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Abstract: Landslide hazards affect the security of human life and property. Mapping the spatial
distribution of landslide hazard risk is critical for decision-makers to implement disaster prevention
measures. This study aimed to predict and zone landslide hazard risk, using Guixi County in
eastern Jiangxi, China, as an example. An integrated dataset composed of 21 geo-information layers,
including lithology, rainfall, altitude, slope, distances to faults, roads and rivers, and thickness of
the weathering crust, was used to achieve the aim. Non-digital layers were digitized and assigned
weights based on their landslide propensity. Landslide locations and non-risk zones (flat areas) were
both vectorized as polygons and randomly divided into two groups to create a training set (70%) and
a validation set (30%). Using this training set, the Random Forests (RF) algorithm, which is known
for its accurate prediction, was applied to the integrated dataset for risk modeling. The results were
assessed against the validation set. Overall accuracy of 91.23% and Kappa Coefficient of 0.82 were
obtained. The calculated probability for each pixel was consequently graded into different zones for
risk mapping. Hence, we conclude that landslide risk zoning using the RF algorithm can serve as a
pertinent reference for local government in their disaster prevention and early warning measures.

Keywords: Random Forest; landslide hazard risk; integrated multisource dataset; field sample
rasterization; weight assignment

1. Introduction

Landslides are a major natural hazard and can be defined as phenomena in which a rock and soil
body on a slope slides down a certain interface under the action of gravity, rainfall, and groundwater.
Landslides are one of the most frequent geological disasters in China. In 2019, 6181 geohazards
were recorded in China, including 4220 landslides, accounting for 68.27% of the total hazards. These
geohazards resulted in 211 deaths, 13 missing persons, and 75 injuries, and a direct economic loss
of 2.77 billion yuan (China Geological Survey, 2020) [1]. According to the nationwide distribution
of landslides in 2019, Jiangxi province ranks number two. The Ministry of Natural Resources of the
People’s Republic of China announced that 1747 geological hazards occurred in the first half of 2020,
with a direct economic loss of 1.01 billion yuan. It was predicted that the situation will remain severe
in the second half of the year (http://www.mnr.gov.cn/).
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Due to complex natural conditions, spatiotemporal differences, and uncertainties of the landslide
mechanism, it is difficult to accurately predict the occurrence time, scale, and impact range of landslides.
However, based on the existing geohazard research and available technologies, it is possible to conduct
effective landslide risk prediction and mapping. This will assist local authorities to take preventative
and early warning measures to reduce damage and loss of life and property.

Recently, machine learning approaches have been applied in risk prediction and mapping.
The advantage of the machine learning methods lies in its capacity to deal with a large amount of
geospatial data within multi-dimensional and even hyper-dimensional space, and in its ability to
achieve accurate prediction and classification (Wu et al. 2016, and 2018) [2,3]. These learning algorithms
may provide the probability of the spatial occurrence of a landslide and identify the importance of
different geo-environmental causal factors that play a potential role in these landslide events [4]. Several
machine learning approaches have been utilized for landslide assessment in the past decade, such as
Support Vector Machines (SVMs) [5,6], Artificial Neural Networks (ANNs) [7,8], Deep Learning Neural
Networks (DLNNs) [9,10], Convolutional Neural Networks (CNNs) [11], Boosted Regression Trees
(BRTs) [12,13], and Random Forests (RFs) [13]. A number of case studies show that these algorithms
have a good prediction performance [14,15]; in particular, the RF has gained a high reputation for
its outperformance in both classification and prediction compared to other approaches. Therefore,
we adopted this algorithm for landslide risk mapping in our study.

Preprocessing of different geo-environmental causal factors is essential to geohazard risk prediction
and assessment. At present, no standard exists to address this issue. Some methods use each causal
factor as a categorical variable, e.g., a range of values from the same variable. However, prediction is
not based on the accurate value of each pixel, which may affect the prediction efficiency of the model.
When dealing with linear factors such as faults, roads, and rivers, these factors are not processed in
a hierarchical manner, but in buffer zones with a different order of propensity weight in terms of
proximity. Furthermore, the range of the buffer zones can be too large to be efficient for accurate
prediction in space. Rainfall is a fundamental factor triggering landslides [16,17]; nevertheless, few
studies included seasonal rainfall in landslide risk assessment.

