
 International Journal of

Geo-Information

Article

Detecting Destroyed Communities in Remote Areas
with Personal Electronic Device Data: A Case Study
of the 2017 Puebla Earthquake

Andrew Marx * , Mia Poynor, Young-Kyung Kim and Lauren Oberreiter
Spatial Sciences Institute, University of Southern California, Los Angeles, CA 90089, USA;
mpoynor@usc.edu (M.P.); youngkyk@usc.edu (Y.-K.K.); loberrei@usc.edu (L.O.)
* Correspondence: marxa@usc.edu

Received: 14 September 2020; Accepted: 22 October 2020; Published: 28 October 2020
����������
�������

Abstract: Large-scale humanitarian disasters often disproportionately damage poor communities.
This effect is compounded when communities are remote with limited connectivity and response is
slow. While humanitarian response organizations are increasingly using a wide range of satellites
to detect damaged areas, these images can be delayed days or weeks and may not tell the story
of how many or where people are affected. In order to address the need of identifying severely
damaged communities due to humanitarian disasters, we present an algorithmic approach to leverage
pseudonymization locational data collected from personal cell phones to detect the depopulation
of localities severely affected by the 2017 Puebla earthquake in Mexico. This algorithm capitalizes
on building a pattern of life for these localities, first establishing which pseudonymous IDs are a
resident of the locality and then establishing what percent of those residents leave those localities
after the earthquake. Using a study of 15 localities severely damaged and 15 control localities
unaffected by the earthquake, this approach successfully identified 73% of severely damaged localities.
This individual-focused system provides a promising approach for organizations to understand
the size and severity of a humanitarian disaster, detect which localities are most severely damaged,
and aid them in prioritizing response and reconstruction efforts.
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1. Introduction

On September 19, 2017, a 7.1 magnitude (M) earthquake occurred in Puebla, Mexico [1]. Mexico City
and the states of Puebla and Morelos sustained significant damage to the infrastructure and population
due to the densely populated region [1]. The United States Agency for International Development
(USAID) and the Pan American Health Organization (PAHO) estimated that at least 43,000 buildings
were destroyed or sustained significant damage, 6100 people were injured, 366 people were killed,
and hundreds missing [2]. The most impacted areas were in the rural parts of the region, making it
difficult for response agencies to identify and respond to communities with the most need. The scale
of the destruction was significant and distributed geographically, with thousands of residents left
homeless and others sleeping on the streets in fear of aftershocks [2].

Following large-scale humanitarian disasters, challenges emerge regarding prioritizing emergency
response and aid provisions. With natural disasters, there is generally a large displaced population
seeking shelter and in need of assistance. It is often instinctive for people to flee the affected area
after some time; however, this can complicate relief efforts and increase the chance of mortalities [3].
Traditional methodologies like witnesses’ interviews or satellite imagery are commonly used among
relief organizations to determine the post-destruction and estimate the number of mortalities or missing
people [3]. However, they are often slow, potentially biased, and unreliable [3].
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With the occurrence of natural disasters increasing over time, new spatial and geostatistical
perspectives have been adopted. Earthquake risk and damage modeling have specifically seen a large
growth. In 2010, Sahar, Muthukumar, and French used geographic information systems (GIS) and
algorithms to extract two-dimensional building shapes from aerial imagery for better earthquake
risk assessment modeling [4]. Feng et al. showed the combined use of remote sensing with GIS
building data to detect the three-dimensional destruction of buildings and estimate the number of
potential casualties [5]. Newer efforts have shown the ability to preemptively assess expected damage
in urban areas using earthquake building codes, which can lead to more efficiently placed assistance
camps or evacuation routes [6]. Recently, there has been a shift towards more geo-computational
approaches. Hossain et al. leveraged smart watch data and GIS technologies to algorithmically capture
the heart rate of the earthquake victims in order to identify critical areas for search and rescue [7].
Machine learning and neural network approaches are being tested to improve previous earthquake
prediction models [8]. Other approaches have incorporated crowd-sourced data, such as emergency
volunteer mapping and social media geotags to detect where the largest damage has occurred in
humanitarian emergencies or constellations of small satellites to detect significantly damaged villages
on a daily basis [9–11]. The National Geospatial Agency is attempting to automate the extraction
of areas in need of humanitarian assistance by leveraging artificial intelligence on high-resolution
imagery [12]. All of these methods use overarching rather than personal location data to provide
insight into humanitarian disasters.

The literature shows that call detail records (CDRs) have been useful in measuring broad spatial
population characteristics and migration in the private and public sectors. Using triangulation
techniques, CDR data can produce a geolocation at the time a call or text is made and
evaluate a population mobility and social network, sometimes down to an individual scale [13].
Telecommunication companies are constantly analyzing CDRs to monitor their market penetration and
economic success. Researchers continue to explore how governments and private organizations can
benefit from more timely population and migration estimates by using CDRs, especially in developing
nations where such knowledge can inform policy, but the costs of collecting data may be significant.
For example, Salat, Smoreda, and Schläpfer developed methods for extrapolating population densities
from CDRs from tracing weekly, monthly, and yearly patterns of mobile phone use in Senegal [14].
Zufiria et al. also utilized mobile phone data from Senegal and found that aggregated mobility profiles
based on likely livelihoods can shed light on economic activity, agricultural cycles, and precipitation,
and thus, seasonal migration [15]. Lai et al. further directly applied CDR data and found that it can
complement national statistics, especially in countries with high rates of internal migration, to ensure
that public services are appropriately deployed [16]. Cell phone data is effective in detecting and
depicting established patterns of life within a country.

