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Abstract: Continuous k nearest neighbor queries over spatial–textual data streams (abbreviated as
CkQST) are the core operations of numerous location-based publish/subscribe systems. Such a system
is usually subscribed with millions of CkQST and evaluated simultaneously whenever new objects
arrive and old objects expire. To efficiently evaluate CkQST, we extend a quadtree with an ordered,
inverted index as the spatial–textual index for subscribed queries to match the incoming objects,
and exploit it with three key techniques. (1) A memory-based cost model is proposed to find the
optimal quadtree nodes covering the spatial search range of CkQST, which minimize the cost for
searching and updating the index. (2) An adaptive block-based ordered, inverted index is proposed
to organize the keywords of CkQST, which adaptively arranges queries in spatial nodes and allows
the objects containing common keywords to be processed in a batch with a shared scan, and hence
a significant performance gain. (3) A cost-based k-skyband technique is proposed to judiciously
determine an optimal search range for CkQST according to the workload of objects, to reduce the
re-evaluation cost due to the expiration of objects. The experiments on real-world and synthetic
datasets demonstrate that our proposed techniques can efficiently evaluate CkQST.
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1. Introduction

The continuous k nearest neighbor queries over spatial–textual data streams (abbreviated as
CkQST) retrieve to and continuously monitor at most k nearest neighbor (abbreviated as kNN) objects
at the user-specified location containing all the user-specified keywords, which have been widely
used in a variety of location-based applications, such as location-aware targeting of advertisements,
analysis of micro-blogs, and mobile navigation-services.

In an e-coupon recommendation system or a Weibo publish/subscribe system, users register
his/her interests (e.g., favorite food or clothing brand for the former, and news or persons for the latter)
as a query. A stream of spatial–textual objects (e.g., e-coupons or Weibos) generated are fed to the
relevant users. Continuous queries over spatial–textual data streams studied by existing work [1–12]
are primarily in terms of Boolean matching or approximate matching, which return an unpredictable
number of objects or approximate results. The number of qualified objects containing all keywords
specified by a user can be far larger than k, because the objects (e.g., tweets, news) usually contain much
more keywords than queries do. This motivates us to study CkQST, which return at most k nearest
neighbor objects containing all the query keywords.

Example 1. Figure 1 depicts a running example used throughout this paper. At timestamp t0,
there are five subscribed 2-NN (i.e., k = 2) queries q1, q2, · · · , q5 with a small circle representing their
geo-location, and five objects o1, o2, · · · , o5 with a small square representing their geo-location in
Figure 1a, while corresponding keywords and expiration times are shown in Figure 1e. The spatial
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region is organized by a three-layer quadtree, where the spatial nodes are numbered successively,
and the root node is n0. Taking the evaluation of q1 as an example, {o4, o1} is returned. For q1, the spatial
search range, thereafter “search range”, is defined as a minimal circle centered at the geo-location
of q1 and covering {o4, o1}, i.e., C1. At timestamp t1, an object o6 arrives, as shown in Figure 1b,
with keywords {w1, w2, w3} and expiration time t2. o6 contains all the keywords of q1 and q4, but only
C1 is hit by o6. The result and search range of q1 are updated to {o6, o4} and the circle C1

′, respectively,
while the result and search range of q4 are not affected. At timestamp t2, o6 expires. For q1, the number
of qualified objects in C1

′ is less than 2, so the result should be re-evaluated. The result and search range
of q1 are updated to {o4, o1} and the circle C1, respectively. Therefore, for CkQST, the spatial search
range covering kNN objects changes dynamically with the arrival and expiration of qualified objects.
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Figure 1. Running example. (a) Spatial description of queries and objects at timestamp t0; (b) spatial
description of queries and objects at t1; (c) spatial description of queries and objects at t2; (d) quadtree;
(e) textual and time description of queries and objects.

Challenges. The solution framework for evaluating generic continuous queries over spatial–textual
data streams consists of selecting an appropriate spatial index and a textual index to form a hybrid
spatial–textual index, and exploiting it with appropriate spatial and/or textual filtering strategies to
process the incoming objects according to the features of queries [1–12]. There are three key challenges
in constructing such an index for CkQST.

First, regarding the spatial filtering, evaluating CkQST is essentially identifying queries whose
search range is hit by the incoming objects. It is very important to efficiently organize the search
ranges of CkQST; therefore, how to map the search range of CkQST to the spatial nodes is the focus.
The search range of CkQST covering kNN objects changes frequently with the arrival and expiration of
qualified objects, which requires the index to have both strong filtering ability and low update cost.
For most spatial indexes, having strong filtering ability and low update cost are contradictory. There are
two approaches to mapping the search range of queries to spatial nodes to improve the filtering ability
and reduce the update cost of the index. (1) Queries are mapped to the leaf nodes in the spatial index,
which minimizes the spatial region of the nodes covering the search range of queries to reduce the
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number of objects to be verified [2,5,7–10,13–15]. (2) Queries are mapped to the spatial nodes according
to the spatial distribution [10–12], the keyword distribution [6], or the corresponding cost model [1,3,4].
These approaches are appropriate in the scenarios where the search range of the queries rarely changes,
but inappropriate to CkQST, where frequent update of the search range of the queries results in
high costs.

Second, regarding the textual filtering, evaluating CkQST is essentially identifying queries whose
keywords are fully contained in a given object. An inverted index is usually used to organize continuous
queries [1,2,6,10]. A large number of queries make the posting lists very long, and the fast-arriving objects
are verified against the corresponding posting lists in multiple rounds in a short time, which becomes
the bottleneck of textual filtering. There are three ways to improve textual filtering capabilities.
(1) Insert queries into the shortest posting list according to the frequency of query keywords to reduce
the number of queries in posting lists, such as in the ranked-key inverted index [1,6]. The posting lists
may still be long. (2) Increase the depth of textual partition, such as the ordered keyword trie [3,4,6].
It takes much time to construct the index, and nodes must be reconstructed if queries are updated,
which is not appropriate for the scenarios like CkQST where the queries are frequently updated.
(3) Organize queries in posting lists in the ascending order according to the ranking score [10]. However,
there is no corresponding concept in CkQST. None of the above approaches can efficiently support
CkQST textual filtering.

Third, the kNN re-evaluation is frequently triggered by object expiration. When an object expires,
several CkQST have to be re-evaluated from scratch, which is expensive. Several techniques have been
proposed to solve the similar problems in approximate top-k query (e.g., [10,13,16,17]). They all favor
maintaining more than k results to reduce the chances for re-evaluation. However, they either maintain
all the skyline objects in the entire region [13,16], or maintain a k-skyband containing skyline objects
whose scores were larger than a threshold [10,17], which are not designed for the CkQST returning
exact results.

In view of the challenges, we extend a quadtree with an ordered, inverted index to organize
CkQST. Three key techniques are proposed to exploit the spatial–textual index and address the above
three challenges. The contributions of this paper follow.

(1) To support the frequent change of search ranges of CkQST, a memory-based cost model is
proposed to map the search ranges of CkQST to the quadtree nodes, which minimizes the verification
cost and index update cost.

(2) To reduce the number of queries verified and process objects in batches, an adaptive block-based
ordered, inverted index is proposed to organize the query keywords at quadtree nodes, which allow
multiple objects containing common texts to be verified concurrently. For this index, an insertion
strategy is proposed to adaptively insert queries in views of the skewed distributions of CkQST
and objects.