For the reasons outlined above, the objectives of this research were to identify a relevant digitization
approach to quantify the causal factors for landslide risk prediction and zoning using the RF algorithm
for Guixi, Jiangxi Province, and to produce a risk map of landslides, and thus provide support and
advice for local governments and decision-makers to implement landslide hazard prevention and early
warning measures.

2. Materials and Methods

2.1. Study Area

Guixi is located in the northeast of Jiangxi Province, China, in the middle reaches of the Xinjiang
River, and is bordered by the Wuyishan Mountains (Mts) on the south. The study area lies between
27◦50′53” N and 28◦37′33” N in latitude and between 116◦57′43” E and 117◦28′06” E in longitude,
covering an area of about 2292 km2. Topographically, Guixi is generally characterized by high
mountains in the south and low hills in the north, cut by the Xinjiang River running west in the central
region. The elevation of the study area varies from 20 to 1504 m above sea level (Figure 1). About
65.3% of the study area has a slope gradient <15◦, whereas areas with gradients of 15–25◦, 25–35◦,
35–45◦ and >45◦ account for 19.8%, 10.6%, 3.7%, and 0.7%, respectively.

As a part of the subtropical monsoon climatic zone, Guixi receives an annual rainfall of 1789.3 mm
with 163 annual rainfall days on average during the period 1958–2017. The rainy season occurs in
March to July, with a mean accumulated rainfall of 1227.1 mm, or 68.6% of the annual rainfall (Figure 2).
The annual mean temperature is 18.2 ◦C. Guixi is one of the major forest resource counties in Jiangxi,
with a forest cover rate of 56%. The Guixi National Forest Park, situated in the south of the county,
is covered with 2929.93 ha of forests, occupying 98.2% of its total area.
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Figure 1. Location of the study area and distribution of the landslides.

Geologically, the formations in the study area include the strata from the Mesoproterozoic to
the Cenozoic, with a stratigraphic sequence of Qingbaikou-Cambrian, Carboniferous-Permian, and
Triassic-Quaternary. Magmatic rocks are well exposed and mainly distributed in the south, comprising
the northern region of the Wuyishan Mts with multiple lithologies, such as basic, acidic, and neutral
rocks. In terms of formation time, magmatic activities occurred partly in the Caledonian (around
508–408 ma) and predominantly in the Yanshanian periods (208–65 ma) [18].

According to the historical records, eight earthquakes in total had occurred in Guixi since AD 445,
all with a magnitude below 5, and hence, this factor was not considered in our study.

Field investigation revealed that a total of 428 houses, 568 m of highway, 50 m of water channel
and 5.1 ha of farmland have been destroyed by landslides in the last ten years in the study area. The
damages to social properties were estimated about 3.54 million yuan. However, few efforts have been
taken to predict the occurrence of these landslides for disaster reduction purpose.
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Figure 2. Diagram showing the averaged monthly rainfall in the study area.

2.2. Data and Preparation

2.2.1. Field Data, Training and Validation Sets

The first landslide inventory was conducted in the period September 2014–December 2015 and
compiled into the Geological Hazard Survey Report (1:50,000) of Guixi by the 264 Geological Team of
Jiangxi Nuclear Industry. The second survey was undertaken by ourselves in July and October 2019,
and August 2020.

In this study, a total of 273 landslides that had taken places in the past ten years were identified.
They are all small in volume, in which the smallest one is about 5 m3, and the largest one around
20,000 m3 with an average of about 533 m3. As more than 88% of the landslides are less than 900 m3,
the landslide sites (points) have been repalced with polygons of 30 m × 30 m in size to facilitate the
successive analysis. This field landslide dataset was divided randomly into two groups: training set
and validation set, which took up respectively 70% and 30% of the total samples. Against the landslide
events, 380 no-risk stable points (defined in the same size of polygons) in lowlands, croplands and
urban where slope is < 3◦ were selected. These no-risk polygons were also separated stochastically
into two groups, 70% and 30%, and then incorporated respectively into the training set (191 landslides
and 266 non-landslides) and validation set (82 landslides and 114 non-landslides).