Call detail records have also been extensively employed to complement various organizations’
understandings of population movements when these patterns of life are disturbed in the wake of
specific environmental and epidemiological crises. In a particularly relevant example, Bengtsson et al.
(2011) analyzed locational data from CDRs to find that 630,000 people left Port-au-Prince within a
19-day period after the 2010 Haiti earthquake [3]. Similarly, Wilson et al. (2016) utilized deidentified
mobile CDRs and algorithmic transition matrices to identify population flows in and out of Kathmandu
Valley in the first few weeks after the 2015 Gorkha earthquake in Nepal [17]. Pastor-Escuredo et al.
showed the viability in using CDRs to characterize impacts of flooding in Tabasco, Mexico in 2009 [18].
Andrade et al. demonstrated in their analysis of a 2016 earthquake centered in Manabi, Ecuador that
using aggregated activity through call towers can protect individual users from privacy concerns while
assessing the extent of urban infrastructure damage and providing insight into patterns of mobility
depending on the user’s proximity to the epicenter of the earthquake [19]. Horanont et al. (2013) used
9.2 billion location records, derived from an auto-global navigation satellite system (GNSS) service
from a telecommunications company in Japan, to analyze human mobility patterns after the 2011
Great Japan Earthquake [20]. CDR data has also been utilized in applications of epidemics and disease
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control. Peak et al. (2018) used CDRs to algorithmically investigate the decrease of travel during the
Ebola epidemic intervention in Sierra Leone [21]. These studies were able to detect the mobility and
behavior patterns of the population after a large-scale natural disaster, showing a promising method to
prepare for damage assessments and post-disaster responses.

Another type of telecommunications data that can be used in similar applications to CDRs is
personal electronic device (PED) data. With the expansion of mobile phone accessibility in the global
South, PED data has been leveraged to assist in the challenges faced in large-scale humanitarian
emergencies. The use of PED data has developed in parallel with CDR data and is gathered instead
from global navigation satellite systems (GNSSs) in smart devices (i.e., cell phones, smart phones,
smart watches, smart tablets, etc.) [22]. PED data differs from the previously used CDR data, as it
collects information about a location without depending on the transmission of communications
(calls and/or texts) and, therefore, yields a higher level of accuracy of location precision. Yabe et al.
(2019) utilized PED data of one million users following the Kumamoto earthquake to estimate the
evacuation rates relative to seismic intensities [23]. Chen et al. (2020) utilized PED data from Baidu
Map to track urban flow changes in Shenzhen during Typhoon Mangkhut [24]. More recently, with the
COVID-19 pandemic, PED data is being used to track the mobility, transmission, and success of
social-distancing guidelines. Liautaud, Huybers, and Santillana (2020) leveraged PED data to analyze
the decrease in mobility with fever incidences from thermometers connected to smartphones [25].
It confirmed that social distancing has reduced transmission of the virus and could help identify
potential outbreaks in the future.

PED data provides extremely rich spatiotemporal data on human mobility and can be used in
many multidisciplinary applications, such as natural disasters, public health, credit fraud, human rights
violations, etc. [26]. Companies like LocationSmart (www.locationsmart.com), Foursquare (www.
foursquare.com), or Cuebiq (www.cuebiq.com) sell offline location analytics for businesses to provide
consumer insights and marketing. Organizations like UNICEF and the World Bank also leverage this
locational data for real-time humanitarian responses [27] (Figure 1).
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algorithms and loaded into a PostgreSQL database. The approach then used a system of algorithms
to detect when the residents left the locality. The algorithms first identified the residents of the
localities, compared the number of residents each day, and then analyzed how the population average
changed over time to detect communities that were depopulating. By using communities close to the
earthquake’s epicenter, as well as similarly sized communities away from the epicenter, this approach
accurately showed that communities near the earthquake rapidly depopulated as a result of the
earthquake. Currently, there is limited research on the use of PED data tracking mobility during a
natural disaster. However, this study seeks to address the gap that exists and describes an approach
that provides humanitarian response organizations an affordable, accurate, and automated approach
to detect which communities are impacted the hardest by a large-scale humanitarian disaster. Such an
approach could find would likely be more valuable in areas that lack other means of reporting
(lack of capacity) or where the local government/authorities do not want to share information with the
international community (lack of transparency).