(3) To reduce the re-evaluation cost, a cost-based k-skyband technique is proposed to judiciously
determine the search range for CkQST according to the workload of objects, which minimize the
verification cost, update cost, and the re-evaluation cost.

The experiments on real-world and synthetic datasets demonstrate that the proposed techniques
can efficiently evaluate CkQST. Compared with the state-of-the-art techniques, when the number of
CkQST reaches 20 M, the average index updating time caused by incoming objects decreases by 61%,
and the average incoming object processing time decreases by 36%. Compared with the re-evaluation
from scratch, the average processing time for expired objects decreases by 99.99%. The rest of this
paper is organized as follows. Section 2 formally defines CkQST and presents a framework for
evaluating CkQST. Section 3 presents three key techniques for evaluating CkQST. Section 4 reports the
experimental studies. Finally, Section 5 concludes this paper.
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2. The Framework for Evaluating CkQST

In this section, we formally define CkQST in Section 2.1 and present a framework to evaluate
CkQST in Section 2.2.

2.1. Problem Definition

A spatial–textual object is defined as o = (loc,ψ, te), where o.loc is the geo-location, o.ψ is a set
of keywords (terms) from a vocabulary setV, and o.te is a timestamp indicating the expiration time
of o. All the spatial–textual objects over the data streams are denoted as O. A CkQST is defined as
q = (loc,ψ, k, te), where q.loc, q.ψ, and q.te follow the similar meaning to o, q.k is the number of returned
objects, i.e., at most q.k (abbreviated as k) results are maintained for q. The result list of q, denoted as
q(O)k, contains a set of k objects, each of which covers all the keywords in q.ψ. q(O)k is organized
by a linked list, in which objects are arranged in the ascending order according to the distances
to q. Formally, ∀o ∈ q(O)k((@o′ ∈ O\q(O)k)(o

′.ψ ⊇ q.ψ ∧ dist(o′, q) ≤ dist(o, q))), where dist(o, q) is
the Euclidean distance between o and q. Let q.kdist be the distance between q and its kth nearest
neighbor result. The search range for q, denoted as q.SRk, is defined as a circle centered at q.loc with
radius q.kdist.

Spatial–textual objects are usually advertisements published by merchants or the latest breaking
news, and CkQST are users’ search requests. Hereafter spatial–textual object and CkQST are abbreviated
as object and query, respectively, if there is no ambiguity. To simplify the calculation, the terms in
the vocabulary setV are mapped to integers between 1 and |V| according to the alphabetical order,
where |V| is the number of terms inV. We assume that the terms inV, and the terms contained in
queries and objects are sorted in increasing order. Specifically, for ∀q ∈ Q, we use q.ψ[i] to denote the
ith keyword of q, q.ψ[i : j] to denote a subset of q.ψ, i.e., ∪i≤l≤ j

{
q.ψ[l]

}
, q.ψ[: i] to denote ∪1≤l≤i

{
q.ψ[l]

}
,

q.ψ[i :] to denote ∪i≤l≤|q.ψ|
{
q.ψ[l]

}
, and

∣∣∣q.ψ
∣∣∣ to denote the number of keywords in q.ψ. Objects follow

the similar notations. Table 1 summarizes the notations used throughout this paper.
Problem Statement. Given a set of CkQST Q and spatial–textual data streams O, for each CkQST,

find the kNN objects containing all the query keywords over Owhenever objects arrive or expire.

Table 1. Summary of notations.

Notation Description

q(q.loc, q.ψ, q.k, q.te)
A CkQST (the geo-location, keywords, expiration time and the
number of returned objects of q)

o(o.loc, o.ψ, o.te) An object (the geo-location, keywords, and expiration time of o)
q(O)k, q(O) The result list and extended result list of q
q.SRk, q.SR The search range and extended search range of q

q.ψ[i : j], q.ψ[i :], q.ψ[: i] The subset of q.ψ∣∣∣q.ψ
∣∣∣, ∣∣∣o.ψ

∣∣∣ The number of keywords in q.ψ and o.ψ
V, |V| A vocabulary set and the number of terms inV
N, n The quadtree node

PLwi1wi2 The posting list of the ordered, inverted index
b, br The block of a posting list

br.minw, br.maxw The minimum and maximum qi.ψ[3] for any query qi in br
br.ψ The terms contained in [br.minw, br.maxw]
|b| The number of queries in b
|B| The number of blocks in a posting list

CPL
V (PLwi1wi2 ), CPL

U (PLwi1wi2 ) The verification cost and update cost of PLwi1wi2

Cq
V(q, N), Cq

U(q, N)
The verification cost and update cost within unit time interval
if q is associated with N

pB
V(br) The probability that the block br is verified

pq
V(q

∣∣∣N) The probability that q is verified if it is inserted into N

pw
V(w j)

The probability that these queries subjected to qi.ψ[3] =
{
w j

}
are verified in br
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2.2. The Framework for Evaluating CkQST

The framework for evaluating CkQST shown in Figure 2 consists of two indexes and four
key techniques. The object index organizes the objects and can be implemented with any existing
spatial–textual index, and we adopt the inverted linear quadtree (IL-quadtree) [18] as an example.
The query index organizes queries, which is essentially a quadtree integrated with an ordered, inverted
index described in Section 3.

Figure 2. A framework for evaluating the continuous k nearest neighbor queries over spatial–textual
data streams (CkQST).

The arrival and expiration of objects. When multiple objects arrive in a batch, they are inserted
into the object index, and processed by the object-batch processing algorithm with the help of the query
index to find all the affected queries and update the corresponding queries’ results and search ranges.
When objects expire, the result list of affected queries is checked. Those queries that cannot be refilled
through their result list are re-evaluated from scratch against the object index. To save computational cost,
the expired objects are removed lazily from the object index until they are accessed again.

The arrival and deletion of queries. When a new query is submitted, it is initially evaluated
using the object index with several strategies. A cost-based k-skyband technique is used to find an
optimal search range for the query to reduce the cost for updating the index by sacrificing a little
bit of filtering performance. A memory-based cost model is used to get the corresponding mapped
spatial nodes. An adaptive insertion strategy is used to get the posting list and the corresponding block
to be inserted. These strategies can further improve the filtering performance of the index and reduce
the cost for updating the index. When a query is deleted or its search range shrinks, a flag is set in the
corresponding nodes, where a query table is maintained, and it is not removed from the query index
until accessed again, which is called delayed deletion and is necessary in an update-friendly system.
A query insertion request might cancel the marked items, which avoid the deletion of objects changing
frequently. If a query is deleted, its result list is also removed.

3. The Query Index

According to the above discussions, the query index is essentially a quadtree extended with
an ordered, inverted index. Three techniques are proposed to enhance the filtering ability and reduce
the update cost of the index. Section 3.1 introduces the motivations. Section 3.2 describes the ordered,
inverted index, followed by a detailed adaptive query inserting algorithm in Section 3.3. Section 3.4
proposes the memory-based cost model to quantitatively analyze how to find optimal associated nodes
for CkQST. The algorithm for processing objects in batches is presented to improve the throughput in
Section 3.5. The re-evaluation technique is introduced in Section 3.6.