As the successive landslide risk mapping was based on a binary classification using RF algorithm,
these two classes of samples in both training and validation sets were assigned with a probability value
of 1.0 for the occurred landslides, and 0.0 for no-risk samples. And then, these two sets were converted
into raster of 30 m size according to the approach proposed by Wu et al. (2018) [3].

2.2.2. Landslide Causal Factors and Integrated Hyper-Dimensional Dataset

Identification, selection and preprocessing of landslide causal factors is a key procedure for risk
modeling and zoning. Previous studies have utilized various factors and attempted to reveal their
potential roles in landslide events [13]. Based on this and our field knowledge, 21 landslide-related
factors such as geological formations, elevation, slope, aspect, plan curvature, profile curvature,
thickness of the weathering crust, soil type and texture (clay, sand and silt contents), land use, the
normalized difference vegetation index (NDVI), average annual rainfall, March−July rainfall, May−July
rainfall, distance to the geological boundaries, distance to faults, distance to roads, and distance to
rivers were identified (Table 1). These factors were processed in GIS and all converted to raster with a
cell size of 30 m after weight assignment for the non-digital ones.
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Table 1. Geo-information layers used as landslide causal factors.

No Causal Factors Resolution Sources

1 Elevation

30 m

GDEMV 3
NASA (https://earthdata.nasa.gov/)

2 Slope

DEM-derived3 Aspect

4 Plan curvature

5 Profile curvature

6 Depth of the weathering
crust (soil thickness) Kriging interpolation

7 Soil type
1 km

Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (RESDC)

(http://www.resdc.cn/)8 Soil texture (sand
content)

9 Land use

30 m

Landsat 5 TM

10 NDVI Landsat 5 TM

11 Average annual rainfall

264 Geological Team of Jiangxi Nuclear Industry
12 March-June rainfall

13 March-July rainfall

14 May-July rainfall

15 June-July rainfall

16 June-August rainfall

17 Lithology
1:50,000 264 Geological Team of Jiangxi Nuclear Industry

18 Distance to geological
boundaries

19 Distance to faults

20 Distance to roads
1:5000 Google Earth

21 Distance to rivers

Quantification and Weight Assignment

1. Topographic features are critical for landslide hazard risk assessments [19]. A digital elevation
model (DEM), ASTER GDEM V003 product of 30 m in resolution, was obtained from the NASA
(https://earthdata.nasa.gov/) for the study area. This DEM was further used to derive elevation
(Figure 1), slope (Figure 3a), aspect, plan curvature and profile curvature.

https://earthdata.nasa.gov/
http://www.resdc.cn/
https://earthdata.nasa.gov/
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Figure 3. Landslide causal factors used in the study taking the following factors as an example: (a)
slope, (b) soil type, (c) land use, (d) NDVI, (e) average annual rainfall, (f) lithology, (g) geological
boundaries, (h) faults, (i) roads.

2. The weathering crust provides materials and sites for landslides and is the hoster of the latter, and
can be considered as an important controlling factor of landslide event [20–22]. The interaction
between this crust and rainfall causes the occurrence of landslides. The survey on the thickness of



ISPRS Int. J. Geo-Inf. 2020, 9, 695 7 of 15

the weathering crust in Guixi lacks detailed data except for some landslide profiles. We extracted
the ridge and valley lines based on the DEM data and assumed that the lowland plain and valleys
had a thick crust of about 10 m, and it decreased as the slope and altitude increased, and at
the ridge, it was about 0.5 m. A Kriging interpolation approach was employed to produce the
thickness map of the weathering crust.

3. Edaphic factor is also necessary for risk modeling and prediction as it influences the occurrence of
landslides [23,24]. Soil type and texture data of the study area were obtained from the Data Center
for Resources and Environmental Sciences, CAS (RESDC: http://www.resdc.cn/) (Figure 3b).
No matter which type of soil, the important feature is the soil texture, i.e., percentage of sands,
which influences greatly the soil property. For example, the higher percentage of sands, the
higher porosity for rainwater permeation, leading to a higher risk of landslide where clay on the
interface may play a role as lubricant. Thus, soil with sand percentage of > 40%, 20−40%, 10−20%
and 0−10% were respectively assigned a propensity value of 10, 7, 4, and 1. Then soil map was
resampled to pixels with size of 30 m to match the other data.

