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Abstract: High-resolution geological mapping is an important supporting condition for mineral and
energy exploration. However, high-resolution geological mapping work still faces many problems.
At present, high-resolution geological mapping is still generated by expert interpretation of survey
lines, compasses, and field data. The work in the field is constrained by the weather, terrain, and
personnel, and the working methods need to be improved. This paper proposes a new method
for high-resolution mapping using Unmanned Aerial Vehicle (UAV) and deep learning algorithms.
This method uses the UAV to collect high-resolution remote sensing images, cooperates with some
groundwork to anchor the lithology, and then completes most of the mapping work on high-resolution
remote sensing images. This method transfers a large amount of field work into the room and provides
an automatic mapping process based on the Simple Linear Iterative Clustering-Convolutional Neural
Network (SLIC-CNN) algorithm. It uses the convolutional neural network (CNN) to identify the
image content and confirms the lithologic distribution, the simple linear iterative cluster (SLIC)
algorithm can be used to outline the boundary of the rock mass and determine the contact interface of
the rock mass, and the mode and expert decision method is used to clarify the results of the fusion
and mapping. The mapping method was applied to the Taili waterfront in Xingcheng City, Liaoning
Province, China. In this study, the Area Under the Curve (AUC) of the mapping method was 0.937.
The Kappa test result was k = 0.8523, and a high-resolution geological map was obtained.
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1. Introduction

Geological mapping is an important part of geological surveys. Geological maps can specify the
priorities for later geological work and reduce resource waste. However, mapping high-resolution
geological maps is a major challenge, especially in hard-to-reach areas, which requires a lot of human
and material costs [1–6]. Difficult terrain and tide have limited the development of traditional
geological surveys. In China, the most commonly used large-scale mapping method is still the
traditional geological survey. How to make geological surveys more automated has always been a
research hotspot. To solve the difficult problem of geological survey automation, the following two
issues need to be addressed.

Data: Many researchers have obtained satisfying results in the use of supervised and unsupervised
classifications of medium- and high-resolution satellite images [7], and traditional geological
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interpretation work can be done on a low resolution. High-resolution geological mapping should be
based on the interpretation and classification of high-resolution remote sensing images. However,
the traditional classification of lithology is more dependent on multispectral image data [8–10],
and traditional classification methods do not perform well at large scales.

In recent years, the cost of lightweight rotor Unmanned Aerial Vehicle (UAV) has become lower.
As a convenient and highly automated image acquisition platform, UAV can solve the problem of
automatic data acquisition. However, the UAV has not fully played its role in geological surveys,
especially in China.

Identification: Lithology identification is an important part of geological survey work. Lithology
recognition is similar to image recognition research, but there are some differences. Surface rocks often
do not have a fixed shape, and the identification of rocks should mainly rely on color and texture
information [11,12]. The resolution of the image is improved, the details of the surface objects are more
abundant, and their features are increasingly more complex [13]. This all makes identification difficult.

In order to improve the recognition and classification accuracy of surface objects, many researchers
have attempted to introduce machine learning algorithms into geosciences. The model of the machine
learning algorithm is trained on specific data to obtain a more generalized model, which can sum
up the information of the rock’s features, structure, etc., and can obviously improve the accuracy
of geo-sense recognition in high-resolution images [14–17]. However, the method based on content
recognition cannot accurately determine the edge position of the recognition object, which hinders the
application of many recognition algorithms in the field of high-resolution image classification. AlexNet
and other neural networks almost all adopt the processing of meta data flipping, twisting, perturbation,
etc. to increase the recognition accuracy [18–28]. Although this method will increase the recognition
accuracy, it will also make the algorithm lose its perception of the location of the recognition object.
In the field of geology, determining the location of rock boundaries and tectonic phenomena is very
important for geological research [29–32]. Machine learning, like fully convolutional networks (FCNs),
can detect the edges of an object while identifying it. However, limited by the algorithm design, FCN
directly deconvolves the calculation results from the feature map, so the details of the edge division of
complex shape objects are not satisfactory. Therefore, separating the target recognition process from
the segmentation process is a more common method to improve the accuracy of recognition and the
accuracy of edge division [30,33–36].

However, it is very difficult for a single algorithm to determine the content boundary under the
premise of correct content identification [30,33,34,36]. In response to this problem, our team proposed
the Simple Linear Iterative Clustering-Convolutional Neural Network (SLIC-CNN) algorithm for
high-resolution mapping work, using the convolutional neural network algorithm to identify the
image content and confirm the distribution of lithology. The SLIC algorithm is used to outline the
boundaries of the rock mass and further clarify the contact interface of the rock mass. The mode of
the majority and expert decision-making are used to further clarify the boundaries and generate the
mapping results. Our team conducted a high-resolution mapping experiment on the Taili Beach in
Xingcheng City, Liaoning Province, China.

