987 0.061 –10.951 4.145
90◦ –16.198* 1.157 0.001 –27.021 5.347

45◦ 90◦ –8.583* 1.041 0.007 –13.938 3.938

5. Discussion

5.1. Discussion of the Effect of Length

The experiment in this study has yielded several findings. First and foremost, the results showed
a significant effect of length on both accuracy and perception bias, except for in the thin stimulus
line group. When participants were required to adjust the thickness of a stimulus line to that of a
reference line, their response value for long stimulus lines was significantly higher than that for short
stimulus lines. Magnitude production tasks require top-down conscious processing, and short lines
are perceived to be thicker than long lines. It is easier to see the response trend of the subjects under
different stimulation conditions from the line chart in Figure 6a. We caution that this is a qualitative
study with some representative samples selected in flow maps. Besides, one premise of this conclusion
is that all stimuli lie in the same visual field. In other words, a stimulus line and a reference line must
be viewed by the eyes at the same time. For stimuli that are very large or very small, such as those
shown on tiled, wall-sized displays or in virtual reality (VR) environments, this conclusion may not
apply. This illusion might be explained by the interference that occurs when a visual system processes
both the apparent thickness and the width of lines. The apparent thickness, which is determined by the
length and width of flow lines, becomes thinner due to the increase in the flow lines’ length. However,
to date, and to the best of our knowledge, no experimental study has been performed to verify this
illusion. There may exist a functional relation between apparent thickness and perceived thickness
beyond a simple linear relationship. Other factors, such as distance and the human visual threshold,
need to be taken into account.

Furthermore, the thin stimulus line group had poor accuracy. A possible explanation for this
result may be Weber’s Law [33]. Weber’s law states that a change in a stimulus that is just noticeable
is a constant ratio of the original stimulus. However, it has been shown to not hold true for extreme
kinds of stimuli, such as touch, hearing, and sight [34,35], that are too strong or weak. In this study,
the members of the thin stimulus line group might be regarded as belonging to the category of extreme
stimuli, as these lines were too thin and the study participants were unable to discern the minimal
visual difference in the intensity of the stimulus. On the other hand, when calculating the relative error,
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the thinner the target thickness is, the smaller the denominator is. Hence, the same amount of physical
error relative to other groups may have caused the poor accuracy in the thin stimulus line group.

Figure 6. The trend of perception bias on (a) length and (b) orientation

5.2. Discussion of the Effect of Orientation

In this experiment, the response thickness of vertical lines was significantly thicker than that
of horizontal lines. The response thickness of the 45◦ line fell somewhere between the response
thickness of horizontal lines and the response thickness of vertical lines. Figure 6b shows the trend
of response bias on orientation. The experiment confirmed the existence of a thickness illusion
in which lines in the horizontal orientation are perceived to be thicker than lines in the vertical
orientation. These results of this study are consistent with those of previous studies [1,10,11]. However,
our sample was not comprehensive and only involved three orientations. The quantitative conclusion
that perceived thickness is distributed in different orientations remains to be verified. Howe and
Purves [36] calculated the two-dimensional and three-dimensional lengths of lines present in an image
using a laser rangefinder. Interestingly, they found that when setting a horizontal line as a reference,
the largest overestimation of thickness did not occur on the vertical line, but on a line 20–30 degrees
away from the vertical line.

5.3. Advice on the Design of Flow Maps

In this study, we determined the effectw of length and orientation, two of the visual variables that
encode information in flow lines, on perceptions of thickness. Based on our results, we put forward
the following three pieces of advice on the design of flow maps.

1. The use of inconsistent references as perceptual anchors to obtain information about the magnitude
of a flow may cause more substantial errors to occur. We advise map designers to pay attention
to the illusions that are created by the visual variables they use. We suggest that map designers
standardize the mode by which a map is read and provide an identical reference and scale.

2. Map designers should carefully examine the distribution of the magnitude of the data, especially
the maximal/minimal value that a flow could take. If the data range over large magnitudes, which,
in the envisioned scenarios, may cause small values to be represented invalidly, we suggest the
use of filtering techniques. Small values can be visualized hierarchically on a different scale.
We suggest an adaptive design for dynamic data that cannot be checked before visualization.

3. When encountering extreme cases in which the dataset ranges over large magnitudes,
we recommend adding an explanation or a partial map with different scales to ensure the
accurate transmission of all of the information in the flow map.
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6. Conclusions and Future Work

The present study was designed to determine the effects of length and orientation on perceptions
of the thicknesses of lines in flow maps and provide guidelines for the design of flow maps. This study
has shown that both the length and orientation of flow lines are subject to a thickness perception
bias. Specifically, we found that, when lines were viewed in the same visual field, the horizontal
orientation was perceived to be thicker than the vertical orientation, and a short length was perceived
to be thicker than a long length. However, this conclusion might not apply to extreme cases where
lines are too thin for differences to be recognized. The results of this study support the findings
of previous studies. This study may contribute to our understanding of the factors that influence
perceptions of the thickness of lines on a flow map. Given that the length and orientation visual
variables are both indispensable to flow maps, the potential for inaccurate estimation should be given
more attention during the design phase. Finally, we put forward several suggestions to improve the
design of flow maps.

With regard to our future work, we are interested in understanding how perceived thickness
interacts with changes in the length of a line, and not only qualitatively proving the thickness illusion
effect. A web-based and crowdsourced study is planned to help us collect a richer sample. Several
questions also remain to be answered. First, does a flow line’s curvature affect perceptions of its
thickness? Second, with the widespread use of large and curved screens, is there a functional
relationship between the two-dimensional and three-dimensional thicknesses of lines in natural scenes?
Finally, what of flow lines in augmented reality (AR) and VR environments? Considerably more
psychophysical work will need to be done to resolve these issues.
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