4. Land use (Figure 3c) is an indicator of human activity that illustrates the relationship between
man and environment. The exploitation of land resources has been regarded as an unignorable
factor that may affect negatively our environment and the occurrence of landslides [25,26]. The
land use map of the study area was produced by using Landsat 5 TM images acquired on May 31
and November 07, 2010, obtained from the Geospatial Data Cloud (http://www.gscloud.cn), using
the approaches proposed by Wu et al. (2016) [2,27]. With a mapping accuracy of 91.44%, six land
use classes were identified, namely artificial area (urban, rural village and infrastructure), farm
land, forests, shrubs, bare land, and water bodies, and were assigned respectively a proneness
weight of 0, 0, 1, 4, 10 and 0. Here low slope urban and farmland have lowest proneness, and
forest cover has also low propensity while bare land without vegetation protection is the most
vulnerable category given the same natural conditions.

5. Vegetation condition and abundance, which can be represented by vegetation index, e.g., the
normalized difference vegetation index (NDVI), have been reported of a high correlation with the
occurrence of landslides [12]. As a complement to land cover, NDVI (Figure 3d) was selected
and included in the analysis of this study. We obtained the late autumn (October 24−November
07, when herbaceous vegetation became withered and most crops were harvested) Landsat 5
TM images of the period 2005–2010, from the same data server as mentioned above. The TM
images were atmospherically corrected using the COST model (Chavez 1996; Wu 2003; Wu et al.
2013) [28–30] in which both additive scattering and multiplicative path transmission effects were
minimized. NDVI was calculated using the formula (NIR-R)/(NIR+R) [31] from each scene and
then averaged to get the multiyear mean NDVI.

6. Rainfall is often considered as a triggering factor of landslide events [32,33]. In this study,
the average annual rainfall (Figure 3e), March−June, March−July, May−July, June−July and
June−August rainfall were taken into account as hazard-causative factors. Our purpose was to
investigate which months’ rainfall or combined accumulation is the most important for assessing
the landslide risk. The daily rainfall data of the period 2008−2017 from 104 ground stations were
acquired and used to create different accumulative monthly rainfall combinations, which were
further gridded into raster layers using Inverse Distance Weighted (IDW) interpolation approach.

7. Geological strata, especially, their lithologies (Figure 3f) and bedding, can play different roles
in the occurrence of landslides because of their different resistance to weathering and bedding
structure, in particular, together with joints and fractures, which may serve as rainfall permeation
pathways and slippery interface. The lithological data of the study area were digitized from
the Geological Map on a scale of 1/50,000 [18]. The hazard-causative propensity weight of each
formation lithology was assigned in terms of its resistance to landslide, e.g., higher resistance
formation was assigned with lower weight value or vice versa. More concretely, granitic and
volcanic rocks were assigned a weight value of 1, metamorphic rocks 5, sandstone 7, limestone

http://www.resdc.cn/
http://www.gscloud.cn
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and other carbonatite 8, and mudstone and shale 10. The higher value assigned, the higher
proneness of the factor tends to contribute to landslides [34].

8. Geological boundaries (Figure 3g) are the connection belts of inhomogeneous geological formations
and usually fragile zones that are susceptible to weathering and fracturing. It is thus considered a
potential factor influencing the slope stability. Actually, the closer to the boundary the higher risk
may exist [9]. The geological boundaries were extracted from the above-mentioned geological
map and buffered into different zones as 0−30 m, 30−60 m, 60−90 m and 90−120 m, which were
assigned a weight value of 5, 3, 2 and 1, respectively.

9. Linear features: Faults (Figure 3h) often play an active role in landslide events as they are
fractures and subject to water permeation and extensive weathering. This tends to increase the
vulnerability of geological bodies and slope instability. Road construction (Figure 3i) is a direct
human action on the slope resulting in an instability of the latter. The change in landform and the
loss of support from the underlying massif lead to the increase of tension on the upper slope that
promotes the development of cracks [4]. Rivers are usually an active factor in modification of
landscape by cutting the different geological formations and making their adjacent massif fragile
through liquidization. A number of studies revealed that not only rivers but also reservoirs
influence the stability of slope [35,36].