2. Geological Setting

The Archean basement of the eastern North China Craton (NCC) includes the oldest rocks
in China (up to ca. 3.8 Ga) [37]. Sediment deposition mainly occurred during the middle to late
Proterozoic [38–40]. The study area is geographically located in the Xingcheng-Taili region of the
western Liaoning Province in northeastern China (Figure 1a), and tectonically in the eastern section of
the northern margin of the NCC. It was mapped and investigated in detail regarding its deformation
fabrics [41]. A slightly simplified geological map of the study area is shown in Figure 1b.
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Since 2004, geologists from the College of Earth Sciences of Jilin University have conducted field 
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undergoing excessive tectonic deformation, as well as multiple alterations of varying degrees of 
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research work, the formation sequence of the main rocks in this area was obtained: ① Quartz dioritic 
gneiss 2510 Ma ± 7 Ma (Figure 2C); ② mylonite 216.44 Ma ± 0.5 Ma (Figure 2E); ③ pegmatite veins 
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area is relatively convenient, and the contact edges of the rock masses are clear, which provides good 
materials for the lithological image recognition research. 

Figure 1. A schematic map of the location about North China Craton (NCC) and Taili. According to the
results of the regional survey of the Liaoning Geological Team in 1983, and Liang C in 2015. (a) Tectonic
geological map of the northern edge of NCC. (b) Geological map of the Taili area. (c) UAV remote
sensing image of Taili area.

This area is composed mainly of three granitic suites (Figure 1b), which formed in Neoarchean, Late
Triassic, and Late Jurassic times, respectively, and which are also characterized by variable deformation
patterns (Figure 1b). These granitic suites are described as follows: (1) The Neoarchean granitic
rocks are traditionally referred to as “Suizhong granite”, representing components of the Archean
trondhjemite-tonalite-granodiorite (TTG), with a formation age of ca. 2.5 Ga of the NCC’s basement;
(2) the Triassic (ca. 220 Ma) granitic rocks, including the porphyritic orthogneiss, garnet-bearing
granitic aplite, and biotite-syenogranite, intruded into the Neoarchean gneisses (Figure 1b) [37]; and
(3) biotite adamellites with zircon U-Pb age of ca. 150 Ma show a massive structure in the south
and a gneissic structure in the north, respectively (Figure 1b). The ductile shear zone of the Taili
area is dominantly comprised of granitic rocks deformed within low- to middle-grade metamorphic
conditions, which were documented by Liang et al. [39–41].

However, in the Taili area, there are still many geological problems to be solved. However,
the work of predecessors has mainly focused on the petrology, geochemistry, and chronology of the
rock mass [42]. The main rock outcrops in the Taili area are in the intertidal zone (Figure 1c). We can
only observe the rock outcrops in about 3 h at the time of the ebb, and it is almost impossible to draw
high-resolution geological maps of this area using traditional geological survey methods, which has
made research in this area more fragmented. Therefore, making high-quality high-resolution geological
maps is of profound significance for unifying geological understanding about the evolution of the
NCC [41]. This study aimed to use drones and artificial intelligence algorithms to provide a rapid
method of drawing geological sketches. With the help of available geological data in this area, the
accuracy of the method can also be convenient verified [37–42].

Since 2004, geologists from the College of Earth Sciences of Jilin University have conducted field
surveys and measurements of high-resolution lithology-structures in the Precambrian metamorphic
crystalline basement rock series exposed in the Xingcheng area, western Liaoning. It was found that
the relationship between various lithologies in the metamorphic rock series in this area is complex,
undergoing excessive tectonic deformation, as well as multiple alterations of varying degrees of
metamorphism and magma. Through field and indoor petrology, zircon U-Pb dating, and other
research work, the formation sequence of the main rocks in this area was obtained: 1O Quartz dioritic
gneiss 2510 Ma ± 7 Ma (Figure 2C); 2Omylonite 216.44 Ma ± 0.5 Ma (Figure 2E); 3O pegmatite veins
(Figure 2D); and 4O biotite-bearing granite (Figure 2B). The identification of exposed rocks in this
area is relatively convenient, and the contact edges of the rock masses are clear, which provides good
materials for the lithological image recognition research.
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Figure 2. (A) Ground truth samples in OruxMaps App. (B) Biotite-bearing granite. (C) Xenoliths
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3. Data

3.1. Data Choice

This study used ordinary Red Green Blue (RGB) image data collected by an unmanned aerial
vehicle (UAV) as the basic data for classification. There are two reasons: First, ordinary RGB images
are easier to obtain, and the cost is lower, which is more important for promoting the popularization of
UAVs in geological mapping. Secondly, the UAV can take ultra-resolution RGB images. Although the
spectral resolution is poor, its rich texture information can be used as an important parameter. The
millimeter-scale spatial resolution can provide geological workers with an observation experience with
the naked eye at about a 0.5 m distance. Later work also proved that the use of ultra-resolution color
images, combined with the ground truth data in the field, achieved satisfactory recognition accuracy in
many scenarios.

