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Abstract: Shannon entropy is the most popular method for quantifying information in a system.
However, Shannon entropy is considered incapable of quantifying spatial data, such as raster data,
hence it has not been applied to such datasets. Recently, a method for calculating the Boltzmann
entropy of numerical raster data was proposed, but it is not efficient as it involves a series of numerical
processes. We aimed to improve the computational efficiency of this method by borrowing the idea
of head and tail breaks. This paper relaxed the condition of head and tail breaks and classified data
with a heavy-tailed distribution. The average of the data values in a given class was regarded as its
representative value, and this was substituted into a linear function to obtain the full expression of the
relationship between classification level and Boltzmann entropy. The function was used to estimate
the absolute Boltzmann entropy of the data. Our experimental results show that the proposed method
is both practical and efficient; computation time was reduced to about 1% of the original method
when dealing with eight 600 x 600 pixel digital elevation models.

Keywords: head/tail breaks; numerical raster data; absolute Boltzmann entropy; computational
efficiency

1. Introduction

Raster data representation offers a number of important advantages over other options, hence the
technology predominates in satellite imagery, digital elevation modeling, landscape gradient mapping,
and other applications. The advantages of raster data modeling include its simple data structure, the
ease with which location-specific data may be collected, and its suitability for representing continuous
surfaces [1]. The quantification of information of raster datasets has long been a challenging work and
have proven useful in many applications. For example, information held in raster form has been used
to evaluate the performance of image fusion [2—4], and it is regarded as an essential reference for band
selection in hyperspectral imaging [5,6].

Information production may be quantified through Shannon entropy [7], which is commonly
used in many domains, such as computer graphics [3] and landscape ecology [8,9]. However, the
application of Shannon entropy to spatial data especially for raster data has been questioned because it
is ill-suited to quantifying spatial information that describes the spatial distribution of raster data [10].

Two solutions have been proposed to address this problem: the Shannon entropy model can
be improved [11-13] or Boltzmann entropy can be used in its place [14-18]. Boltzmann entropy is
the measure of the degree of system disorder, and, in theory, it is capable of quantifying the spatial
information of raster data [19]. The first method to calculate the Boltzmann entropy of numerical raster
data was proposed recently [18]. This approach defines a proper macrostate and then determines
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the number of microstates. By using absolute Boltzmann entropy, which has zero entropy as its
point of reference, the proposed method is able to compare different raster data in an absolute sense.
The experimental results of Gao et al. [18] showed that their method can capture the spatial information
held within a raster data structure. However, this method is not efficient because it includes a series of
processes that are computationally intensive and time-consuming.

This study aims to develop a method that can estimate the absolute Boltzmann entropy of
numerical raster data in a way that is efficient. To do so, we adopted a classification method for a
heavy-tailed distribution with a scaling pattern, estimated the relative Boltzmann entropy of each class,
and computed the absolute Boltzmann entropy based on these estimates. We tested the performance
of this approach with several experiments using numerical raster data.

2. The Absolute Boltzmann Entropy of Numerical Raster Data: Computation and Problem

A method for computing the absolute Boltzmann entropy of a landscape gradient is described
in detail in Gao et al. [18]. First, a proper set of microstates must be defined, which can be done by
resampling the original landscape gradient with a sliding window of 2 X 2 pixels, as shown in Figure 1.
The number of microstates for each sliding window in the original landscape was uniquely determined
based on the related macrostate. The relative Boltzmann entropy (Sg) of the original landscape can be
computed by the Boltzmann entropy equation as

Sg = Kg log(HTzl Wi), (1)

where Kg denotes the Boltzmann constant (1.38 X 10‘23), W; is the number of possible microstates for

ith sliding window, and m is the number of sliding windows. The base of the logarithm is usually set
to 2, 10, or the natural log base, ¢, depending on the context.