In this study, faults, roads and rivers were buffered in line with their scales. For example, small
faults, roads and rivers were buffered with distance intervals of 0−30, 30−60, 60−90 and 90−120 m;
large-scale faults, main river and reservoirs were buffered with distances of 0−60, 60−120, 120−180
and 180−240 m from the borders. Each buffer zone was assigned a weight in terms of its potential
proneness to landslide, e.g., zones 0−30, 30−60, 60−90 and 90−120 m were assigned respectively 10, 7, 4,
and 1, and zones 0−60, 60−120, 120−180 and 180−240 m respectively 20, 15, 10, and 5. This assignment
was based on the rule that the closer to the linear features, the higher propensity of landslide. These
buffers of different linear factors were converted into raster layers of 30 m in cell size.

Integrated Hyper-dimensional Geo-information Set

The above rasterized 21 hazard-causative factors including elevation, slope, aspect, plan curvature,
profile curvature, thickness of the weathering crust, soil texture (especially, sand %), land use, NDVI,
average annual rainfall, March−July rainfall, May−July rainfall, lithology, distance to faults, distance to
roads, and distance to rivers, etc., were stacked together to compose a 21-layer geo-information dataset.
Specifically, this is an integrated dataset with 21 dimensions, a realistic hyper-dimensional data space.

2.3. Risk Prediction and Modeling

2.3.1. RF Algorithm

As one of the machine learning approaches, the RF algorithm achieves learning and prediction
using an ensemble of growing decision-trees, or rather, of classification and regression trees (CARTs)
and their majority voting (Breiman 2001) [37]. One critical technique of this algorithm lies in its
bootstrap sampling from the training set to build trees followed with a randomized selection of the
input variables to determine the best split for each node. In the meantime, the out-of-bag (OOB)
estimates are applied within the RF algorithm to determine the generalization error and the importance
of each predictive variable (Breiman, 2001) [37]. Moreover, there shall not be the overfit problem with
RF if the number of decision trees (NT) is large enough. In other words, the RF algorithm makes use of
the strong law of large numbers, i.e., the more features employed, the less error generated (Breiman
2001; Wu et al. 2018) [3,37]. Thus, NT should be large enough so as to minimize the OOB error of
classification or regression to a stable level during the training procedure. Another advantage of the
RF algorithm is its capacity to deal with hyper-dimensional data using limited training samples but
achieving results of high accuracy. Instead of classification of land cover types, we employed this RF
algorithm here to classify the probability of risk and no-risk for each pixel in the whole study area.
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2.3.2. Risk Prediction and Modeling

RF modeling was conducted within EnMap-Box, an image processing package developed by DLR
(German Aerospace Center) [38]. Using the RF Classification (RFC) function, the integrated 21-layer
geo-information dataset was input as predictive variables with the training set for training.

Before risk modeling, a set of parameters have to be set up, for example, NT, the number of
randomly selected features at each node, and the stop criteria (for node splitting). How to set up these
parameters can be referred to Wu et al. (2018) [3].

Risk modeling was actually a parameterization procedure versus the training set with an internal
validation. The generated RF risk model was applied back to the integrated dataset to perform a binary
classification of risk probability to derive the probability map.

2.3.3. Verification and Reliability Analysis

To assess the performance of landslide risk modeling, the predicted results were verified against
the independent validation set [2,3,39] rather than the training set. Two metrics were used, i.e., overall
accuracy (OA) and Kappa Coefficient (KC), which were calculated based on the confusion matrix of
the trained landslide risk models versus the validation set. Here KC is a direct indicator of reliability of
the risk modeling and prediction [2,3,39,40]. For a value of 0, it indicates a poor consistency between
the prediction and the observation, whereas, a value of 1 implies a perfect agreement between the two.
The KC-based agreement levels proposed by Landis and Koch [40] were followed: poor (0–0.2), fair
(0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80) and almost perfect (0.81–1.0).

2.3.4. Assessment of the Importance of Landslide Causal Factors

It is necessary to understand that the role of each hazard-causative factor may differ from one place
to another, depending on the assessment model and landslide mechanism in different geo-environments.
This implies that a geo-environmental factor may take an active part in landslide prediction in one
model in one place but play a tiny role in another elsewhere. Therefore, the contribution of a causative
factor is conditional and various. The importance of each factor for the landslide events in this study
was evaluated using the OOB ranking procedure of the RF classifier.