2. Materials and Methods

2.1. Data

Personal Electronic Device (PED) Data

The location analytics company Cuebiq Inc. provided access to a sample of Central Mexico’s
pseudonymization and privacy-enhanced PED locational data between 4 September to 10 October,
2017. Data was collected in both online and offline modes, so if the connection was lost with
the proximate cellular towers, locations would still be recorded and included later within the
dataset. Individual devices, based on their international mobile equipment identity (IMEI),
were pseudonymized, and their locations can be plotted for one day, indicating patterns like traveling
over time (Figure 2). The positioning data was collected by the individual app’s location services
using a variety of methods to collect the IMEI’s location. The data was housed in a physically secured
computing research facility behind firewalls. The analysis was conducted on this remote server
by logging in with personal laptops. The first-party data collected by Cuebiq contained 8 different
columns: ID, device type, noise type, latitude, longitude, distance from previous data point, timestamp,
and accuracy. With potential privacy information in the PED data, Cuebiq applies procedures to
ensure privacy and different layers of protection for all users. For this dataset, data was deidentified by
hashing and encrypting the ID, and a noise of 600m was added for home locations (within a geohash
grid) and between 20–100 m for all other locations. This noise was added to the dataset to further
anonymize specific users. For each type of location, a different privacy methodology was applied.
Home and work locations were randomized within census blocks, allowing for the estimation of
demographics without actually revealing the locations of the users; sensitive Points of Interest (POIs),
such as primary schools, sexual/reproductive health clinics, places of worship, etc., were removed from
the dataset completely; whitelisted POIs (commercial and public points of interest) were unchanged;
and no-match POIs (all other data points) had a noise of 20–100 m based on the density of data points
within the area.

2.2. Earthquake Layer

Following the earthquake, the European Commission’s Emergency Response Coordination Centre
(ERCC) produced a detailed map depicting the relative intensity of the earthquake across and beyond
the Puebla state [29]. Using a modified Mercalli scale, the ERCC highlighted areas that experienced
“Very Strong” (VII), “Strong” (VI), “Moderate” (V), and “Light” (IV) shaking. From this information,
we selected the 15 experimental or damaged localities that fell within the “Very Strong” (VII) or
“Strong” (VI) areas. For the control localities, we selected 15 localities that were entirely outside of even
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the most expansive “Light” (IV) areas (Figure 3). This intensity map served as our ground reference
data, delineating villages severely affected and those unaffected.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 5 of 20 
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2.3. Study Area

Puebla State is approximately 13,000 square miles, surrounded by the states of Morelos, Veracruz,
Guerrero, Oaxaca, Hidalgo, and Tlaxcala. The state is known for its mountainous geography and has
benefited from rich volcanic soil for agriculture. While the capital of Puebla, Puebla City (Ciudad de
Puebla), is more developed, wealth disparities exist in rural localities within the state. This analytic
approach relies on both control and experimental localities having a significant number of residents
consistently using apps where their locational data is shared and accessible by Cuebiq. Mexico’s
active smartphone penetration, limited to individuals who use their phone at least once a month,
extends to just 40.7 percent of the population [30]. Since the usage of location-sharing apps was likely
less prevalent in 2017, especially in rural areas, 38 experimental locality candidates were selected
from the study area to be possibly used in the study. In the selection of the experimental localities,
candidates were chosen based on a population size between 2000 to 6000 from the 2010 Census and
their proximity to the epicenter of the earthquake [29,31].

Eighty-two control candidate localities were also based on the same population criteria as the
experimental dataset but chosen from other Mexican states that were not within the range of the
earthquake (Puebla, Oaxaca, and Guerrero). In order to establish the residents of a particular locality,
as well as determine the percentage of residents who left that locality on a given day, a geometric
buffer was manually created around each locality. These “geofences” were created visually from
satellite imagery on Google Earth to capture nearly all of the inhabited area while excluding as much



ISPRS Int. J. Geo-Inf. 2020, 9, 643 6 of 19

uninhabited hinterland as possible. The size of the village was not considered, only the visually
developed area. Given the heterogeneity of the population size and locality shape, each locality was
assigned a unique buffer, ranging from approximately 500 to 4000 in diameter (Figure 3). Of these
candidates, 15 control and 15 experimental localities were used in the final analysis (Figure 4) once
they were assessed for market penetration.
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2.4. Methodology

The analytic workflow processed each candidate locality through a series of scripts. If that locality
met the requirements detailed below, it was used in the final dataset (Figure 5).

2.4.1. Database Preparation

For 14.4 GB of locational data, PostgreSQL’s suitability for more structured, robust, and tabular
data made for our database of choice. The preparation of the data consisted of:

(1) Converting the provided data into a readable csv file by running a Python conversion script.
This code unzipped the daily csv files, inserted the corresponding column names, and then saved the
data into a new csv file. Each day of data for the 37 days consisted of more than a hundred csv files,
depending on the amount of data for that day.

(2) Loading the data into the database using a custom-scripted Python algorithm. The script
connected to the PostgreSQL database, iterated through the csv files, and then imported the data into
the table, utilizing the pyscopg2 Anaconda package. It took approximately 6.5 h to load an initial
225,962,016 rows that represented 37 days’ worth of data.

(3) Creating a Python script that connected the database to a Jupyter Notebook in order to conduct
large-scale operations on the data.
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 Figure 5. In the analytic workflow, following the geofence (Section 2.3), residents of the villages were
established (Section 2.4.3). Only villages with at least 3 residents (Section 2.4.4) were analyzed to detect
if they experienced a depopulation after the earthquake (Section 2.4.5).