ISPRS Int. J. Geo-Inf. 2020, 9, 694 6 of 22

3.1. Motivations

Organizing the search range of CkQST. The first issue of using a quadtree to organize the search
range of CkQST is how to map the search range to the quadtree nodes. Given that ∀q ∈ Q, q.SRk can
be mapped to any set of quadtree nodes NS = {n1, n2, · · · , ni}, only if the union of the spatial region
corresponding to these nodes in NS covers q.SRk, which is also called that q is associated with NS.
Associating a query with the quadtree nodes is challenging because it affects two computation costs:
(1) Verification cost, i.e., the cost of verifying the query with the objects falling in the associated nodes.
(2) Update cost, i.e., the cost of inserting or deleting the query in or from the associated nodes.
If the search range is organized by nodes with large regions, the index update cost is small, and the
verification cost is large; otherwise, if multiple nodes with small regions are used, the situation
is reversed. Therefore, a cost model is required to trade off the verification cost and update cost,
and find the optimal associated nodes for CkQST.

Organizing the keywords of CkQST. When new objects arrive, the cost of verifying these objects
with queries in spatial nodes is expensive. How to reduce the verification cost is the key to improve
the filtering ability of the index. We discuss three aspects of constructing an inverted index. (1) For an
inverted index, queries in posting lists are usually unordered. For the five queries in Figure 1,
we attached them to the posting list of a single keyword. Figure 3a is the inverted index in which
queries are attached to the posting list corresponding to the first query keyword, and Figure 3b is
the ranked-key inverted index in which queries are attached to the posting list corresponding to the
least frequent keyword. If the incoming objects contain the corresponding term, all queries in posting
lists are verified [1,2], which is inefficient. In this work, we use an ordered, inverted index to solve
the above problem. Figure 3c is the ordered, inverted index if queries are attached to the posting list
corresponding to the first keyword, i.e., queries in posting lists are organized in the ascending order
according to the keywords. When o6 with keywords {w1, w2, w3} arrives, the posting list corresponding
to w1 is verified. When o6 is verified with q2, its keywords are smaller than q2, so we can terminate the
verification early and speed up processing objects.
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quickly locate the queries to be verified, posting lists are divided into multiple blocks. 

Definition 2 (Block). Given any ordered posting list 1 2i iw wPL , 1 2i iw w≠ , rb  is the thr  block of 1 2i iw wPL . For 

any query q  in rb , . [3] [ . , . ]r rq b minw b maxwψ ∈ , where . min . [3]riqr ibb minw q ψ∈= , . max . [3]riqr ibb maxw q ψ∈=

. .rb ψ  denotes all the keywords satisfying . { | [ . , . ]}r r rb w w b minw b maxwψ = ∈ . Specially, if q  only contains 

one or two keywords, it is inserted into the block 0b  of the corresponding posting list. 

q4 q1 q2 q5 q3w1

The keywords {w1w2}{w1w2w3}{w1w2w5}{w1w2w5}{w1w2w7} q2 q5w1w2w5

q3w1w2w7

q4w1w2w2

q1w1w2w3

Figure 3. Inverted index. (a) Inverted index; (b) ranked-key inverted index; (c) ordered, inverted index;
(d) ordered, inverted index constructed by three keywords. As q4 contains less than three keywords,
we expand its keywords by duplicating the last keyword to construct the ordered index.

(2) Compared with the ordered, inverted index constructed by single keyword, the ordered,
inverted index constructed by multiple keywords has more advantages. The length is shorter and the
verification probability is smaller. As Figure 3d shows, o6 is verified with the first two posting lists and
contains all the keywords of the queries in these posting lists. However, the number of posting lists
might grow sharply. If the number of terms contained in vocabulary setV is 1 M, and the number
of query keywords are not more than 5, total 106×5 posting lists are required, which is difficult to
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implement by hash table due to the need for large continuous memory. Like other works in [1–12],
this paper uses the Map class in Microsoft Visual Studio [19] to build the ordered, inverted index.
Lemma 1 describes the verification efficiency with the number of keywords for constructing the ordered,
inverted index. Section 4.2 verifies this lemma through experiments. Based on the discussions, we select
two keywords to construct the ordered, inverted index.

(3) Usually, there are many queries in posting lists, but only a small number match the incoming
objects. Therefore, quickly locating the queries to be verified in posting lists is another way to improve
the efficiency of evaluating CkQST. The queries in posting list are partitioned into multiple blocks such
that objects are verified with the queries in a few blocks rather than the whole posting list. The only
problem is how to partition these queries in posting lists. It is inefficient to have too many or too few
queries in a block. An adaptive insertion strategy is proposed in Section 3.3.

3.2. Ordered, Inverted Index

The formal definition of an ordered, inverted index constructed using two keywords follows.
Queries are attached to the posting list of their first two keywords, and arranged in ascending order
according to their keywords.

Definition 1 (Ordered Posting List/Ordered, Inverted Index). Given a set of queries q1, q2, · · · ,
qi to be inserted into a quadtree node, if q1.ψ[1 : 2] = q2.ψ[1 : 2] · · · = qi.ψ[1 : 2] = {wi1, wi2},
and q1.ψ[3 :] ≤ q2.ψ[3 :] ≤ · · · ≤ qi.ψ[3 :], the posting list determined by the two terms wi1, wi2 at the
node is denoted as PLwi1wi2 , in which these queries are successively inserted. PLwi1wi2 is called an ordered posting
list. Specifically, if these queries only contain one keyword, the corresponding posting list is denoted as PLwi1wi1 .
All the ordered posting lists constitute the ordered, inverted index.

Hereafter the ordered posting list is abbreviated as posting list, if there is no ambiguity. To quickly
locate the queries to be verified, posting lists are divided into multiple blocks.

Definition 2 (Block). Given any ordered posting list PLwi1wi2 ,wi1 , wi2,br is the rth block of PLwi1wi2 . For any
query qinbr,q.ψ[3] ∈ [br.minw, br.maxw], where br.minw = minqi∈brqi.ψ[3], br.maxw = maxqi∈br qi.ψ[3].
br.ψ denotes all the keywords satisfying br.ψ =

{
w
∣∣∣w ∈ [br.minw, br.maxw]

}
. Specially, if q only contains one

or two keywords, it is inserted into the block b0 of the corresponding posting list.

Lemma 1. If the number of keywords for constructing an ordered, inverted index is m(m ≥ 1), there are at most
|V|

m posting lists at a node. For any object o containing more than two keywords, the verification cost can be
estimated by Equation (1). Where |B| is the number of blocks in a posting list, |b| is the number of queries in b, Q
contains queries whose keywords are contained in o, and the number of keywords is less than m. The proof is
shown in Appendix A.

O(
∣∣∣o.ψ

∣∣∣m · log|V|m +
∣∣∣o.ψ

∣∣∣m+1
· (log|B|+

|b|

(|B|
∣∣∣b.ψ

∣∣∣)m−1
) + |Q|) (1)

For ∀w j ∈ b.ψ, the verification probability, denoted as pw
V(w j), is maintained, i.e., the probability of

verifying these queries subjected to qi.ψ[3] =
{
w j

}
in br. For ∀br, the verifying probability, denoted as

pB
V(br), is maintained, i.e., the probability that the block br is verified, which can be estimated by

Equation (2).

min

 max
w∈br.ψ

pw
V(w) +

1∣∣∣br.ψ
∣∣∣− 1

(
∑

w∈br.ψ

pw
V(w) − max

w∈br.ψ
pw

V(w)), 1

 (2)

The following theorems claim that the incoming object is verified with few queries in posting lists.
For any incoming object, the blocks being verified can be located according to block keyword interval
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[br.minw, br.maxw] (see Theorem 1). The object verification with a block or a posting list can be
terminated if the keywords are smaller than that of some query being verified. (see Theorem 2).

Theorem 1. Given ∀o ∈ O and a posting list PLwi1wi2 being verified with o, for ∀br in PLwi1wi2 , if ∃q in br,
o contains all keywords of q, only if ∃w j ∈ o.ψ, w j ∈ [br.minw, br.maxw].