We used a DJI Phantom 4 Pro UAV with 1-inch CMOS to take an S-shaped route about 30 m
from the ground. The repetition rate of the route was 80%, and the repetition rate of the pictures was
90%. The ground control points were measured using the Real Time Kinematic (RTK)-based Trimble
R2 Integrated GNSS Systems. After the images were mosaiced and corrected, the high-resolution
orthoimage of the area were obtained by Pix4D. The spatial resolution of image was about 1.3 cm.

3.2. Preprocessing of Data

Machine learning has a very obvious advantage over the traditional algorithm in the field of
pattern recognition [43–45], but machine learning algorithms generally require the training data shape
to be neat [46]. To introduce the machine learning algorithm into high-resolution mapping, we used
a slicing method to provide standard-sized source data for machine learning algorithms. The work
to determine the slice size needs to be considered in conjunction with the accuracy of geological
interpretation. For example, a geological mapping requirement of 1:5000 requires the reflection of a
rock vein with a width of 0.5 m on the surface, and it is necessary to identify veins with a width of 0.5 m
or less. In this study, a 32 × 32 pixel slice was used with a sampling resolution of approximately 0.35 m.

Geo-interpretation work not only needs to know what the object of interpretation is but also
needs to know where the object is, and there is no point in interpreting the object without geographic
information [34]. Therefore, in addition to the geological interpretation work, we also needed to
geocode the object of interpretation. Geocoding requires a unique ID to match the geographic
location, which was not considered in previous image recognition algorithms. In order to facilitate the
realization of other functions in the future, we separated geocoding as a functional module, established
a WebService-based ground-to-interpret translation server, and used MySQL to store the ID and
corresponding geographic location of each point.
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In order to get closer to actual work conditions, this study did not remove non-geological-related
content, such as tourists, yachts, vegetation, buildings, etc., but classified them separately. We hoped to
increase the ability of the model to recognize “foreign objects” during the training of the classification
model and improve the generalization and classification accuracy in future applications. Based on the
ground conditions in the study area, this study determined the number of interpretations as 7.

The verification area was approximately 50 × 50 m, and the high-resolution image has a spatial
resolution of approximately 1.3 cm. A total of 13,432 slices were cut out, each with a pixel size
of 32 × 32 pixels and a floor projection area of approximately 0.18 square meters. We divided the
high-resolution images of the slices into two groups, namely the training group and the verification
group. The amount of each category in each group is shown in Table 1. After grouping, the images
and classification tags were formatted as uint8 multidimensional arrays and serialized using the pickle
module to facilitate neural network training reading.

Table 1. Classification category and quantity.

Name Description Number of
Training Samples

Number of
Verification Samples

Total Number of
Samples

Quaternary Beach, gravel 600 3277 3877

Granite Dykes granite aplite, granite
pegmatite 600 281 881

Mylonite Augen mylonites, Augen
undeveloped mylonites 600 743 1343

Vegetation Shrubs, grasses, algae, etc. 600 1199 1799

Sundries People, kayaks, lifebuoys,
bags, etc. 30 16 46

Boardwalk boardwalk 600 280 880

Orthogneiss Orthogneiss 600 4006 4606

In this study, the number of training samples was set to 600 according to the distribution of
features in the study area. Except for “Sundries”, “boardwalk”, and “Granite Dykes”, the number of
training samples of all other features was less than the number of verification samples. It is worth
noting that the training and verification samples were randomly taken from the “verification area”, and
their area was only 1/8 of the area of the study area. This means that the number of training samples,
the number of validation samples, and the number of objects used for classification was about 1:3:32.

4. Method

4.1. Original Intention of SLIC-CNN

In recent years, deep learning, also known as the deep neural network, has attracted the attention
of scholars from all fields [44,45]. A large number of methods about deep learning have been proposed.
A typical deep neural network architecture includes a deep belief network (DBN) [46], CNN and
auto encoder [25], and so on. Among them, after the first design and optimization of LeCun et al. [47]
in 1998, the performance of the deep CNN has increased. In 2015, the CNN classification accuracy
surpassed humans on the 1000 class of the ImageNet dataset [47], which contains 1,200,000 training
images, 50,000 verification images, and 10,000 test images. The CNN is often designed for the
processing of complex signals, such as computer vision; it has shown its superiority compared to
other technologies [48]. CNN is widely used in image classification, speech recognition, traffic sign
recognition, medical image analysis, and other applications [49]. This effective technique is also
applied to the classification of high-resolution and medium-resolution remote sensing images [43–46].
With more and more research investigating CNN, the number of improved CNNs has increased
conspicuously. They are playing an increasingly important role in various fields [50–52]. Deep learning
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is also very suitable for automatic identification of land types in the field since feature selection is
not required.

As another important part of deep learning, the accuracy of semantic segmentation technology
cannot be compared with pattern recognition. Machine learning, like fully convolutional networks
(FCNs), can detect an object’s edges while recognizing it. However, due to the limitation of the
algorithm design, FCN directly deconvolves the calculation results of the feature map, so the details of
the edge division of complex-shaped objects are not satisfactory.