Resampling E> [:>
Input Step 1 Step 2
Output Step 16 Step 5
. e alb Input: a, b, ¢, d
%2 5 ; vera v
The function of a 2x2 sliding window i ) | Average Output: Average = (a + b + ¢ + d)/4

Figure 1. A diagram of the resampling technique used to generate a macrostate (output) for a landscape
gradient (input; modified from Gao et al. [18]).
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A given landscape gradient can be represented with a hierarchy that spans from the most detailed
level (i.e., the original landscape) to the most abstract level (i.e., a single pixel), as shown in Figure 2.
The sum of all Sg values is the absolute Boltzmann entropy (S4) of the landscape gradients, as

represented in the equation
n
54 = Zj:l SR(LJ) 2

where L; denotes the jM level in the hierarchy, S R(L j) is the relative Boltzmann entropy of L;, and m is
the total number of levels. The base of the logarithm is usually set to 2, 10, or e.
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Figure 2. A visual representation of summing the relative Boltzmann entropies (Sg) of all levels to get
the absolute Boltzmann entropy (S4) of a landscape gradient (modified from Gao et al. [18]).

The method used by Gao et al. quantifies the spatial information of raster data, such as a
landscape gradient. However, the iterative process for determining the number of microstates for each
sliding window is slow and computationally demanding. Moreover, as the dimensions of the original
landscape gradient increases, the number of sliding windows increases exponentially. For example, as
the size of the original landscape expands from 10 x 10 pixels to 100 x 100 pixels, the number of sliding
windows increases from 81 (9%) to 9801 (992).

Computing the absolute Boltzmann entropy is also a process of iteration because each level is
derived from the level below it through resampling (e.g., L1 is derived from Ly). Each pixel in L; can
be generated from four related pixels in Ly by this method. For example, the average of the four pixels
in Ly is the value of the corresponding pixel in L;. Further, the value of all pixels in L1 can be obtained.
By using “resample” tools with bilinear interpolation option in ArcGIS software, we changed the image
shown in Figure 3a from 512 x 512 pixels to 256 x 256 pixels (Figure 3b).

We established a baseline comparison by computing the absolute Boltzmann entropy for two
images of different sizes (Figure 3) in the same operating environment—MATLAB running in 64-bit
Windows 10 with an Intel Core i7-8750H CPU (2.20 GHz, 12.00 GB RAM). We recorded the time
taken to compute the number of microstates, as well as the total computation time. The results of the
baseline computation are shown in Table 1. We found that the time required to compute the number
of microstates accounted for a large proportion of the total computation time. In addition, the larger
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image (512 X 512 pixels, 1218.5s) required about seven times as much computation time as the smaller
image (256 x 256 pixels, 173.5s), even though its area was only four times larger.

(a) (b)
Figure 3. Two images with different resolutions: (a) 512 x 512 pixels and (b) 256 x 256 pixels.

Table 1. The time taken to compute the microstates and to calculate the absolute Boltzmann entropy
for two images of different sizes, showing the proportion of time spent on the microstates.

Time of Computing the Time of Computing the

Image Number of Microstates (s) Total Time (s) Number O;il:ldllect‘;s)tatesﬁotal
@) 1002.5 1218.5 82.3
(b) 148.1 173.5 85.4

3. A Strategy for Efficiently Estimating the Absolute Boltzmann Entropy

Since the sum of all relative Boltzmann entropies is the absolute Boltzmann entropy, we simplified
our approach by assuming that the relative Boltzmann entropy of each level could be plotted against its
hierarchy level to generate a curve. The value of the variable Level stands for the level in the hierarchy
of a landscape gradient. An example of this process is shown in Figure 4. By extrapolating this curve,
the complex process of computing the absolute Boltzmann entropy was changed into the relatively
easy process of adding the values of all points on the curve.

10°

N
33

Relative Boltzmann Entropy

300

(a) (b)

Figure 4. An illustration of (a) a Digital Elevation Model (DEM) obtained from the Geospatial Data
Cloud site (http://www.gscloud.cn) with a size of 300 x 300 pixels, and (b) a curve established between
the hierarchy level of the DEM and its relative Boltzmann entropy.

The tail of the curve always asymptotically approaches the x-axis in the positive direction,
and most points have small relative Boltzmann entropy values. This curve is considered to have a
heavy-tailed distribution, which means that it is significantly right-skewed and can be described as
having a “scaling” or “hierarchical” pattern, with “far more smaller things than larger ones” [20].
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By assuming that the shape of the curve, and therefore its function, can be estimated from several
points, we were able to predict the values of the other points and use these to estimate the absolute
Boltzmann entropy of the numerical raster data. The points that we used to estimate the shape of the
curve were close to the y-axis. This was the result of a fundamental limitation of the iterative process,
which always starts with the original gradient and proceeds in sequence. These low-level points have
a high impact on the trajectory of the curve and on the sum of the entropies, which makes them more
critical than those points with smaller values. It was reasonable to estimate the shape of the curve from
these critical points. This solution was developed to avoid having to compute the relative Boltzmann
entropies at all levels, which should improve the computational efficiency of the entire process.