Proof. Suppose that o contains all the keywords of q, but there is no term in o.ψ satisfying
w j ∈ [br.minw, br.maxw]. Based on Definition 2, q.ψ[3] ∈ [br.minw, br.maxw], o does not contain
the third keyword of q, so o does not contain all the keywords of q. It is contradicted by the hypothesis,
so the theorem is proved. �

Theorem 2. Given ∀o ∈ O and a posting list PLwi1wi2 being verified with o, for ∀br in PLwi1wi2 , we have the
following conclusions. (1) If br.minw > max

{
w ∈ o.ψ

}
, o is not the result of queries in the blocks starting from br,

and PLwi1wi2 can be terminated verifying. Specifically, for ∀qi in br, if qi.ψ[3] > max
{
w ∈ o.ψ

}
, PLwi1wi2 can be

terminated verifying. (2) If br.maxw < min
{
w ∈ o.ψ

∣∣∣w > wi2
}
, o is not the result of queries in br.

Proof. (1) If br.minw = minqi∈brqi.ψ[3] > max
{
w ∈ o.ψ

}
, i.e., for any qi in br, o does not contain its

third keyword, o is not the result of qi. So does the block br+ j, since br+ j.minw > br.minw > max
{
w ∈ o.ψ

}
.

Similarly, for any qi in br, qi+ j.ψ[3] > qi.ψ[3] > max
{
w ∈ o.ψ

}
, o is not the result of queries after qi.

(2) If br.maxw = maxqi∈brqi.ψ[3] < min
{
w ∈ o.ψ

∣∣∣w > wi2
}
, o is not the result of the queries in br. �

3.3. Adaptive Query Insertion Algorithm

Given any posting list at a node, we consider two extreme situations: (1) the posting list only
contains a block which contains all queries; (2) the posting list contains many blocks, each of which
only contain one query. The former has poor filtering ability and the latter has high update cost.
Neither is what we expect. In the real world, people are concerned with different interests and often
pay high attention to the breaking news or topical issues, so the keywords of the queries and objects
vary over time. For each query, we adaptively insert it into the posting lists according to the historical
queries and objects. We expect that the increase of the verification cost and update cost of the posting
list is minimal after the query being inserted.

Given a posting list PLwi1wi2 , the update cost is denoted as CPL
U (PLwi1wi2), and the verification cost is

denoted as CPL
V (PLwi1wi2), which can be estimated by Equation (3), where CB

V(br) = pB
V(br) ∗ (log|B|+ |br|)

represents the verification cost of the block br in PLwi1wi2 .

CPL
V (PLwi1wi2) =

∑
br

CB
V(br) (3)

Theorem 3. Let q be the query to be inserted into PLwi1wi2 , q.ψ[1 : 3] =
{
wi1, wi2, w j

}
, PLwi1wi2 has

|B|(|B| ≥ 1) blocks, ∆CPL
V is the increase of verification cost of PLwi1wi2 after q being inserted. We have the

following conclusions.
Case 1: If ∃br ∈ PLwi1wi2 satisfies w j ∈ [br.minw, br.maxw], q is inserted into br. ∆CPL

V = pB
V(br).

Case 2: If @b ∈ PLwi1wi2 satisfies w j ∈ [b.minw, b.maxw], but∃br ∈ PLwi1wi2 satisfies br.maxw < w j, q is inserted
into the tail of br. The updated block is denoted as br

′. ∆CPL
V = (pB

V(br
′) − pB

V(br)) ∗ (log|B|+ |br|) + pB
V(br

′).
Case 3: Similar to case 2, if @b ∈ PLwi1wi2 satisfies w j ∈ [b.minw, b.maxw], but ∃br ∈ PLwi1wi2 satisfies
w j < br.minw, q is inserted into the head of the br. ∆CPL

V = (pB
V(br

′) − pB
V(br)) ∗ (log|B|+ |br|) + pB

V(br
′).

Case 4: If @b ∈ PLwi1wi2 satisfies w j ∈ [b.minw, b.maxw], a new block b is constructed in PLwi1wi2 , and q is
inserted into b.∆CPL

V = log((|B|+ 1)/|B|) ∗
∑

br pB
V(br) + pw

V(w j) ∗ log(|B|+ 1).
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Proof. (1) Case 1: If q is inserted into br, the verifying probability pB(br) does not change since
w j ∈ [br.minw, br.maxw], but the number of queries in br increases by 1.

∆CPL
V = pB

V(br) ∗ (log|B|+ |br|+ 1) − pB
V(br) ∗ (log|B|+ |br|) = pB

V(br)

(2) Case 2:

∆CPL
V = CB

V(br
′) −CB

V(br) = pB
V(br

′) ∗ (log|B|+ |br
′
|) − pB

V(br) ∗ (log|B|+ |br|)

=
(
pB

V(br
′) − pB

V(br)
)
∗ (log|B|+ |br|) + pB

V(br
′)

(3) Similar to case 2.
(4) Case 4: For any bi in PLwi1wi2 , CB

V(bi) = pB
V(bi) ∗ (log|B|+ |bi|), CB

V
′(bi) = pB

V(bi) ∗ (log(|B|+ 1) + |bi|)

∆CB
V = CB

V
′(br) −CB

V(br) = pB
V(br) ∗ ((log(|B|+ 1) + |br|) − (log|B|+ |br|)) = pB

V(br) ∗ log(|B|+ 1)/|B|

∆CPL
V =

∑
br (C

B
V
′(br) −CB

V(br)) + CB
V(b) =

∑
br

(
pB

V(br) ∗ log((|B|+ 1)/|B|)
)
+ CB

V(b)
= log((|B|+ 1)/|B|) ∗

∑
br pB

V(br) + pw
V

(
w j

)
∗ log(|B|+ 1)

Theorem 3 shows all the cases where the verification costs increase if a query is inserted into the
posting list. The increase of update costs ∆CPL

U corresponding to the above four cases are O(|br|+ 1),
O(1), O(1), and O(1 + log|B|) respectively. To compare the verification costs and update costs,
we introduce a normalization parameter θU(0 < θU ≤ 1) to represent the ratio of the update operation
to the verification operation, i.e., if a query is inserted into a node, there will be 1/θU objects being
verified with it. A query is adaptively inserted into the posting list according to the following theorem.

Theorem 4. Let q be the query to be inserted into PLwi1wi2 , q.ψ[1 : 3] =
{
wi1, wi2, w j

}
. If ∃br in PLwi1wi2

satisfies w j ∈ [br.minw, br.maxw], q is inserted into br. Otherwise, the minimum ∆CPL
V + θU∆CPL

U of the cases
2–4 is taken.

Given ∀q ∈ Q, if q contains no more than two keywords, it is directly inserted into the b0 of the
corresponding posting list. Algorithm 1 shows how a query q containing more than two keywords is
adaptively inserted into a posting list. If PLq.ψ[1]q.ψ[2] does not exist, a new block b is constructed, and q is
inserted into b (lines 1–2). Otherwise, a block in PLq.ψ[1]q.ψ[2] is found for q to minimize ∆CPL

V + θU∆CPL
U

(lines 3–12). First, we find the block, denoted as br, whose br.minw is the smallest—no smaller than
q.ψ[3] (line 3). If q.ψ[3] = br.minw, q is inserted into br (line 4). If q.ψ[3] ∈ [br−1.minw, br−1.maxw] (r > 1),
q is inserted into block br−1 (lines 5–6). Otherwise, we compute ∆CPL

V + θU∆CPL
U according to cases 2–4

in Theorem 3 and select the minimum case (lines 7–12). It is worth noting that when compared with
the first block of the list, there are only cases 3–4, and if q.ψ[3] is larger than br.minw of all the blocks,
there are only cases 2 and 4.