From recent research, separating the target recognition process from the segmentation process is a
more common method to improve the accuracy of recognition and edge segmentation [30,33–36]. This
will not only improve the computing efficiency but also facilitate researchers to optimize recognition
and segmentation, respectively.

Superpixel is an effective segmentation solution. It divides the image into a series of sub-regions.
Each sub-region has a certain feature between them and has strong consistency. Superpixel segmentation
algorithms are also mostly based on color space partitioning and do not care about the meaning of the
actual classification. The SLIC superpixel segmentation algorithm [53,54] is a typical representation of
this type of algorithm. SLIC seeks the distance of pixels in the image subregion in the International
Commission on Illumination Lab color space (CIELAB) color space to determine which pixels need
to be clustered into one superpixel region. The algorithm’s processing speed and storage efficiency
are superior to other superpixel segmentation algorithms, and the obtained boundary has a strong
dependence on the original boundary of the image.

SLIC or other segmentation techniques have become important methods for edge division [55,56].
However, algorithms, such as the iterative self-organizing data analysis technique algorithm (ISODATA),
k-mean, and superpixel, all use color information as clustering parameters. What is inside the clustering
area does not affect the clustering results. However, the advantage of deep learning algorithms is
in determining what an object is. Detecting the spatial location of objects is especially important for
automatic geological mapping. So, is there a method to meet the needs of image recognition and
spatial positioning? This is the original intention of the SLIC-CNN algorithm.

4.2. Structure of SLIC-CNN

This is shown in Figure 3. Compared with CNN and traditional clustering classification methods,
SLIC-CNN separates edge detection from object recognition and optimizes them separately, which can
theoretically optimize the image processing results. The parallel design of edge detection and object
recognition processes also theoretically improves the efficiency of the algorithm.
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algorithms (ISODATA, K-mean, Superpixel) are shown as simple processes.



ISPRS Int. J. Geo-Inf. 2020, 9, 99 7 of 23

Figure 4 shows the use of UAV-related technology by our team in traditional geological mapping
work. As shown in the figure, before geological mapping, in the phase of data acquisition, based on the
existing topographic maps and satellite images, we can use the UAV to quickly obtain the geological
outcrop photo and topography of the target area. The main purpose of field reconnaissance is to
determine the typical lithology and location within the area and provide content control for automatic
mapping algorithms. The automatic mapping algorithm based on SLIC-CNN is shown in the dashed
box in the figure, and the resulting automatic mapping results still need to use field work inspection
and verification. In order to facilitate the comparison of remote sensing images and actual conditions,
we used a Smart phone and OruxMaps APP to record the typical lithology of the ground as lithology
samples. A total of 74 ground truth samples were collected in the study area for the calibration of the
lithology (Figure 2A).
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Figure 5 describes in detail the SLIC-CNN method in the high-resolution geological mapping
process. In Figure 5, four polygon boxes are drawn in four colors, which represent the four main parts
of the SLIC-CNN method. The blue area indicates the generation of high-resolution aerial photography
images of UAVs, and the orange area represents the process of convolutional neural network training
and classification using high-resolution image slices. The green area represents the process of the
SLIC superpixel classification algorithm doing edge division within the study area. The purple area
represents the process of using the mode and special decisions to fuse the CNN’s identification content
with the edge of the SLIC’s identification.

In detail, after obtaining a high-resolution image, slicing of the image is necessary. This experiment
uses ArcGIS fishnet vector data for batch mask slicing, so that the spatial position of each slice can
correspond to the vector mask one by one, which is also convenient for geo-coding of the image
recognition results. The CNN model was built using the TensorFlow-python framework, which is
improved from AlexNet. The SLIC algorithm was also written in python, and the relevant code
has been uploaded to github. Finally, ArcGIS’s Python library was used to connect the SLIC and
CNN classification results in geographic space, and the slices were assigned values according to the
mode principle.

4.3. Deep Learning of SLIC-CNN

We modeled a machine learning network modeled on the AlexNet. The main parameters are as
Figure 6.

The network includes six weighted layers: The first four layers are convolutional layers, so
sometimes it is also called convolutional neural networks (CNNs), and the remaining three layers
are fully connected layers. The output of the last full-connection layer is sent to a 7-way SoftMax
layer, which produces a distribution that covers 7 types of labels. Softmax is a function used to
convert the score result into a probability, which is convenient for probability calculation and gradient
descent. Our network maximizes the multi-class logistic regression goal, which is equivalent to
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maximizing the logarithmic probability average of the correct labels in the training sample under the
predicted distribution.
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Figure 6. Parametric schematic diagram of each layer of the AlexNet model.

The core of the latter convolutional layer is connected to all the core maps in the previous
convolutional layer. The neurons in the fully connected layer are connected to all neurons in the
previous layer. The response-normalized layer follows the first and second convolutional layers. The
pooling layer follows the normalized layer and the fourth convolutional layer.