However, estimating the function of a curve based on several points is challenging. As the shape
of the curve becomes more complex, more data is required to represent it accurately [21]. When the
available data is insufficient, breaking the curve into stepwise classifications is the best way to reduce
its complexity. For example, MacDonald et al. [22] used three different classes to simplify the curve, a
lower tail, a plateau, and an upper tail. We identified an appropriate classification method to break up
the curve, with the additional objective of extracting the essential points with larger relative Boltzmann
entropy values. A representative value was chosen to represent all points in a given class, and several
representative values were substituted into a function to obtain the full expression of that function,
which was then used to estimate the relative Boltzmann entropies of other classes. Finally, the absolute
Boltzmann entropy of the numerical raster data was computed based on these estimated relative
Boltzmann entropies.

Following this line of thought, this paper proposes a strategy for efficiently estimating the absolute
Boltzmann entropy as follows:

e  Analyze the data distribution and adopt a suitable classification method.

e Estimate a function through a representative value of the most essential class and obtain the
estimated relative Boltzmann entropies of other classes through this function.

e  Compute the absolute Boltzmann entropy of the numerical raster data based on the estimated
relative Boltzmann entropies.

4. The Calculation of Absolute Boltzmann Entropy Based on Head/Tail Breaks

In this section, the approach of head/tail breaking has been used for estimating the relative
Boltzmann entropies of each class for a given numerical raster dataset. The total absolute Boltzmann
entropy can be obtained by summing up the estimation values of relative Boltzmann entropy of
each class.

4.1. Adopting a Classification Method for a Heavy-Tuiled Distribution with a Scaling Pattern

Good classification results can reflect the patterns of data. The results of classification will be
entirely dependent on the classification method that is used to divide the curve, so it is crucial to adopt
an appropriate classification method.

A classification method for data with a heavy-tailed distribution has been proposed recently [20].
The method sorts the data into two imbalanced parts based on the arithmetic mean—a head (higher
than the mean) and a tail (lower than the mean). Given that this imbalanced structure may repeat in
the head, these points are further divided into two parts until the points remaining in the head do
not follow a heavy-tailed distribution. The final division of data points between the head and tail is
generally about 20% and 80%, respectively [23]. However, “this condition can be relaxed for many
geographic features, such as 50 percent or even more” [24].

To estimate the number of points contained in the head and tail of each class, this paper used
this idea of head and tail breaks and set a target of 40% of points in the head and 60% in the tail. For
example, for a numerical raster that was 100 x 80 pixels, we obtained 80 levels through resampling, but
the 80" level consisted of only one unit, which did not meet the calculation conditions established by
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Gao et al. Therefore, the final number of points on the curve was 79, of which 31 were sorted into the
head (decimals were rounded down). This division was repeated until the number of points in the
head equaled the number of points in the tail, or the number of points in the head reached 1. Since the
heavy-tailed distribution considered in this paper had a scaling pattern, it contained a small number of
high relative Boltzmann entropies. The tail from each step was considered a class, as was the head in
the last step, as shown in Figure 5.

The number of
original points

1
1
|
Figure 5. The process of classification, which uses the concept of head and tail breaks.

The classification method used in this study not only classifies all points into one of several classes,
but it reflects the patterns of data with a heavy-tailed distribution. More importantly, it extracts the
most important points—those with the largest relative Boltzmann entropy values.

4.2. Estimating the Relative Boltzmann Entropies of Each Class

Since the range of values in a given same class is small, this paper chose to use the average of the
points in each class as its relative Boltzmann entropy value.

The points in each classification were derived from the head of the upper classification, and
the points contained in the last classification should have the highest relative Boltzmann entropies.
We computed the relative Boltzmann entropies of these points, which was expedited through the use of
the method borrowed from Gao et al. [18]. The average of these accurate relative Boltzmann entropies
is the relative Boltzmann entropy of the last class. In the same way, the accurate relative Boltzmann
entropies of the (N — 1) class and the (N —2)™ class can be computed, in theory. However, if we were
to compute the accurate relative Boltzmann entropy of every class, then we would not have solved the
inefficiency problem.