2.4.2. Preprocessing

In order to improve the code runtime and discard noise in the dataset, a temporal preprocessing
(TP) algorithm was developed and implemented. The initial dataset contained 774,343 unique
IDs. Preprocessing was established to only analyze those IDs where a pattern-of-life analysis could
be conducted.
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This algorithm was designed to remove IDs and all their associated “hits” or records that did
not have a significant presence throughout the dataset (Figure 6). First, the algorithm converted each
record’s epoch timestamp into a YYYY-MM-DD HH:MM format (ex: 2018-10-12 11:33), which was
then truncated to display just the day of the month (ex: 12). The algorithm then checked for how
many distinct days each ID was present in the dataset. If an ID was detected for at least 4 distinct
days of the 37 complete days (from 4 September to 11 October) present in the dataset) then the records
associated with the ID were kept. If not, the records associated with that ID were removed from the
dataset. Four was chosen as the minimum number of days to establish that an ID lived in a specific
village but kept as many unique IDs as possible. This reduced the dataset by 8,271,655 rows to a total
of 217,690,361 rows—a total reduction of 3.6%. Running this preprocessing algorithm took 5 h on a
PowerEdge R530 Server with two Intel Xeon E5-2695 2.1GHz processors.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 20 
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Removing IDs without a sustained presence in the dataset ensured that our study could derive
meaningful trends from a reasonable number of data points. Before preprocessing, the IDs had an
average of 7.86 days with a record. Preprocessing eliminated many IDs with 1 or 2 total records,
bringing up the average days that an ID was present to 13.48 (Table A1 (Figure 7).

2.4.3. Resident Determination Algorithm

The resident determination algorithm established an indicator for residency in a locality. A resident
of a particular locality was defined as a unique ID that was present within that locality’s buffer at
least 3 different pre-earthquake days (4 September to 18 September). This processing script first
augmented the previously temporally preprocessed data with 3 additional columns. The first created
geography type points corresponding to the latitude and longitude originally provided with each
record. The second and third, respectively, extracted the day of the year and the hour of the day
associated with each record. The subset of the data recorded before the earthquake was then copied
into a second table.
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For each control and experimental locality, new copies of the pre-earthquake and the temporally
preprocessed data were created. All points within both subsets that did not intersect with a spatial
buffer manually calibrated for the physical size of the associated town were discarded. This geofence
was adjusted for the scrambled nature of the coordinates provided by Cuebiq, adding a 610-m
margin to account for points thrown outside of the buffer that would have been detected inside the
buffer otherwise.
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Figure 7. Preprocessing the data removed 369,839 unique IDs that did not have at least one record
for four unique days prior to the earthquake. The original total of 774,343 (Figure 6) unique IDs was
reduced to 404,504.

The algorithm attempted to balance suppressing false positives and extracting as many residents
from the data as possible. With the temporal restraints of the data preventing the establishment of a
baseline residency, the algorithm aimed to capture as many individuals with high and consistent levels
of activity throughout the dataset as possible by defining an ID as a resident if they were recorded
within the geofence for at least 20 percent of the unique pre-earthquake days (3 days). Since residents
may leave town for short periods of time, the algorithm’s 20 percent threshold ensures the detection of
those with strong geospatial connections to the locality in question. The IDs defined as residents of a
locality were then stored in a separate table.

2.4.4. Market Penetration Criteria

Once each locality’s residents were established, the workflow next ensured that each experimental
and control locality met a market penetration standard for further analysis. This threshold was set to
filter out localities with less than 3 identified residents.

In order to obtain 15 control and 15 experimental localities, this study examined 82 control
candidates and 38 experimental candidate localities. Since smartphone penetration in Mexico is
relatively lower in rural areas, we expect that a similar analysis run on more current data will yield a
larger number of qualifying localities.
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2.4.5. Resident Slope Analysis

For the 15 experimental localities and 15 control localities, our approach sought to identify
localities that experienced a decrease of residents after the earthquake. In response, a slope analysis of
the residents before and after the earthquake was conducted. A slope analysis showed the decrease of
residents in each locality through the difference between slopes and was chosen because the method
provided a better means of accounting for a more gradual migration out of a given locality. This slope
difference for each locality was calculated using the LINEST function in Microsoft Excel. Localities
that experienced a decrease in population of greater than 24% from before the earthquake to after the
earthquake were “alerted” as being rapidly depopulated (Table A3). This threshold of 24% was set to
maximize the overall accuracy for the 30 villages.

2.5. Validation

From the 15 experimental localities, any locality with a decrease in population of greater than 24%
was “alerted” as being rapidly depopulated due to the earthquake. Any locality that did not fit this
criterion was considered an omission error. Likewise, 15 localities outside of the earthquake zone and
between the same sizes as the experimental dataset were chosen at random to assess the commission
errors. If any of the control localities also recorded a decrease in population of greater than 24% (−0.24),
they were considered “alerted” or a commission error (Figure 8).
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Figure 8. This approach detected a locality as depopulating if the pre-earthquake slope of residents
was 24% lower than the post-earthquake slope of residents. In this figure, the experiment locality
Huaquechula had a consistent percent of residents (6% slope) before the earthquake but saw a steady
decline in residents after the earthquake (−19%), while the control locality El Terrero maintained a
steady percent of its residents both before (0%) and after (−5%).