3. Results

3.1. NT within the RF Algorithm

The NT affected the predication results when the RF risk modeling was conducted (Table 2).
In spite of its capacity to deliver rather accurate prediction when NT was set to 100, the prediction
was more robust with higher OA and KC when it was set to 300 and 500. As a confirmation to other
authors [2], OA and KC declined slightly when NT was 1000 (Table 2). Hence, 300-500, especially, 300
would be advised to use for NT when tackling landslide risk prediction and zoning.

Table 2. Performance of the RF algorithm with different Number of Trees (NT).

Number of Trees Overall Accuracy Kappa Coefficient

100 90.75 81.08
300 91.23 82.02
500 91.07 81.70

1000 90.75 81.04

3.2. Landslide Hazard Risk Map

As shown above, the RF algorithm performed best when NT was set to 300, and thus the modeling
results of this case were selected for landslide hazard risk mapping. The computed risk probability,
ranging from 0 to 1.0 in each pixel, was classified into five levels, i.e., No risk (0–0.2), Low risk (0.2–0.4),
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Median risk (0.4–0.6), High risk (0.6–0.8), and Extremely high risk (0.8–1.0). Thence, the landslide risk
zonation map was produced and presented in Figure 4.
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Figure 4. Landslide risk map.

This map shows that the landslide-prone areas are mainly distributed along the roads and in the
high slope hilly and mountainous areas in the north and south of Guixi where the predicted High
risk and Extremely high risk zones are distributed. There are also Median and High risk zones in the
southwest where there is abundant rainfall. Nevertheless, the risk is relatively low in the central part,
a plain with gentle topographic relief in Guixi.

It is seen in Figure 4 that two types of landslide risks were predicted, i.e., one is man-made
landslides distributed along the roads or cut slopes as a consequence of road construction and housing
development, and the other is natural ones distributed in the mountainous slopes in the south and
southeast of the study area (Figure 4).

For the modeling result obtained when NT was 300, the OA of this risk map is 91.23%, and KC
0.82 versus the validation set, reaching the “almost perfect (0.81–1.0)” level. As statistics revealed, the
number of the observed landslides falling in the zones No risk, Low, Medium, High and Extremely
high risk, accounted for, respectively, 0.73%, 1.10%, 2.93%, 2.57% and 92.67% of the total.
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3.3. Importance of the Hazard-Causative Factors

As seen in Figure 5, all 21 hazard-causative factors have contributed to the landslide events but
the first five, i.e., distance to road, slope, May−July rainfall, average annual rainfall and elevation,
comprise 65.45% of the total contribution to the occurrence of landslide disasters. That is to say, they
have played a more important role in landslide events than other factors. The contribution of soil type
and faults is relatively low.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 17 
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Field survey revealed that these landslides were neither triggered by earthquake nor by active
tectonic movements but by human activity, e.g., road construction and housing development, and
rainfall. Actually, anthropogenic landslides accounted for 98.9%, where the slope ranges from 8◦ to 25◦,
much lower than the threshold, 28−35◦, of the natural landslides as proposed by Fan et al. (2016) [23].
In addition, 209 landslides, 76.3% of the total, occurred in the talus accumulation with a thickness of
about 0.5−10 m. The occurrence time of landslides is mainly in March−July, in particular, in June−July.
The number of landslides of these two months accounts for more than 50% of the total.

4. Discussion

4.1. Algorithm for Landslide Risk Assessment

As previously mentioned, a number of data-driven approaches have been applied for landslide risk
prediction. Xiong et al. (2020) [13] noted that among the machine learning algorithms, BRTs performed
best in debris flow susceptibility assessment in Sichuan Province whereas Chen et al. [15] concluded that
RF achieved the best prediction in Chongren, Jiangxi. Actually, one of our parallel research (Zhou et al.
under review [34]) conducted in Ruijin, Jiangxi and that of Sun et al. (2020) [19] in Fengjie, Chongqing,
both pointed out that RF is capable for providing accurate landslide risk prediction. This study, using
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the RF algorithm to fulfill the task with a high satisfactory level, “almost perfect”, confirmed their
conclusion. However, care has to be taken while employing different geo-environmental data for
RF-based modeling as the landslides used as training samples were mostly small in scale, i.e., less than
one Landsat pixel in surface area. It is hence necessary to use high resolution data to highlight such
disaster risk while modeling and mapping are conducted, and data with resolution of coarser than
30 m will not be recommended.