Computation complexity. In the worst case, the computation cost of Algorithm 1 is shown as
Lemma 1. That is, in posting lists constructed by two keywords, the complexity of inserting a query at a

node is O(
∣∣∣o.ψ

∣∣∣2 log|V|2 +
∣∣∣o.ψ

∣∣∣3(log|B|+ |b|/|B|
∣∣∣b.ψ

∣∣∣)). The algorithm can adaptively adjust |B| and |b|.
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Algorithm 1: InsertQueryPL(q, PLq.ψ[1]q.ψ[2])

1 if @PLq.ψ[1]q.ψ[2] then
2 construct new block b in PLq.ψ[1]q.ψ[2]insert q into b; return;
3 br ← min

{
b
∣∣∣b.minw ≥ q.ψ[3]

}
;

4 if q.ψ[3] == br.minw then q is inserted into br; return;
5 if r > 1and q.ψ[3] ≤ br−1.maxw then
6 q is inserted into br−1; return;
7 if @br then compute min

{
∆CPL

V + θU∆CPL
U

}
case2,case4

on b|B|;

8 if r == 1 then compute min
{
∆CPL

V + θU∆CPL
U

}
case3,case4

;

9 if r > 1 then compute min
{
∆CPL

V + θU∆CPL
U

}
case2,case3,case4

;

10 if case 2 then q is inserted into the tail of br−1;
11 if case 3 then q is inserted into the head of br;
12 if case 4 inserted into a new block.

3.4. The Memory-Based Cost Model

A memory-based cost model associates queries with the optimal quadtree nodes. Given the
search range of CkQST, the model traversals the quadtree from the root node, compares the sum of the
verification cost and index update cost if the query is associated with the current node and its child
nodes, and selects the smaller one. The verification cost is the product of the number of verified objects
and the expectation of the verification cost, and the update cost is the expectation of the update cost if
the query is inserted into the corresponding block of the posting list.

Definition 3 (Minimum Bounding Node). Given ∀q ∈ Q and search range q.SRk, if ∃N,q.SRk ⊆ N.R,
and for any child node ni of N, q.SRk * ni.R, N is the minimum bounding node of q , where N.R, n.R are the
region where N and n locate respectively. The minimum bounding node of q is the node, which covers its search
range, but any of its child nodes cannot completely cover the search range.

Verification cost. Given ∀q ∈ Q and its minimum bounding node N, q.ψ[1 : 3] = {wi1, wi2, wi3},
if q is associated with N, the verification cost within unit time interval, denoted as Cq

V(q, N), can be
estimated by Equation (4). We assume that the query and object contain more than two keywords,
and the average verification cost is unit time.

Cq
V(q, N) = NumN

o (N) ∗ pq
V(q

∣∣∣N) ∗ EV(q
∣∣∣N) (4)

Specifically, if the query or the object contains one or two keywords, the verification cost is
estimated by Equation (5). This case is simple, so we omit the details.

Cq
V(q, N) = NumN

o (N) ∗ pB
V(b0) (5)

where NumN
o (N) is the number of objects falling in N within the unit time interval. pq

V(q
∣∣∣N) is the

probability that q is verified if it is inserted into br in N, i.e., the probability that the objects contain the
terms wi1, wi2, and w j ∈ [wi3, br.maxw], and can be estimated by Equation (6).

pq
V(q

∣∣∣N) = pB
V(br) ∗

br.maxw−wi3 + 1∣∣∣br.ψ
∣∣∣ (6)

where
∣∣∣br.ψ

∣∣∣ is the number of keywords contained in br.ψ. EV(q
∣∣∣N) is the verification cost if q is inserted

into br in N, and can be estimated with the expectation of verification cost of the queries in br, i.e.,
Equation (7).

EV(q
∣∣∣N) =

∑
w j

pw
V

(
w j

)
∗

(
Numq

)
≤w j

(7)
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where (Numq)≤w j
is the number of queries subjected to qi.ψ[3] ≤ w j in br. Similarly, if the query q is

associated with a set of non-overlapping nodes, denoted as NS, the verification cost is denoted as
Cq

V(q, NS) and can be estimated by Equation (8).

Cq
V(q, NS) =

∑
ni∈NS

Cq
V(q, ni) (8)

For ∀q ∈ Q, we find the optimal associated nodes starting from its minimum bounding node,
and check whether the query is associated with the current node or associated with its child nodes.
The difference of two verification costs is estimated by Equation (9).

∆Cq
V =

∑
ni∈INS∪n

Cq
V(q, ni) −

∑
ni∈INS∪n.child

Cq
V(q, ni) (9)

where INS keeps the intermediate result, n.child contains the child nodes of n that intersect with the
search range of the query. It is worth noting that if ∆Cq

V ≤ 0, we terminate the iteration.
Update cost. When inserting or deleting queries in nodes, it will incur an index update cost.

We delay deleting queries until these queries are accessed again, so the deletion cost is ignored. If a
query q is associated with its minimum bounding node N, and is inserted into a block br of posting
list PLq.ψ[1]q.ψ[2] in N, the insertion cost consists of two parts, the time to find the corresponding block
and the time to find the insertion position. The update cost, denoted as Cq

U(q, N), can be estimated by
Equation (10).

Cq
U(q, N) = log|B|+

1
|br|

∑
|br |

i=1
i = log|B|+

|br|+ 1
2

(10)

If q is associated with a set of non-overlapping nodes, denoted as NS, the update cost is denoted
as Cq

U(q, NS) and can be estimated by Equation (11).

Cq
U(q, NS) =

∑
ni∈NS

Cq
U(q, ni) (11)

Similarly to ∆Cq
V , the difference of two update costs between the query being associated with the

node and associated with the child nodes is estimated by Equation (12).

∆Cq
U =

∑
n j∈INS∪n.child

Cq
U

(
q, n j

)
−

∑
n j∈INS∪n

Cq
U

(
q, n j

)
(12)

Given ∀q ∈ Q and search range q.SRk, we start from the minimum bounding node, and computes
∆Cq

V and ∆Cq
U between the query being associated with the node and associated with the child nodes.

If ∆Cq
V ≥ θU · ∆Cq

U, the child nodes are the optimal. Otherwise the node is optimal. The computation
cost consists of two parts, finding the minimum bounding node of q, and finding an optimal association
in the descendant nodes of minimum bounding node. The computation cost of the first part is O(θh),
and the second part is O((4θh − 1)/3), i.e., in the worst case, the node will be partitioned until the leaf
node, where θh is the height of the quadtree.

3.5. Processing Objects in Batches

For these objects being verified with the same posting list, an object processing algorithm, which is
a group matching technique that follows the filtering and verification strategy, is proposed to process
objects in batches.