3. Results

This approach resulted in an overall accuracy of 73% in detecting the depopulation of localities
following the earthquake. Out of the 15 control localities, 12 were detected as not depopulated or an
insignificant decrease in residents after the earthquake, yielding a commission error of 20% (Table A3).
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Of the 15 experimental localities, 10 were detected with a decrease greater than 24% or more of the
population after the earthquake, yielding an omission error of 33% (Table A3).

All locality candidates for the controls were randomly selected from 21 out of the 32 states in
Mexico; at least two localities from each state in between the population sizes of 1000 - 6000 people
were chosen. All 15 experimental localities were in the state of Puebla, geographically proximate
to the epicenter of the earthquake (Figure 9). There appeared to be no spatial correlation between
the false negatives or experimental localities that failed to alert. The five experimental localities that
did not alert were in the same geographic proximity to the 10 experimental localities that correctly
alerted. Six out of the 15 of the control localities were from the state of Mexico, two from Hidalgo,
two from Yucatan, two from Guerrero, one from Michoacán, one from Chiapias, and one from Colima.
Additionally, while there appeared to be no definitive spatial correlation of the controls, most false
positives were in states near the central region of the country, west of the earthquake.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 20 
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control or experimental localities.

The overall population of a locality did not correlate with the accuracy for the control or
experimental localities. For example, control locality San Miguel Ixtapan had a population of
1251 people with a slight decrease of 1.36% of residents, whereas control locality Huamuxtitlán had
a population of 6063 but an increase of 3.15% (Table A2). Similarly, experimental locality Domingas
Arenas had a population of 5864 people and a decrease of 47.86% of residents after the earthquake,
but experimental locality San Felix Hidalgo had a population of 1628 people and a decrease of 53.73%
(Table A3).
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Lastly, of the experimental localities, there was not a strong correlation between earthquake zone
severity and the accuracy of the algorithm. Of the seven localities located in Zone VI, two did not alert,
while of the eight localities in Zone VII, three did not alert (Figure 4) (Table A4) (Table A5).

4. Discussion

This approach leveraged Cuebiq pseudonymized PED data to identify and analyze patterns
of movement after a natural disaster. The methods used in this study provided a workflow that
can be potentially used as a framework for other natural disasters or similar incidences (such as
violence) that prompt migration. The spatial distribution and market penetration of the 2017 data
posed a challenge when working with the Cuebiq PED data; it was difficult to strike a balance between
examining localities with a tighter, more reliable geofence and ones that had enough residents to
analyze longitudinally. The 15 control and 15 experimental localities could only be selected after
examining 82 control and 38 experimental candidates and checking their market penetrations to
see if their impacts could be measured and analyzed. Working with smaller, more rural localities
(generally with a population less than 2000) meant using smaller buffers with greater specificity in
identifying residents—false positives were less likely to be seen from individuals moving through
the area while they commuted to work, etc. However, there were fewer residents in those localities
overall, because there was low cell phone penetration in rural areas. This will likely not be as pressing
of an issue when replicating the experiment on more recent data, since PED penetration has shown to
consistently increase over time; in 2019, Mexico’s smartphone penetration increased 10 percentage
points in three years to capture 49.5% of the population [32].

There are also data collection issues presented in this approach. If a disaster is severe, it will likely
destroy the telecom and power networks. Since current PEDs rely on the terrestrial telecom network,
they will have no way to upload their information. With the advent of low-Earth constellations of
communication satellites, like SpaceX’s Starlink (starlink.com), this could be alleviated, but the devices
will still lose their charge without a power network within a few days. This could be addressed
with dispersed power sources such as diesel generators, solar panels, or small-scale wind generators,
but these are not widely available in some less-developed areas.

Another drawback of this study is the temporal distribution of the data. Since the data spanned a
little more than a month—15 days before the earthquake and 21 days after the earthquake—using a
dataset with larger temporal range will likely improve the results of the pattern of life analysis used to
correctly identify the residents, including those who may be traveling, working temporarily elsewhere,
or only using their smartphones intermittently. Using the approach described here, an average of only
2% of a locality’s 2010 population were tracked as residents [31].

After some consideration, future elements of this research could include, but are not limited to,
examining the geological and geographic factors that could have contributed to the lack of market
penetration, analyzing the usage of different types of smart device applications that are partnered with
Cuebiq and are commonly used in Mexico, understanding the aggregate demographics of the region
in correlation to smartphone usage, and other situational circumstances that affected the population’s
mobility but were not previously identified. These reasons were the top hypotheses as for why
the algorithm performed better on some localities than others, and further investigation could give
potential insight on the lack of market penetration and more accurate adjustments for the algorithm.