The first convolutional layer uses 64 kernels with a size of 3 × 5 × 5 and a 1-pixel stride to filter
input data with a 3 × 32 × 32 size. The stride is the distance between the centers of the receptive field
of the neighboring neuron in the same kernel map. The second convolutional layer needs to take the
output of the first convolutional layer (response normalized and pooled) as its own input and filter it
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with 64 kernels in a 64 × 5 × 5 size. The third convolutional layer has 64 kernels of a 64 × 3 × 3 size
connected to the output (convolved, pooled) of the second convolutional layer. The fourth convolution
layer has 64 kernels of a 64 × 3 × 3 size. The first full connected layer has 512 neurons and the second
has 256, and each full connected layer uses Dropout to guarantee the generalization of the model. We
also used random preroll, mirroring, cropping, and stretching to preprocess the data before the data
reading process to enhance the generalization ability of the model.

In this study, CNN were mainly used for the recognition of ground objects. The purpose was to
accurately segment slices of high-resolution images into seven predefined categories. However,
this method of surface classification of slices cannot accurately locate the edge of the feature
(Figure 7). To solve this problem, we introduced a superpixel classification method in the process of
high-resolution mapping.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 23 
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4.4. Superpixel of SLIC-CNN

The SLIC algorithm mainly uses the K-means clustering algorithm to process superpixels. The
distance measurement in the clustering algorithm not only includes the color distance of the color space
but also the Euclidean distance of the pixel coordinates. Therefore, the center point of the K-means
cluster consists of five-dimensional vectors. This includes the recording of pixels in the lab color space
and the XY coordinates of the pixel. Since XY coordinates cannot be directly calculated with the color
space, a compactness parameter is added [57,58].

In addition, after the K-means clustering, a convolution process is also needed in order to merge
independent pixels enclosed by a region into a certain class. The cluster center K parameter is used
to indicate the number of segmentation results. The optimization of these parameters needs to be
considered in combination with the complexity of geological conditions and the accuracy of mapping.
After many experiments, our team believes that the number of segments in the SLIC algorithm should
be set to a suitable value first, so that the initial cluster center distance of the SLIC algorithm is
approximately equal to the step size of the CNN training slice. If the number of segments is too large,
and the image segmentation is too fine, it can achieve better results for object segmentation and edge
recognition, but it will cause many regions to not correspond to the classification result. If this number
is too small, it will result in a small number of segments, although it can reduce the appearance of
areas without corresponding classification results, but the edge fitting effect is poor (Figure 8). It can
be seen that when the SLIC clustering center step ≈ CNN slice step length, there are few missing maps,
the SLIC segmentation area is approximately equal to the CNN segmentation window size, and the
edge matching is better. When the SLIC clustering center step >> CNN slice step size, although almost
no missing map spot is apparent, the segment number is too small, and the spot edge is too sketchy.
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When the SLIC clustering center step size << CNN slice length, the segment number is more, and the
edge fitting is better. However, there are more spots missing.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 23 
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Figure 8. A. Classification result when the Simple Linear Iterative Clustering (SLIC) clustering center
step ≈ Convolutional Neural Networks (CNN) slice step length. B. Classification result when the SLIC
clustering center step >> CNN slice step size. C. Classification result when the SLIC clustering center
step size << CNN slice length.

When using the SLIC algorithm and appropriate parameters, we can obtain more satisfactory
results of edge partitioning. Based on the edge division, we combined the content recognition results
of machine learning to theoretically obtain the classification results of the accurate edges and accurate
content. However, there are still some content and scope matching problems that need to be solved.
Our team has proposed a “mode and special decision” method to solve these topological issues.

4.5. Mode and Special Decision of SLIC-CNN

For the segmented image, how to assign each segment to the label obtained by the deep learning
needs careful consideration. Simply use of CNN’s labels to assign SLIC segments is not enough.
Especially, in areas with complex geological conditions, we need to be especially cautious. For
geological mapping work, many small segments have important geological significance, such as dykes
and intrusions. The superpixel segmentation algorithm can adjust the parameters to segment these
fine geological bodies as much as possible. However, the depth learning algorithm does not increase
the sampling rate indefinitely. Our research shows that the accuracy of prediction is greatly reduced
when the pixel resolution of the recognition target is from 64 px, 32 px, to 16 px. Even at a resolution of
64 px, taking this article as an example, the corresponding sampling step on the ground reaches 7 cm.
There are still many gaps from the high-resolution mapping specifications promulgated by China
(more than 5 cm width veins need to be identified). Therefore, the separation of finely segmented
segments from the background and achieving good-quality labels must be considered. In response to
this, our team proposed a method called “mode and special decision” to solve this problem.