A data structure 〈bid, w, oset〉 is defined to group the objects being verified with the same posting list,
where bid(bid > 0) is the block id, w(w ∈ [bbid.minw, bbid.maxw]) is a term, oset is a set of objects being
verified with block bbid and containing w. For the convenience of the description, wsetbid is a set of
terms satisfying w ∈ [bbid.minw, bbid.maxw], osetbid,w is a set of objects which are verified with the queries
in block bbid and contain w.
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Algorithm 2 describes how to process a set of objects represented by 〈bid, w, oset〉, which are verified
with the queries in the posting list PLwi1wi2 . If bbid is b0, the queries in b0 is verified with the objects
in oset (lines 1–5). Otherwise, for any term w j in wsetbid, according to Theorem 2, if bbid.minw > w j,
we check the next term (line 7); if bbid.maxw < w j, we check the next block (line 8); otherwise, for each
query q in bbid, if q.ψ[3] > w j, we check the next term (line 10); if q.ψ[

∣∣∣q.ψ
∣∣∣] < w j, we check the next

query (line 11); otherwise, we verify whether the object is the results of q. If yes,
〈
q, o

〉
is added to QOS

(lines 12–13). Moreover, the result list and search range of q are updated.
Computation complexity. Algorithm 2 describes how to process objects in batches in an ordered

posting list. In the worst case, objects are processed individually. As Lemma 1 shows, in posting lists
constructed by two keywords, for an object, the time complexity of finding the qualified queries at a

node is O(
∣∣∣o.ψ

∣∣∣2 log|V|2 +
∣∣∣o.ψ

∣∣∣3(log|B|+ |b|/|B|
∣∣∣b.ψ

∣∣∣)).
Algorithm 2: ObjectProcessing(PLwi1wi2 , {〈bid, w, oset〉}).

3.6. Cost-Based k-Skyband Technique

To reduce the re-evaluation cost, a cost-based k-skyband technique is proposed to judiciously
determine an optimal search range for CkQST such that the overall cost defined in the cost model
can be minimized. Specifically, for ∀q ∈ Q, three parameters are defined: an extended search range
is denoted as q.SR, where q.SR ⊇ q.SRk; a k-skyband, i.e., an extended result list, denoted as q(O),
where q(O) ⊇ q(O)k; the number of objects containing all query keywords within q.SR in the initial
timestamp is denoted as q.θk, where q.θk ≥ q.k.

Definition 4 (Loose Matching). Given ∀o ∈ O and ∀q ∈ Q, o loosely matches q only if q.ψ ⊆ o.ψ and
o.loc ∈ q.SR. All the objects that loosely match q are denoted as q(O)sup =

{
o ∈ O

∣∣∣q.ψ ⊆ o.ψ∧ o.loc ∈ q.SR
}
.

Definition 5 (Dominance). Given ∀q ∈ Q and two objects o1, o2, which loosely match q, o1 dominates o2 only
if dist(q, o1) < dist(q, o2) and o1.te ≥ o2.te or dist(q, o1) ≤ dist(q, o2) and o1.te > o2.te.

Definition 6 (k-skyband/Extended Result list). Given ∀q ∈ Q, for any incoming object o′, we insert it into
the k-skyband q(O)only if: (1) o′ loosely matches q; (2) o′ is dominated by less than k other objects. For ∀q ∈ Q,
if an object o′ loosely matches q, and there are k objects in q(O) dominating o′, o′ would not be a result at any
timestamp. Therefore, we would not insert these objects into the result list.

Theorem 5. Given ∀q ∈ Q and an extended search range q.SR, we always have the following conclusions.
(1) q(O)k ⊆ q(O); (2) q(O) ⊆ q(O)sup; (3)

∣∣∣q(O)∣∣∣ < k iff
∣∣∣∣q(O)sup

∣∣∣∣ < k.
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Proof. (1) At any timestamp, for ∀o ∈ q(O)k, we have q.ψ ⊆ o.ψ and o.loc ∈ q.SRk ⊆ q.SR, i.e., o loosely
matches q, and less than k objects dominate o. So o ∈ q(O). (2) According to Definition 4, for ∀o ∈ q(O),
o loosely matches q, so o ∈ q(O)sup, q(O) ⊆ q(O)sup. (3) Since q(O) ⊆ q(O)sup, if

∣∣∣∣q(O)sup

∣∣∣∣ < k, we have∣∣∣q(O)∣∣∣ ≤ ∣∣∣∣q(O)sup

∣∣∣∣ < k. On the other hand, if
∣∣∣q(O)∣∣∣ < k,

∣∣∣∣q(O)sup

∣∣∣∣ ≥ k, i.e., ∃o ∈ q(O)sup and o < q(O),
which means o loosely matches q, but o is dominated by more than k other objects, which is contradicted
by

∣∣∣q(O)∣∣∣ < k. The theorem is proved. �

According to Theorem 5, the extended result list is the super set of the exact result list, from which
we can extract the kNN objects, and the number of objects in extended result list is less than k only if
the number of objects in q(O)sup is less than k.

Given ∀q ∈ Q, an extended search range q.SR, and the corresponding extended result list q(O),
three costs are defined in the cost-based k-skyband technique: the verification cost of q within q.SR,
the update cost of q(O), and the re-evaluation cost.

Verification cost. The verification cost of q within q.SR, within the unit time interval, denoted as
CR

V(q
∣∣∣q.SR), is estimated by Equation (13), i.e., the verification cost if q is inserted into all the leaf nodes

that intersect with q.SR.
CR

V(q
∣∣∣q.SR) =

∑
n.R∩q.SR,∅

Cq
V(q, n) (13)

Update cost. Similarly to q(O)k, the extended result list q(O) is organized by a linked list.
For ∀o ∈ q(O), a dominance counter is defined to count the number of objects dominating o. If an
incoming object o′ is inserted into q(O), the dominance counters of all the objects in q(O) with
dist(q, o′) < dist(q, o) and o′.te ≥ o.te, or dist(q, o′) ≤ dist(q, o) and o′.te > o.te will increase by 1, and the
objects with dominance counter equal to k will be evicted, which can be processed in O(

∣∣∣q(O)∣∣∣) time.
When an object in

∣∣∣q(O)∣∣∣ expires, it is deleted from q(O) until it is accessed again. The cost is
negligible. The update cost of q(O) within unit time interval, denoted as CL

U(q
∣∣∣q(O)) , is estimated

by Equation (14). Where f reqo
U is the number of object updates within unit time interval, pq

M(q.SR)
is the probability that the objects loosely match q within the search range q.SR, and is estimated
by pq

M(q.SR) = q.θk/NumN
o (n0), 1/2 is the probability that a qualified object arrival,

∣∣∣q(O)∣∣∣ can be
estimated by

∣∣∣q(O)∣∣∣ = max
{
k · ln(θk/k),θk

}
.

CL
U(q

∣∣∣q(O)) = f reqo
U ∗ 1/2 · pq

M(q.SR)·
∣∣∣q(O)∣∣∣ (14)

Re-evaluation cost. The re-evaluation cost within the unit time interval is denoted as 1/θtCIe(q).
Where θt is the re-evaluation period, i.e., the shortest time required between two consecutive
independent evaluations, and 1/θt is the frequency of re-evaluation. CIe(q) is the re-evaluation cost,
and is approximated to the verification cost in q.SRk, i.e., CIe(q) = CR

V(q
∣∣∣q.SRk) =

∑
n.R∩q.SRk,∅ Cq

V(q, n).
The overall cost in the cost-based k-skyband technique, denoted as CRe(q), is shown in Equation (15).

When CRe(q) is minimal, the search range is optimal.