The approach presented here could be extended to the present day, monitoring currently intact
localities in areas at risk of humanitarian disasters. While downloading, loading into the database
and preprocessing this month of data in our study region took approximately three days on a
Windows 10 server; automating the process to remove the inefficiencies incurred by optimizing the
workflow to output parallel datasets differing in experimental parameters could make this process
feasible on a weekly basis. During the aftermath of a humanitarian disaster, data could pinpoint
localities incurring the greatest damage. Additionally, this approach could be modified to function
from a period of a few hours as opposed to a 24-h period to serve as an early warning mechanism of a



ISPRS Int. J. Geo-Inf. 2020, 9, 643 13 of 19

humanitarian disaster and the mass migration that may result. While there are hurdles, this approach
is scalable. A cloud-based effort could easily monitor all localities in an area, such as this one in Mexico,
alerting users any time a spatial grouping of localities experiences rapid depopulation.

Organizations interested in this approach could modify the algorithm’s sensitivity to suit their
objectives. For example, in situations such as monitoring a specific region at risk of disaster, the −24%
slope difference could be modified to −15% percent, reducing the chance that a locality’s depopulation
would miss detection. This lowers the omission rate but increases the commission rate. Conversely if
an organization is concerned with the total number of people fleeing, the alert level could be changed
to 30% to reduce commission errors.

5. Conclusions

In future studies, building a better baseline of locality patterns of life could account for weekly,
monthly, and annual changes and significantly improve the accuracy. This is possible with the
significant increase in market penetration of location PED and scalable computing. Additionally, with a
longer period of data, a custom buffer could be created for each ID based on their usual movements.
When the ID passes out of that buffer, it would be recorded as an abnormal movement. Enough IDs
with abnormal movements on a specific day could indicate an anomalous environmental or political
event. The advantage that this algorithm has is that it could be used in larger cities for when one
neighborhood might be destroyed and the residents shift to a neighboring one. A disadvantage is that
a false positive could occur for other reasons, such as large-scale sporting events.

As more years of data become available, a greater number of incidents like humanitarian
emergencies will provide “labels” for training artificial intelligence or machine-learning algorithms.
These algorithms will more accurately detect anomalous situations of interest, such as the localities
most severely affected by a humanitarian disaster. The operationalization of this approach will likely
be possible in the near future with increased data collection and availability, improved computer
processing, and near-real time. Operationalization will, however, require that the location data from
PEDs are transferred, requiring a functioning telecom network or a space-based communication
network such as Starlink. Operationalization also requires that PEDs can continue to be powered
through either a functioning power grid or, if that is destroyed in a severe disaster, dispersed power
sources such as diesel generators, solar panels, or small-scale wind generators.

With increases in computing capacity and the growing database of PED on a global scale,
approaches like this have the possibility of providing researchers and practitioners a way to monitor
large areas at-risk of humanitarian disaster. It is understood that this approach will never replace
on-the-ground witnesses but serve as a low-cost alert system capable of providing additional information
in areas lacking connectivity. Such an approach will be even more valuable in areas that lack other means
of reporting (lack of capacity) or the local government/authorities do not want to share information
with the international community (lack of transparency). Our hope is that this research helps provide
organizations committed to providing emergency humanitarian responses a way to act in a decisive
manner through informed, data-driven insights and, ultimately, reduce the suffering of those affected
by a disaster.
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Appendix A

Table A1. Before preprocessing, the IDs had an average of 7.86 days with a record. Preprocessing
eliminated many IDs with one or two records total, bringing the average days the IDs had a hit up to
13.48.

Number of Unique Days that an
ID had a record Before Preprocessing After Preprocessing

Mean 7.86 13.48

Median 4 10

Mode 1 4

Maximum 37 37

Minimum 1 4

25th percentile 1 6

75th percentile 10 19

Table A2. Fifteen control localities were used in the final analysis. In processing, an additional 610m
was added to this buffer radius to account for privacy data screening by the data provider.

Locality Name State Latitude,
Longitude Population Residents

Detected
Buffer Size

(m)
Earthquake

Class

San Gabriel Ixtla Mexico 19.257527,
100.124099 1624 139 995 None

Tuzantla Michoacán 19.207914,
100.573904 2798 10 731 None

El Arenal Hidalgo 20.226695,
98.905937 2933 9 794 None

San Antonio del Rosario Mexico 18.398290,
100.309325 1356 9 965 None

La Compania Mexico 19.163415,
100.082659 1094 10 530 None

Almoloya de Alquisiras Mexico 18.864324,
99.889982 3153 13 1175 None

Olinalá Guerrero 17.777701,
98.739085 5792 32 803 None

Santiago Tezontlale Hidalgo 20.161152,
99.097445 4226 19 928 None

El Terrero Mexico 18.790601,
99.646588 1273 7 752 None

San Miguel Ixtapan Mexico 18.808699,
100.151928 1251 9 900 None

Huamuxtitlán Guerrero 17.804181,
98.562623 6063 9 887 None

Chicomuselo Chiapas 15.743312,
92.28328 5938 8 1420 None

Minatitlán Colima 19.387388,
104.049396 4588 14 851 None

Sotuta Yucatan 20.596148,
89.008522 5548 31 1371 None

Tetiz Yucatan 20.961913,
89.93324 3939 42 1206 None
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Table A3. Fifteen experimental localities were used in the final analysis all from earthquake class areas
of VI/VII or higher. In processing, an additional 610m was added to this buffer radius to account for
privacy data screening by the data provider.