The meaning of mode and special decision is to use different decision-making schemes to define
the target content for different situations. The mode here refers to the most frequently occurring tag in
the range of segment slices generated by an SLIC. We superimposed CNN identified classification tag
points and SLIC classification segments in space. The following situations thus occured:

For the Figure 9A case, we named the segment using the most number of tags that appear in the
segment. Since it is considered that the mode may not be the majority (50%), we needed to use the
Top_K method to output the first three classifications with the highest prediction rate when they wee
output at the softmax layer, and add the comparisons to obtain the classification with the highest total
probability. The Figure 9B situation is much simpler. We could directly assign the CNN classification
result to this segment.
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Figure 9. Segment and CNN correspondence locations of classification points. (A) A segment
corresponds to two or more classification points; (B) A segment corresponds to one classification point;
and (C) A segment does not have a point that falls within its range.

In the case of Figure 9C, we needed to leave the class as null at this region and then use the nibble
algorithm to assign it. The nibble algorithm assigns the value of the nearest neighbor to the target area.
The algorithm performs internal Euclidean allocation and assigns the nearest neighbor values to each
target area.

By merging the SLIC and CNN, we established a high-resolution geological mapping method
based on SLIC-CNN. This method is based on the use of deep learning classification of high-resolution
remote sensing slices. Using SLIC classification methods to determine the classification boundary, the
two are combined by the mode and special decision principles, resulting in the final high-resolution
mapping results (Figure 10).

In this experiment, we built a SLIC-CNN algorithm platform based on the Python version of the
Tensorflow framework. The experimental hardware platform was a dual-channel Intel Xeon E5-2630V4,
with the nVIDIA Quadro K5200 model GPU.
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5. Result

5.1. Optimization of CNN

In order to find the best parameters of CNN, we used a total of 15 parameter combinations. In
the case of a certain number of iterations, the total calculation time is closely related to the batch size.
In the model training–accuracy line chart, we can find that with a certain number of iterations, the
higher the batch size setting, the more time consuming the calculation; the smaller the learning rate
setting, the slower the model converges. However, at the same time, according to the verification of the
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correct rate line graph, if the batch size is set too high, it will cause large fluctuations in the accuracy
rate of the model validation (batch 1024 and batch 2048 in Figure 11). Setting the learning rate too high
(0.01) can also cause the model validation to fluctuate correctly and have poor convergence.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 23 
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Figure 11. Comparing the calculation time of the CNN model under different parameters in this paper,
the horizontal coordinate unit is second, and the ordinate bar name format is “learning rate _batch”.

From Figure 11, we can compare the average correct rate of each model, but we cannot see
whether this correct rate is stable or not. After considering Figures 12–14, and after several experiments
and multiple comparisons, we selected the 0.0001 learning rate and 512 batch size training model as
application models to participate in the SLIC-CNN mapping work.
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5.2. Optimization of SLIC

In the parameters of the SLIC algorithm, n_segments or K parameters control the number of slices.
The sigma parameter affects the Gaussian smoothing operator, the max_iter parameter controls the
number of smooth iterations, and the max_iter and sigma parameters control the K-means clustering
effect together. The compactness parameter balances the relationship between the color space and
distance. Through the combination of different parameters, we can obtain a variety of segmentation
combinations. According to previous calculations, the number of deep learning slices in the study
area is 13,432, and the number of SLIC segments should not exceed this value. In order to find the
best segmentation parameters, we performed 165 experiments for n_segments from 350–10,000, sigma
from 0–8, and compactness from 0.2–50, and selected the segmentation result with the best edge fitting
effect. That is, n_segments = 8000, sigma = 6, and compactness = 5 (Figure 15). From the figure, we can
see that the SLIC algorithm can better fit the edge of the segment with the edge of the ground object.
Although some concentric ring segments are generated, we only need the SLIC to mark the effective
edge to complete the task. The merging of segments does not belong to the SLIC algorithm.
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After obtaining the segmentation results of the SLIC and the recognition results of the AlexNet,
then the process of mode and special decision, we can finally obtain the results of high-resolution
geological mapping of the study area.

5.3. Results of SLIC-CNN

Compared with Figure 16, we can see that the SLIC-CNN algorithm can accurately identify the
exposed terrain in the area, and the annotation of the edge of the terrain is also more elaborate. The
boundaries between mylonites and orthogneiss, the boundaries between plants and beaches, and the
boundaries between roads and beaches are all more accurate.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 15 of 23 
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In order to compare with the classification results of the existing classification methods, we
also experimentally classified and interpreted the study area using the pixel classification based
on the maximum likelihood method (Table 2) and the object-oriented classification based on the
k-Nearest Neighbor (KNN) method (Table 3). In the object-oriented classification, we performed many
experiments and comparisons. The classification effect was best when the scale parameter was set to
90, the merge parameter was set to 95, and the texture kernel size was set to 5.

Table 2. Pixel-based classification precision confusion matrix.