CRe(q) = CR
V(q

∣∣∣q.SR) + CL
U(q

∣∣∣q(O)) + 1/θtCIe(q) (15)

In the following, we discuss how to get θt. θt is the re-evaluation period, i.e., the shortest time that∣∣∣q(O)∣∣∣ is reduced to k− 1 since the last re-evaluation. For ∀q ∈ Q, the update process of number of objects
in q(O) can be modeled as a simple random walk, which is a stochastic sequence Sl, with S0 being the
original status, defined by Sl =

∑l
i=1 Xi, where Xi is the object update, which is an independent and

identically distributed random variable. In q(O), if an object is inserted, Xi = 1; if an object expires
or is dominated, Xi = −1; otherwise Xi = 0. It’s difficult to estimate Xi due to the eviction of objects
by the dominance relationship in q(O). For example, an object is inserted, but the number of objects
decreases due to the eviction of objects with dominance counters reaching k. According to Theorem 5,
the number of objects in q(O) is less than k only if the number of objects in q(O)sup is less than k, and the
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objects in q(O)sup don’t dominate each other. Therefore we estimate the shortest time that
∣∣∣∣q(O)sup

∣∣∣∣ is
reduced to k− 1, denoted as θt

′, where θt
′ = θt. The object update in q(O)sup at any timestamp can be

estimated as Equation (16).

prob(Xi) =


1/2pq

M(q.SR) i f Xi = 1
1/2pq

M(q.SR) i f Xi = −1
1− pq

M(q.SR) i f Xi = 0
(16)

The number of object updates required to reduce the number of objects from q.θk to k− 1 in q(O),
denoted as Z(q), is estimated by Equation (17). θt is estimated by θt = Z(q)/ f reqo

U.

Z(q) =
2 · (q.θk − k + 1) · q.θk

pq
M(q.SR)

+
(q.θk − k + 1) · (q.θk − k + 2)

pq
M(q.SR)

(17)

For ∀q ∈ Q, the variables in Equation (15) are q.SR and q.θk. To minimize Equation (15), we employ
the incremental estimation algorithm to compute the optimal q.θk and the corresponding q.SR.

To accommodate our extended search range with the objects processing algorithm and index
construction and maintenance algorithm, we replace q(O)k with q(O) and replace q.SRk with q.SR.

4. Experiments

In this section, we conduct a set of comprehensive experiments to evaluate the efficiency and
scalability of the key techniques. Section 4.1 introduces the experimental environment. Section 4.2
evaluates the effect of three tuning parameters and the re-evaluation technique. Section 4.3 evaluates
the efficiency and scalability of our index techniques.

4.1. Experimental Settings

All experiments are implemented in VC++, and run on a Win10 machine with an Intel I7-8700K
3.7 GHz CPU and 32 GB memory. In accordance with previous works (e.g., [2–12]), we load the query
indexes into main memory to support real-time response.

Datasets. Three datasets are collected for experimental evaluations. The statistics are shown in
Table 2. TWEETS contains twitters collected from Twitter [8]. TWEETS is the default dataset. GN is
obtained from the US Board on Geographic Names, in which each record contains a geo-location
and some terms (http://geonames.usgs.gov/). GOWALLA is a synthetic dataset, in which each record
contains a geo-location collected from the Gowalla (https://snap.stanford.edu/data/loc-gowalla.html),
and less than 50 terms randomly assigned from 20 Newsgroups (http://people.csail.mit.edu/jrennie/

20Newsgroups). Based on the datasets, we generate queries and objects.

Table 2. Datasets statistics.

Datasets TWEETS GN GOWALLA

Size of dataset 20 M 2.29 M 644.3 K
Vocabulary size 1.80 M 202.4 K 61.2 K

Average number of keywords in objects 9 4 26

Query Workload. For each sample dataset, we take the geo-location as the geo-location of the
query and randomly select j terms of the sample data as the query keywords, where 1 ≤ j ≤ 5.
The number of returned kNN results k is set to a default value. At any timestamp, the expired queries
are randomly selected.

Object Workload. For each sample dataset, we take all terms as the object keywords, and take the
geo-locations deviating from the original geo-location by 0.01% to 1% of the maximum distance in
the region. At any timestamp, the expired objects are randomly selected.

http://geonames.usgs.gov/
https://snap.stanford.edu/data/loc-gowalla.html
http://people.csail.mit.edu/jrennie/20Newsgroups
http://people.csail.mit.edu/jrennie/20Newsgroups
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Set of Queries and Objects. For each dataset, unless otherwise specified, we select 5 M objects
and queries to construct the query index and object index initially, and generate three test sets, each of
which contains 2 M objects and 2 M queries. The evaluation criteria take the average performance of
three test sets.

Baseline. We compare our index techniques with IQ-tree [1], Ap-tree [3] and FAST [6]. By default,
for Ap-tree, the fanout, partition threshold, and KL-Divergence threshold are set to 200, 40, and 0.001.
We use the number of verifications to replace the number of I/O in the cost model of IQ-tree. In the
following sections, we use AOIQ-tree to represent the index integrated the quadtree with the ordered,
inverted index, and three key techniques. We compare the cost-based k-skyband technique with the
Kmax [16] when they are integrated in the AOIQ-tree.

Evaluation criteria. We report four criteria: (1) the index construction time (i.e., ICT), i.e., the time of
inserting queries into index after finding their search range; (2) the average incoming object processing
time (i.e., AOPT), i.e., the time of finding the affected queries and modifying their corresponding
parameters when an object arrives; (3) the average index updating time caused by objects (i.e., AIUT),
i.e., the time of updating query index after processing objects; (4) index size, i.e., the memory used for
constructing the query index. By default, the number of keywords for constructing ordered, inverted
index m, the number of kNN results returned for CkQST k, the height of the quadtree θh, the ratio of
the update operation to the verification operation θU, and the number of object updates within unit
time interval f reqo

U are set to 2, 20, 10, 0.001, and 20,000.

4.2. Experimental Tuning

In this section, a series of experiments are conducted to evaluate the effect of parameters in
techniques on the AOIQ-tree.

Effect of m. Figure 4 shows the evaluation criteria of the AOIQ-tree when m takes 1, 2, 3, 4, and 5.
According to Lemma 1, if m is small, the number of queries in posting lists is large, so it takes a long
time to verify queries in posting lists; contrarily, if m is large, it takes a long time to find the posting
lists to be verified. Therefore, the optimal m is neither too small nor too large. As shown in Figure 4,
when m takes 2, the performance of the index is the best. The larger m is, the larger the index size.
When m > 3, the verification cost and update cost in a single posting list decrease, so the cost model
maps queries to nodes with large regions, so ICT, AIUT and index size decrease, while AOPT increases.

Effect of θU. Figure 5 shows the evaluation criteria of the AOIQ-tree when θU takes 0.0001,
0.001, 0.01, and 0.1. When θU takes 0.0001, the verification cost plays a major role in finding the
associated nodes, therefore, queries are associated with many small nodes, so ICT is long, AOPT and
AIUT are short, and index size is large. When θU increases, the index update cost is more important,
so queries are associated with fewer larger nodes, so ICT and index size decrease, while AOPT and
AIUT increase.
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Effect of k. Figure 6 shows the evaluation criteria of the AOIQ-tree when k takes 10, 20, 30, 40,
and 50. As k is small, the number of returned objects for queries is few, the search range of queries
is small, and queries are associated with many small nodes, so the ICT is long, AOPT and AIUT are
short, and index size is large. On the contrary, when k is large, the search range of the queries becomes
larger, and queries are associated with few larger nodes, the ICT and index size decrease, and the
AOPT and AIUT increase.