Instead, we used the accurate relative Boltzmann entropies of several classes to estimate the
relative Boltzmann entropies of other classes. This is valid because these relative Boltzmann entropies
can be described approximately through a linear function. This paper chose the linear function
y = a X x. Recall that the first class through the (N — 1)th class all belong to the tail, while the last class
belongs to the head. We substituted the accurate relative Boltzmann entropy of the (N — 1)th class into
the linear function (i.e., the independent variable is [N — 1], and the dependent variable is the accurate
relative Boltzmann entropy of the [N — 1]th class). We inversely solved the parameter @ and derived
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the expression of the function. Then, we computed the relative Boltzmann entropies of the remaining
classes, which belonged to the tails.

4.3. Computation of the Absolute Boltzmann Entropy Based on Estimates

Thus far, we have obtained the number of classes, the number of points contained in each class,
and the relative Boltzmann entropies of each class. The absolute Boltzmann entropy of the numerical
raster dataset of interest can be computed as

k
Sa =Y Skl xn ®)
c=1

where S, denotes the estimated absolute Boltzmann entropy of the numerical raster data, m is
the estimated relative Boltzmann entropy of class c, n is the number of points in class c, and k is the
number of classes.

For example, Sg(1) and Sg(2) are the averages of all points in the N*' class and the (N — 1)
respectively. They can be computed precisely through the Gao et al. method [18].

th
class,

5. Experimental Testing

We conducted several tests of the proposed method. As shown in Figure 6, the experimental data,
i.e., four pairs of digital elevation models (DEMs), was the same as that used by Gao et al. [18]. The size
of each DEM was 600 x 600 pixels, with each pixel representing the elevation in an area. The DEMs in
Figure 6b2,c2 are smoother than the other DEMs, indicating a relatively low degree of heterogeneity.
They contain fewer impossible microstates, which lowers their absolute Boltzmann entropy. To better
analyze our results, we compared the results of these experiments with those of Gao et al. [18], as
shown in Table 2.

(b1)

(c1) (c2) (d1) (d2)

Figure 6. Eight digital elevation models, paired by letter, taken from the experimental data of
Gao et al. [18].



ISPRS Int. |. Geo-Inf. 2020, 9, 103

8of 13

Table 2. The absolute Boltzmann entropy and its computation time, as calculated by the traditional
method used by Gao et al. [18] and our proposed method.

Computation Time (s)

The Absolute Boltzmann Entropy

DEMs Gao et al.’s The Proposed Accurate Estimated Relative Error

Research Method Values Values (%)
al 2842.2 6.9 1.2 x 108 1.0 x 108 16.7
a2 2271.1 6.7 1.0 x 108 1.0 x 108 0.0
bl 2807.9 6.8 9.3 x 107 10.0 x 107 75
b2 1482.9 7.8 4.3 % 107 6.1 x 107 419
cl 2132.8 7.2 8.5 x 107 8.1 x 107 47
2 1294.9 6.7 3.1 x 107 4.9 % 107 58.1
di1 3717.7 6.8 1.4 x 108 1.2 x 108 14.3
d2 2924.9 6.9 1.1 x 108 1.1 x 108 0.0

|Accurate values—Estimated values| o
Accurate values x100%

Note: Relative error =

Table 2 reveals that the use of our proposed method dramatically reduced the computation time
by between 99.5% (from 1482.9 to 7.8 s) and 99.8% (from 2842.2 to 6.9 s). However, their relative errors
were unstable with the smallest at 0% and the largest reaching 58.1%.

6. Discussion

In the process of estimating the relative Boltzmann entropy of each class, we chose a linear
function (y = a X x) and substituted the accurate relative Boltzmann entropy of the (N — 1) class into
the linear function to inversely solve the parameter o (inverse solution). This allowed us to obtain the
expression of the function. We tried other function models, such as quadratic functions, power law
functions, and exponential functions, but linear functions yielded results closest to the actual values.