Test
Real Quaternary Granite Dykes Mylonite Vegetation Sundries Boardwalk Orthogneiss

Quaternary 67.20% 0.72% 0.53% 4.03% 2.46% 23.30% 1.76%
Granite Dykes 54.10% 9.27% 0.07% 1.93% 5.62% 29.01%

Mylonite 0.96% 0.13% 84.71% 4.20% 9.91% 0.09%
Vegetation 0.45% 0.76% 0.06% 88.08% 0.60% 4.60% 5.45%
Sundries 1.57% 77.02% 8.29% 13.11%

Boardwalk 28.97% 11.17% 3.02% 3.62% 5.01% 48.15% 0.06%
Orthogneiss 2.42% 31.55% 2.41% 12.97% 0.13% 50.52%

Table 3. Object-oriented classification precision confusion matrix.

Test
Real Quaternary Granite Dykes Mylonite Vegetation Sundries Boardwalk Orthogneiss

Quaternary 45.54% 1.19% 2.04% 24.81% 2.09% 21.98% 2.35%
Granite Dykes 0.30% 54.60% 13.22% 4.36% 1.71% 5.66% 20.15%

Mylonite 0.96% 10.48% 61.72% 19.27% 7.57%
Vegetation 20.91% 0.72% 6.17% 48.03% 15.16% 4.59% 4.42%
Sundries 6.50% 1.45% 4.34% 61.62% 11.97% 14.12%

Boardwalk 23.76% 5.86% 5.53% 3.40% 5.27% 48.06% 8.12%
Orthogneiss 2.03% 25.70% 6.98% 0.13% 14.15% 0.17% 50.84%

After deriving the classification results and confusion matrix of those classification methods,
we visually compared the mapping accuracy of the four methods in the high-resolution mapping work
(Figure 17).
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The confusion matrix is an intuitive tool for displaying multi-class results. Cells (x, y) represent
the proportion of objects in x that are classified into y. According to this, it can be found that the
overall recognition hits of the pixel-based method are better than the object-oriented method, especially
for Mylonite. The CNN method shows far better hit rates than the pixel-based and object-oriented
methods (Table 4). This is consistent with the advantages shown by deep learning algorithms in other
image recognition fields. Except for “sundries”, SLIC-CNN has a higher hit rate than the CNN method
(Table 5). The Kappa verification result of SLIC-CNN is k = 0.8523, which is also greater than the
AlexNet method (k = 0.8426).

Table 4. AlexNet classification precision confusion matrix.

Test
Real Quaternary Granite Dykes Mylonite Vegetation Sundries Boardwalk Orthogneiss

Quaternary 93.09% 2.28% 2.57% 5.40% 3.16% 1.22%
Granite Dykes 0.46% 53.15% 5.69% 0.24% 0.25% 6.07%

Mylonite 1.03% 9.86% 85.79% 0.59% 1.02% 1.54%
Vegetation 2.07% 0.50% 0.15% 90.52% 1.36%
Sundries 0.16% 85.50% 0.17%

Boardwalk 1.36% 0.82% 0.95% 0.16% 95.82%
Orthogneiss 1.99% 33.23% 5.81% 2.29% 14.09% 89.63%

Table 5. SLIC-CNN classification precision confusion matrix.

Test
Real Quaternary Granite Dykes Mylonite Vegetation Sundries Boardwalk Orthogneiss

Quaternary 93.46% 1.93% 2.57% 5.01% 1.26% 1.31%
Granite Dykes 0.39% 54.26% 4.85% 0.06% 5.5%

Mylonite 0.67% 10.28% 86.96% 0.46% 1.58%
Vegetation 2.26% 0.33% 0.32% 91.69% 1.36% 1.04%
Sundries 0.01% 0.27% 83.08% 0.09%

Boardwalk 1.23% 0.73% 0.36% 0.19% 97.38% 0.07%
Orthogneiss 1.98% 32.19% 5.30% 2.42% 16.73% 90.4%

To more intuitively compare the results of the four methods, we used the Receiver Operating
Characteristic (ROC) curve (Figure 18a). ROC (receiver operating characteristic curve) is a
comprehensive indicator reflecting the continuous variables of sensitivity and specificity. It uses the
composition method to reveal the relationship between the sensitivity and specificity. It uses the
sensitivity as the ordinate and (1-specificity) as the abscissa to draw a curve. The larger the area under
the curve (AUC), the higher the diagnostic accuracy. On the ROC curve, the point closest to the upper
left of the graph is a critical value with a higher sensitivity and specificity. In this case, the AUC of the
SLIC-CNN algorithm was 0.937, higher than the AlexNet slice classification (0.92), pixel-based method
(0.845), and object method (0.784) (Figure 18b).