Effect of re-evaluation techniques. We evaluate the re-evaluation performance in three cases,
denoted as AOIQ-tree, AOIQ-tree_Kmax, and AOIQ-tree_Skyband. AOIQ-tree only keeps k objects
in the result list, AOIQ-tree_Kmax keeps kmax = 2k objects in the result list, and the number of
objects in the result list for AOIQ-tree_Skyband is calculated according to the cost-based k-skyband
technique. Figure 7 shows the ICT, AOPT, and EOPT in three cases with varied k, where EOPT is
the average processing time for expired objects, i.e., the average time of modifying the parameters
of the affected queries or re-evaluating the queries if the number of objects in their result list is less
than k when an object expires. The number of objects maintained in AOIQ-tree_Kmax is more than
AOIQ-tree_Skyband, which is more than AOIQ-tree. The ICT of AOIQ-tree_Kmax is shortest, and that
of AOIQ-tree is longest. The AOPT of AOIQ-tree and AOIQ-tree_Skyband are shorter than that of
AOIQ-tree_Kmax. The EOPT of AOIQ-tree_Kmax and AOIQ-tree_Skyband are shorter than that
of AOIQ-tree. This phenomenon is related to the numbers of objects maintained in their result list.
Compared with AOIQ-tree, the EOPT of the other two techniques are much less, and if k takes 10, 20,
the average update time is close to 0.
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4.3. Performance Evaluation

Evaluation on different datasets. We evaluate the efficiency of the key techniques against three
datasets in Figure 8. The number of queries is 5 M. As shown in Figure 8, besides the index size,
AOIQ-tree is always the best one. IQ-tree has a good spatial filtering performance, but its textual
filtering ability is weak; AP-tree comprehensively considers the spatial and textual distribution of
queries, but the index construction and update cost are expensive; FAST has a good textual filtering
performance, but its spatial filtering ability is weak. The memory-based cost model in AOIQ-tree can
minimize the verification cost and update cost, which makes the number of queries in spatial nodes
neither too many nor too few; the ordered, inverted index in AOIQ-tree is constructed by two keywords,
which makes the verification cost close to the ordered keyword trie, and the update cost close to the
ranked-key inverted index. AOIQ-tree takes up the most memory, which is determined by the structure
of its posting lists. The evaluation criteria of GN are the smallest, and Gowalla are the largest, which
is because the data in Gowalla contain far more keywords than the other two datasets. For Gowalla,
the AOPT of AP-tree is shorter than that of FAST. This is because a large number of queries in Gowalla
only contain frequent keywords, compared with FAST, AP-tree comprehensively considers the spatial
and textual distribution of queries, i.e., index filtering is more powerful, so AOPT is shorter.

Effect of number of queries. To evaluate the scalability of the key techniques on the number of
queries and objects, we increase the number of queries and objects from 1 M to 20 M to construct the
object index and query index. As Figure 9 shows, the ICT, AOPT, and AIUT of all indexes increase
as the number of queries increases, and AOIQ-tree is much more scalable. For instance, it only takes
0.23 ms on average to process the incoming objects when the number of queries reaches 20 M, which is
54% faster than Ap-tree and 36% faster than FAST. This shows that our techniques have good scalability.
The AIUT of AOIQ-tree is the shortest, and Ap-tree is the longest. That’s because AOIQ-tree associates
queries with optimal nodes to adapt to the objects on data streams, and some of the Ap-tree nodes are
re-constructed if many queries updates in these nodes. Compared with AP-tree, only some queries
update in FAST nodes, so AOIQ-tree’s AIUT is shorter.
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Effect of number of query keywords
∣∣∣q.ψ

∣∣∣. To evaluate the scalability of key techniques on
∣∣∣q.ψ

∣∣∣,
we increase

∣∣∣q.ψ
∣∣∣ from 1 to 5. As shown in Figure 10, the evaluation criteria of IQ-tree are insensitive

to the number of keywords since it focuses on the spatial distribution of the queries. Ap-tree, FAST,
and our index consider the keyword distribution of the queries, so the evaluation criteria vary with

∣∣∣q.ψ
∣∣∣.

As
∣∣∣q.ψ

∣∣∣ increases, the ICT and index size increase, and the AOPT decreases. That is because Ap-tree
continuously calculates how to partition queries into nodes according to query keywords, and increases
the number of textual nodes and height of the tree. For FAST, as

∣∣∣q.ψ
∣∣∣ increases, more keywords

being attached to posting lists become frequent, and queries are more likely to be inserted into the
multiple higher-level nodes. For AOIQ-tree, the time of sorting the queries increases when the ordered,
inverted index is constructed.
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5. Conclusions and Future Research Perspectives

The challenging for evaluating CkQST is how to strike the balance between the filtering ability
and the update cost of the spatial–textual index. To address the challenging, we use quadtree and
inverted index to organize millions of CkQST with three techniques. A memory-based cost model
maps the search range of CkQST to the quadtree nodes to balance the spatial filtering ability of the
indexes and the cost for updating the indexes. The balance can be further tuned by the cost-based
k-skyband technique, which judiciously determines the search range for CkQST according to the
workload of objects. An adaptive block-based ordered, inverted index enhances the textual filtering
ability. The experimental results on the real-world and synthetic datasets show that the proposed
techniques are effective and scalable, and can significantly improve the evaluation efficiency of CkQST.
The future work for evaluating the continuous query over spatial–textual data streams includes solving
the challenges of continuous queries in mobile and other relevant scenarios, and exploring efficient
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Appendix A

In the proof of Lemma 1, without loss of generality, we suppose that all the terms in o.ψ are
contained in different blocks and divide the object processing at quadtree nodes into three steps:
finding the posting lists to be verified, finding the blocks to be verified in all posting lists, and finding
the queries to be verified in all blocks.

Proof of Lemma 1. If
∣∣∣o.ψ

∣∣∣ = 1, let o.ψ = {wi1}. The object is verified with the queries in the posting list
determined by {wi1}, the verification cost is O(log|V|m + |Q|), where Q contains these queries whose
query keyword are {wi1}. If

∣∣∣o.ψ
∣∣∣ = 2, let o.ψ = {wi1, wi2}, the object is verified with the queries in

the posting list determined by {wi1}, {wi2}, and {wi1, wi2}, the verification cost is O(3log|V|m + |Q|),
where Q contains these queries whose query keywords are {wi1}, {wi2}, or {wi1, wi2}. Specifically,
if m = 1, the object is verified with the posting lists determined by {wi1} and {wi2}. For the posting list
determined by {wi1}, the object is verified with two blocks. One block contains queries whose keywords
are {wi1}, and the other contains queries whose keywords may contain {wi1, wi2}. The verification
cost is O(2log|V|+ log|B|+ |b|+ |Q|). If

∣∣∣o.ψ
∣∣∣ ≥ 3, the posting lists that the object is verified with

can be divided into three categories. First, the posting lists are determined by less than m terms.

The verification cost is
∑m−1

i=1

(
i∣∣∣o.ψ

∣∣∣
)
·(log|V|m + |Q|); second, the posting lists are determined by

m terms and one of the term is
∣∣∣o.ψ

∣∣∣. The verification cost is
(

m− 1∣∣∣o.ψ
∣∣∣− 1

)
· (log|V|m + |Q|). Third,

the posting lists are determined by m terms and the terms do not contain
∣∣∣o.ψ

∣∣∣. The verification cost is

O
(∣∣∣o.ψ

∣∣∣m · (log|V|m +
∣∣∣o.ψ

∣∣∣ · (log|B|+ |b|
|B|

m−1
·|b.ψ|

m−1

))
+ |Q|

)
, where Q contains these queries that contain

less than or equal to m keywords and these keywords are contained in o. The Lemma is proved.
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