4.2. The Different Importance of the Causal Factors

As revealed in Figure 5, distance to roads, slope, rainfall and elevation are the most important
factors in landslide events in Guixi. The order of importance of the geo-environmental factors may
be different from one site to another, e.g., slope, rock type, distance to river and NDVI [5], slope and
distance to roads [6], lithological formation, distance from roads, and NDVI [12], and elevation and
annual rainfall [19]. But all these studies point at a fact, that is, slope, distance to road, elevation and
rainfall are the commonly important factors causing landslide hazards, and that is what we have
uncovered in this study.

Since the road construction constitutes the most active human factor leading to such geohazard,
it shall be necessary to design the road system by avoiding the most risky area and taking the geological
strata bedding and slope stability into account.

It is worth mentioning that the importance ranking of all factors related to rainfall accounts for
45.45%, which shows a clear relationship of rainfall with the landslide events, especially, the accumulated
rainfall of May−July (Figure 5). However, this importance weight seems still underestimated.
Theoretically, rainfall is the triggering factor of the most landslides and should have more importance.
The exploration on this topic seems not possible until we have grasped the exact occurrence time of
these landslides. Only with such information, can we decide how to combine more reasonably the
daily or monthly rainfall for risk modeling.

Some factors, such as faults, edaphic features and geological boundaries, used to be considered as
necessary. Nevertheless, the factor importance analysis revealed that they were not as significant as
expected in this study. Hence, it is possible to optimize the selection of the causal factors in landslide
risk modeling and mapping in the similar geo-environment, in particular, when computing capacity
is low.

4.3. Landslide Types

In terms of our field survey, the majority of landslides observed is small in volume, provoked by
concentrated rainfall superimposed on the road construction and slope cutting for housing development.
Rainfall is able to infiltrate into subsurface along the fractures to reach and liquidize the sliding interface,
causing landslides.

There exist relatively big and deep landslides with a volume of about 20,000 m3 but driven by
different occurrence mechanisms: (1) landslide occurs after the action of the accumulated rainfall,
especially, when Quaternary sediment (talus) has a clear interface with the underlying rocks in which
the unconformity serves as slide surface after infiltration of rainfall; (2) multicycle landslides at the
same place, they begin with small volumes of slide after rainfall but little by little extending out and
deepening after the repeated rainfall events, and finally these slides become a big one; (3) big landslide
within downhill strata bedding, which does not take place in the talus or weathered crust but inside
the geological strata after the bedding surface has been lubricated by the penetrated rainfall when
there are faults and joints. The rapidity of the big landslide relies on the dip of the strata bedding.
For high dip bedding, rocky landslide may happen quickly as long as rock mass gravity exceeds the
resistant friction of the underlying formation. For low dip bedding, the overlying strata and weathered
crust do not constitute a rapid slide but a creep moving downward gradually. When there is a slope
cutting, the downward movement becomes faster. This was also clearly observed in Ruijin, another
city in southern Jiangxi, constituting a threat to the newly established Longzhu Temple and the No 6
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Middle School of Ruijin [37]. It is hence essential to take measure to prevent the huge loss and damage
before such big hazard happens.

5. Conclusions

This study made use of the RF algorithm for landslide risk modeling, prediction and mapping
in Guixi with an integrated 21 geo-environmental factors and field data. During the modeling,
we employed machine learning technique to determine which hazard-prone factors are the most
important in provoking landslides. We also demonstrated the procedure on how to digitize non-digital
geo-environmental factors and assign a weight value in terms of their proximity or propensity so that
quantitative analysis and modeling were made possible. This study provides not only key information
on how to research landslide mechanism but also operational approach on how to investigate hazard
risk to prevent our society from further damage. In particular, our risk zone map with high reliability
may serve as a reference for the local governments and decision-makers of Guixi to implement landslide
prevention and early warning measures in the landslide-prone areas.

One key finding of this research is the surprising importance of road construction and housing
development in landslide events. This reveals the role of human activity in provoking such geo-disaster,
and suggests that when designing road systems, more comprehensive slope protection measures
and more profound geological investigation on downhill strata bedding should be necessary so that
man-made landslides can be minimized.
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