Locality
Name State Latitude,

Longitude Population Residents
Detected

Buffer Size
(m)

Earthquake
Class

San Felix
Hidalgo Puebla 18.899207,

98.396168 1628 34 590 VII

Tepeojuma Puebla 18.727938,
98.448294 4788 35 1200 VII

Tepexi de
Rodriguez Puebla 18.580354,

97.929589 4933 22 990 VI/VII

San Felix
Rijo Puebla 18.718743,

98.548084 1118 17 818 VII

Huaquechula Puebla 18.771417,
98.543500 3005 20 916 VII

San Juan
Raboso Puebla 18.571540,

98.441297 3637 17 546 VII

Tlapanala Puebla 18.694467,
98.534198 2727 13 957 VII

San Lucas
Colucán Puebla 18.508552,

98.481103 2577 11 739 VII

Matzaco Puebla 18.557439,
98.489604 2580 34 784 VII

Domingo
Arenas Puebla 19.139648,

98.457057 5864 26 1004 VI/VII

Santa Clara
Ocoyucan Puebla 18.974270,

98.300668 4871 849 1107 VII

Santa Maria
Acuexcomac Puebla 19.036634,

98.385763 4432 19 978 VII

San Gabriel
Tetzoyocan Puebla 18.758063,

97.704389 6060 183 776 VI/VII

Santiago
Coltzingo Puebla 19.382436,

98.534143 3155 12 947 VI/VII

San Mateo
Capultitán Puebla 19.194610,

98.417855 2328 10 720 VI/VII
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Table A4. The resident counts for the 30 localities for each of the 37 days were used to calculate their slope before and after the earthquake (Table A5).

Village Name 9/4 9/5 9/6 9/7 9/8 9/9 9/10 9/11 9/12 9/13 9/14 9/15 9/16 9/17 9/18 9/19 9/20 9/21 9/22 9/23 9/24 9/25 9/26 9/27 9/28 9/29 9/30 10/1 10/2 10/3 10/4 10/5 10/6 10/7 10/8 10/9 10/10

San Gabriel Ixtla 41 51 66 58 57 62 62 56 50 50 53 73 66 71 48 39 36 36 37 34 31 29 23 23 26 29 33 35 25 21 20 21 26 28 19 27 18

Tuzantla 4 4 5 7 5 4 8 6 8 7 6 7 8 6 7 6 7 7 6 4 4 5 3 4 5 3 2 3 4 4 4 3 3 2 3 2 2

Olinalá 3 5 5 3 4 5 5 4 6 7 6 6 7 4 4 3 3 4 4 5 5 5 4 3 3 2 2 2 3 3 3 3 2 2 2 3 2

Almoloya de Alquisiras 1 3 4 5 4 4 5 5 3 3 4 3 2 5 4 5 4 3 6 5 5 5 4 3 4 3 2 3 4 3 3 2 2 2 4 3 1

La Compania 2 3 4 4 6 4 5 5 5 4 4 6 7 5 2 2 2 2 3 4 1 2 3 2 1 1 2 2 1 1 1 1 1 1 2 1 0

San Antonio del Rosario 4 6 6 8 3 7 6 7 4 7 6 6 6 6 5 7 4 5 3 4 5 3 2 5 4 4 3 3 3 5 4 4 3 3 3 3 2

El Arenal 9 8 10 12 11 8 18 17 12 10 8 12 6 10 10 9 7 9 8 7 5 9 7 8 10 7 7 7 7 7 6 8 5 5 7 5 5

Santiago Tezontlale 7 6 6 7 10 8 11 6 8 9 6 6 9 8 7 6 5 4 6 7 6 5 5 4 5 7 4 8 4 4 3 3 7 8 6 3 4

El Terrero 2 4 4 3 2 3 3 4 4 5 4 3 4 2 2 4 4 2 4 2 3 3 4 5 5 2 3 2 3 2 3 3 4 3 2 3 1

San Miguel Ixtapan 6 7 5 5 4 4 7 6 6 4 5 4 2 6 5 3 3 4 2 1 1 4 5 5 4 3 2 3 3 1 1 1 1 1 2 2 0

Huamuxtitlán 4 6 6 4 3 5 3 4 4 6 6 6 4 3 3 4 3 5 3 3 2 3 4 2 2 1 2 3 4 3 3 3 3 3 3 3 2

Chicomuselo 2 3 2 2 2 1 3 3 4 4 4 3 6 4 3 2 3 3 2 3 2 2 1 6 4 3 3 4 4 5 5 3 5 6 5 6 5

Minatitlán 6 8 7 4 3 6 6 7 7 5 6 7 7 8 7 6 7 7 6 6 6 7 6 8 8 6 7 4 4 5 4 5 6 5 4 4 2