We used the accurate relative Boltzmann entropies of several classes to generate a fitted linear
function (y = a X x), which has been used to compute the relative Boltzmann entropies of the remaining
classes. To identify the most efficient number of points (classes) to use, we modeled the entropies
based on two, three, four, and five points respectively. Supposing x is the number of points, the classes
involved will range from the N* class to the (N — (x — 1) )th class. When applied to the experimental
DEM, the results of absolute Boltzmann entropies obtained by models with varying number of points
are shown in Figure 7, with the relative errors tabulated in Table 3 and the computation times displayed
in Figure 8 and Table 4.
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Absolute Boltzmann Entropy

0.00E+00
al a2 bl b2 cl c2 dl d2
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Three-points fitting
== == Five-points fitting

== == Accurate values
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Figure 7. A comparison of the absolute Boltzmann entropies of four pairs of DEMs from accurate
values and estimates produced by five methods.
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Table 3. The relative errors (%) of the absolute Boltzmann entropy calculated using different methods

for eight DEMs.
Method al a2 b1 b2 cl 2 d1 d2
Inverse solution 16.7 0.0 7.5 419 47 58.1 14.3 0.0
Two-points fitting 16.7 10.0 22 442 8.2 64.5 14.3 9.1
Three-points fitting 16.7 10.0 6.5 442 59 61.3 14.3 0.0
Four-points fitting 8.3 0.0 7.5 442 1.2 58.1 7.1 0.0
Five-points fitting 0.0 10.0 18.3 442 35 54.8 71 0.0
Note: Relative error = |ACC“””Z‘;£”;;E;ZZ"J?:M valuesl o 100%

4000

3500
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— 2500

L
L 2000
E

= 1500

1000

500

0

al a2 bl b2 cl c2 dl d2
DEM
M Inverse solution Two-points fitting Three-points fitting
B Four-points fitting B Five-points fitting M Accurate values

Figure 8. A comparison of the computation time required for four pairs of DEMs from accurate values

and estimates produced by five methods.

Table 4. The computation times (s) of the absolute Boltzmann entropy calculated using different

methods for eight DEMs.

Method al a2 b1l b2 c1 c2 d1 d2
Inverse solution 6.9 6.7 6.8 7.8 7.2 6.7 6.8 6.9
Two-points fitting 7.0 6.8 7.1 7.4 7.0 6.7 6.9 7.0
Three-points fitting 19.8 19.3 19.3 19.7 19.1 19.2 194 19.7
Four-points fitting 479 51.6 48.7 47.1 48.2 49.8 48.2 49.6

Five-points fitting 123.2 122.0 115.6 121.5 116.2 117.4 114.2 120.8

We found that all models yielded estimates similar to the accurate values, and we were unable
to identify a consistent relationship between the estimates of different methods for a given DEM. As
more points were used to fit the linear function, the computation time increased. The relative errors
using a fitting with four points were minimal and the computation time was acceptable. Hence, we
argue that four-point fitting was the most suitable solution. As the size of a numerical raster becomes
larger, it may not prove adequate to substitute only one point into the linear function to obtain the final
curve. For any raster, there is an optimal number of points used to generate a fitted linear function that
maximizes accuracy and also of high calculation efficiency.

Table 3 reveals the systematic failure of the models to estimate the absolute Boltzmann entropies
of DEM b2 and DEM c2. In order to identify the possible reasons for this consistently high error, we
plotted level against relative Boltzmann entropy for all eight DEMs, as shown in Figure 9.
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Figure 9. Plots of level against relative Boltzmann entropy for each of the eight DEMs. (al-b1), (c1)
and (d1-d2) Six plots of level against relative Boltzmann entropy for DEMs with high heterogeneity;
(b2) and (c2) Two plots of level against relative Boltzmann entropy for DEMs with low heterogeneity.

The negative slopes of DEM b2 and DEM c2 are steeper than those of the other DEMs. From
Figure 6, it is clear that DEM b2 and DEM c2 began with smoother topography than the other DEMs,
indicating low heterogeneity. This may be exacerbated by the process of reducing the resolution
through the resampling technique, which tends to decrease heterogeneity even further for those images
with lower heterogeneity. In other words, with the decrease of spatial heterogeneity, the abundance of
impossible microstates diminishes, which led the relative Boltzmann entropy of each level to shrink.
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Since the heterogeneity of DEM b2 and DEM c2 started off small, the relative Boltzmann entropy of
each level decreased faster than for the other DEMs, and the number of points with small values in the
tail was more than for other DEMs. For DEM b2 and DEM c2, the average of all points in the first class
were meager, but the estimations of the first class through a linear function will be much higher than
the accurate average.