Using SLIC-CNN mapping results in comparison with the available geological data (Figure 19),
some features of the UAV high-resolution geological mapping method can be found. For ease of
comparison and illustration, we marked the typical dykes with the same Latin symbol in the map and
marked them with dark red lines under the typical veins on the remote sensing image. The part covered
by concrete or beach due to human factors is indicated by the dark-red dotted line. SLIC-CNN mapping
is better at identifying veins at α1 in the figure, but it is still not continuous enough. Compared with
remote sensing images, we found that the exposed part of the α1 dyke gradually became thin and
the algorithm could not identify it. The southern part of the α2 dike was covered by a newly built
cement table, and the ground was blocked by tourists at β3, which made it impossible to identify the
veins in the area. In addition, the recognition of veins at α3 was very effective, and the “S”-shaped
dykes were also identified at α4. The veil at β1 was too small and resulted in poor recognition. The
basic dyke at β2 was identified by the algorithm as sand deposition. In general, SLIC-CNN has a high
recognition rate for the edge and content of rock masses, and its identification of veins can also give a
partial reference.
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Figure 19b is a fine tectonic lithologic geological map drawn by Jin Wei and Zheng Changqing,
College of Earth Sciences, Jilin University in 2004. This map has been the most detailed geological
map of the region for a long time. However, it can be found that the edges of the mylonite body
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are drawn inaccurately in the picture (w1, w2, and w3 in Figure 19b). The result of the automated
geological mapping process (Figure 18a) is in the shapefile format, which is a working and interchange
format promulgated by Environmental Systems Research Institute, Inc. (ESRI) for simple vector
data with attributes, and it is very convenient for merging, cropping, and adjusting attributes. On
the basis of Figure 18a, the data obtained from the ground survey perfected the automated results,
resulting in a high-resolution geological map of Taili area (Figure 20). Compared with previous studies,
this geological map has higher resolution and coverage. Moreover, thanks to the assistance of the
automated SLIC-CNN method, it took only half a day to draw this map, which has greatly improved
the efficiency compared to the traditional geological survey method.
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6. Discussions

The popularity of UAV has brought about an opportunity to solve the geological survey problems
in difficult areas. Although we minimized the ground geological operations in this experiment,
the high-resolution geological mapping work that appears to be automated is still inseparable from
a certain amount of ground geological work. At this stage, it is limited by image conditions and it
is not yet possible to accurately distinguish certain lithologies, such as pegmatites and fine-grained
rocks, in this study area. However, it can be seen from Table 5 that, even with the SLIC-CNN method,
the correct classification rate of dykes in the study area remains low. This is related to the actual data
used in the experiment. The spatial resolution of the real data used in this experiment reached 3 cm,
and almost all of the small dykes in the study area were plotted. In addition, it is worth noting that
UAVs and cameras cannot collect rock information covered by sand, soil, or vegetation. This limits the
application of automated geological surveys. There are still many studies to be done on the application
of automation in the field of geological mapping.

However, with experiments, it was found that the use of UAVs and deep learning algorithms in
traditional geological mapping work provides a huge increase in work efficiency, and its mapping
accuracy is also satisfactory. UAV technology brings new solutions to ground geological surveys.

Automatic detection lithology boundaries have been proven to greatly improve the efficiency of
geological mapping [59]. This experiment used CNN on the basis of Vasuki’s experiment to further
improve the automation of mapping. Compared with traditional classification, the use of SLIC-CNN
could detect lithology and boundaries more accurately and automatically. Additionally, the SLIC-CNN
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technology provides important ideas for automated geological mapping. With high-accuracy image
recognition technology, we believe that future geological surveys will become more automatic and
intelligent: UAVs will fly according to routes and take ground images, and important geological
phenomena in the images will be quickly identified and positioning. Related information will be sent
back to the server and quickly mapped. Significant areas and uncertain areas will be identified for
geologists to conduct ground investigations.

7. Conclusions

In this study area, the results of a new large-scale mapping process can be said to be satisfactory.
The effect of accelerating the use of UAVs and deep learning algorithms is obvious. The results of the
SLIC-CNN method were much better than traditional image classification methods, like CNN and
AlexNet, for geological body discrimination and the fitting effect of the rock mass edge, which was
further improved compared with the ordinary deep learning method. Compared with traditional
geological surveys, more accurate rock mass mapping results can be obtained with the help of drone
images. Although the automatic classification results of SLIC-CNN were inadequate for rock vein
recognition, the accuracy of other rock mass mapping was impressively satisfied. Additionally, it can
greatly reduce the manual labor of high-resolution mapping and produce a high-resolution geological
sketch with high classification accuracy in less time. Based on the UAV, SLIC-CNN method, and further
tectonic evidence, we obtained results of the high-resolution geological map and the ductile shear
deformation zone in the region, and confirmed the results of previous studies on the ductile shear zone
in the Taili area. The SLIC-CNN method accelerates the interpretation of high-resolution remote sensing
images, improves the accuracy, and makes the classification results more convincing for geology.

Therefore, the application effect of the SLIC-CNN algorithm in the field of geological mapping is
satisfactory and worth promoting. These methods and results will provide very useful experience
for subsequent geological work, and will greatly enrich the means of geological research by relieving
personnel and environmental pressures in field surveys.
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