Sotuta 10 12 14 17 13 13 15 10 8 9 11 14 10 11 8 8 6 5 9 6 7 8 8 13 18 14 10 13 11 11 10 11 12 12 12 10 7

Tetiz 19 18 24 16 18 23 22 16 18 21 20 17 17 21 16 19 17 18 16 15 14 12 12 10 10 9 8 10 8 12 6 7 7 4 5 4 2

San Felix Hidalgo 9 14 16 15 11 6 11 13 12 17 17 10 11 13 14 9 12 13 14 10 10 10 11 10 10 9 8 10 8 12 6 7 7 4 5 4 2

Tepeojuma 12 16 17 13 11 12 15 16 11 10 16 10 9 14 13 14 8 9 7 8 9 10 10 11 7 6 8 8 9 5 7 5 4 4 2 5 1

Tepexi de Rodriguez 8 8 9 8 5 5 7 10 8 5 6 11 6 11 9 10 5 6 4 4 7 8 7 6 5 4 4 4 5 4 3 3 1 3 4 3 0

San Felix Rijo 6 7 6 7 8 10 13 10 7 7 4 8 10 9 8 7 8 8 7 8 6 7 6 7 4 7 3 5 6 5 6 6 5 3 4 5 2

Huaquechula 6 8 7 8 10 11 14 9 7 8 5 9 11 9 8 6 7 7 6 7 6 7 4 7 5 4 3 4 6 3 7 5 5 3 4 4 1

San Juan Raboso 5 5 8 9 11 8 8 8 7 8 7 11 9 7 8 8 9 8 10 10 7 5 4 5 5 5 8 8 6 6 5 4 5 6 3 5 5

Tlapanala 7 7 6 6 8 8 10 8 6 5 2 5 7 6 6 6 6 6 7 7 4 6 4 5 4 3 3 3 5 5 5 5 4 2 3 4 1

San Lucas Colucán 2 4 7 3 6 6 4 5 5 3 5 5 4 2 3 2 2 2 1 1 1 3 2 1 2 1 2 3 3 2 0 0 0 0 0 0 0

Matzaco 11 14 17 12 14 15 17 18 17 13 19 15 17 12 14 13 11 12 11 10 9 9 7 5 5 9 8 8 9 4 6 6 7 9 7 6 4

Domingo Arenas 7 9 12 11 9 10 10 9 10 11 10 14 12 14 12 9 9 8 9 11 10 7 8 10 7 6 9 6 7 6 7 8 7 8 7 5 4

Santa Clara Ocoyucan 282 373 374 400 406 366 368 386 393 410 403 375 341 395 360 316 310 318 305 246 264 302 298 289 297 274 257 258 259 262 249 257 257 205 216 220 139

Santa Maria Acuexcomac 4 11 6 5 6 4 7 7 8 11 8 4 7 5 6 6 7 6 6 3 5 2 4 5 4 4 2 3 6 5 5 3 4 4 3 3 3

San Mateo Capultitlán 67 85 80 85 100 86 92 83 78 87 81 78 85 78 78 79 77 76 69 72 78 64 61 61 57 56 54 63 63 60 60 63 56 46 51 45 22

San Gabriel Tetzoyocan 4 5 3 4 5 8 7 6 7 5 9 8 5 8 6 5 7 6 7 8 6 5 6 6 5 3 4 6 5 5 5 5 5 3 4 4 3

Concepción Cuautla 5 5 6 3 5 3 6 5 4 6 6 4 5 5 3 3 3 5 5 4 5 3 4 3 4 3 4 2 2 1 3 2 2 2 1 2 1
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Table A5. A locality was determined as depopulating if the pre-earthquake slope of residents was 24%
lower than the post-earthquake slope of residents.

Village Name Pre-Quake Slope Post-Quake Slope (Post-Slope) −
(Pre-Slope)

San Gabriel Ixtla 64% −69% −133%

Tuzantla 20% −19% −39%

Olinalá 12% −11% −24%

Almoloya de Alquisiras 4% −14% −17%

La Compania 10% −9% −20%

San Antonio del
Rosario 2% −6% −8%

El Arenal −4% −12% −8%

Santiago Tezontlale 4% −3% −7%

El Terrero 0% −5% −5%

San Miguel Ixtapan −11% −12% −1%

Huamuxtitlán −5% −2% 3%

Chicomuselo 18% −10% −28%

Minatitlán 10% −9% −19%

Sotuta −26% −20% 6%

Tetiz −13% −35% −22%

San Felix Hidalgo 9% −45% −54%

Tepeojuma −18% −33% −15%

Tepexi de Rodriguez 9% −22% −31%

San Felix Rijo 9% −21% −30%

Huaquechula 6% −19% −25%

San Juan Raboso 12% −20% −32%

Tlapanala −14% −17% −3%

San Lucas Colucán −7% −10% −3%

Matzaco 11% −25% −36%

Domingo Arenas 29% −19% −48%

Santa Clara Ocoyucan 185% −549% −734%

Santa Maria
Acuexcomac 0% −10% −10%

San Mateo Capultitlán −13% −166% −153%

San Gabriel Tetzoyocan 23% −16% −39%
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