Gao and Li [17] found that their resampling-based method paid more attention to the central
locations than to the edge ones when computing the absolute Boltzmann entropy of a landscape
gradient, which is not consistent with thermodynamics. To address this problem, they proposed an
aggregation-based method for computing the absolute Boltzmann entropy. This method is similar to
the resampling-based method, and a proper macrostate can be produced by aggregating the original
landscape gradient with a sliding window whose size is 2 X 2 pixels. However, this approach removes
the overlap while sliding the window, as described in full by Gao and Li [17]. The method only works
if both the length and the width of the landscape gradient are the 2", where 7 is a positive integer.
Two DEMs obtained from the Geospatial Data Cloud (http://www.gscloud.cn), with dimensions
of 512 x 512 pixels (Figure 10) were analyzed to evaluate the calculation accuracy of the absolute
Boltzmann entropy in Table 5.

e

= . . =

(a) (b)

Figure 10. Two DEMs obtained from the Geospatial Data Cloud site (http://www.gscloud.cn). (a) One
DEM with low heterogeneity; (b) Another DEM with low heterogeneity.

Table 5. A comparison of absolute Boltzmann entropy computation by the resampling-based method
and the aggregation-based method.

Resampling-Based Method Aggregation-Based Method
DEMs Accurate Estimated Relative Accurate Estimated Relative
Values Values Error (%) Values Values Error (%)
() 5.6 x 107 45 x 107 19.6 1.4 x 10° 1.5 x 10° 7.1
(b) 7.0 x 107 5.2 x 107 25.7 1.6 x 10° 1.7 x 10° 6.3

|Accurate values—Estimated values| % 100%

Note: Relative error = Accurale oalies

Table 5 reveals that the relative errors generated by the aggregation-based method were lower
than those by the resampling-based method. It is possible that the resampling-based method is poorly
suited for DEMs with low heterogeneity because it does not conform to its thermodynamic analog.

7. Conclusions and Future Work

In this study, we have proposed and tested a method for efficiently estimating the absolute
Boltzmann entropy of numerical raster data. The proposed method borrows the idea of head and
tail breaks to classify all points into a few classes. This classification scheme not only reduces the
complexity of the curve but it also reflects the scaling or hierarchy pattern of a dataset with a heavy-tailed
distribution. Meanwhile, the classification scheme naturally determines the optimal number of classes
and class intervals. The average of the data values in a given class is able to serve as the representative
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value of that class because the differences among them are comparatively small. This proposed method
substitutes the representative value into a linear function, and the expression of that function can be
obtained through an inverse solution. The remaining representative values can be estimated from this
function. After getting these estimates, the method computes the absolute Boltzmann entropy of the
numerical raster data.

Our experimental results showed that the proposed method achieved higher computational
efficiency than the previous method when applied to the same data as Gao et al. [18]. The new method
saved about 99% of the computation time when applied to eight 600 x 600 pixel DEMs. However, two
DEMs with low heterogeneity (DEM b2 and DEM c2) encountered high error rates, and the relative
errors of the remaining six DEMs were not sufficiently stable. To solve this problem, we tested a
range of numbers of points to fit the linear function. These results showed that four-point fitting
was the most suitable solution. Computation time was reduced by about 98% when dealing with
eight 600 x 600 pixel DEMs. Relative errors of the six heterogeneous DEMs were relatively stable.
In addition, to improve calculation accuracy, we used an aggregation-based method [17] to replace
the resampling-based method to improve the number of points involved in linear fitting. Results
demonstrated that this method has the ability to improve the calculation accuracy for DEMs with
low heterogeneity.

The proposed method is not perfect, and more extensive research is required. This paper assumed
that the relative Boltzmann entropies of all points decrease at each step, and it ignored the situation
in which the relative Boltzmann entropy of a given individual point is larger than the previous
point. Moreover, this paper sets the percent of all heads and tails at 40% and 60%, respectively. It is
possible that the number of points in the head was less than that in the tail but we rounded them off.
Hence, the process of classification can only be terminated when the number of points in the head
equals 1. An alternative termination condition would be when the number of points in the head is
greater than or equal to that in the tail [20], which would make it possible to terminate the process of
classification earlier.
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