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Abstract: Advancements in remote sensing techniques and urban data analysis tools have enabled
the successful monitoring and detection of green spaces in a city. This study aims to develop
an index called the urban green accessibility (UGA) index, which measures people’s accessibility
to green space and represents the citywide or local characteristics of the distribution pattern of
green space. The index is defined as the sum of pedestrians’ accessibility to all vegetation points,
which consists of the normalized difference vegetation index (NDVI) with integration and choice
values from angular segment analysis. In this study, the proposed index is tested with cases of
New York, NY, and San Francisco, CA, in the US. The results reveal differences based on the significance
of streets. When analysis ranges are on a neighborhood scale, a few hotspots appear in well-known
green areas on commonly accessible streets and in local neighborhood parks on residential blocks.
The appearance of high-accessibility points in low-NDVI areas implies the potential of the efficient
and proper distribution of green spaces for pedestrians. The proposed measure is expected to help in
planning and managing green areas in cities, taking people’s accessibility and spatial relationships
into consideration.
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1. Introduction

Green space is one of the most essential elements relevant to the environmental and socioeconomic
aspects of a city, such as social class or urban development. De Ridder et al. [1] verified the role
of green space in improving the urban environment in European cities. The positive effect of
green space on the strength of social bonding [2] and public health [3,4] has also been confirmed
in earlier studies. Although the complexity of the nature–health relationship makes establishing
causality a difficult task [5], a review on extant research has indicated that natural environment
can promote population health in terms of air quality, physical activity, social cohesion and stress
reduction [6]. Triguero-Mas et al. [7] evaluated the relationships and mechanics between natural
outdoor environments and health using the interview data in Catalonia, Spain, and concluded that
green spaces are positively associated with general and mental health. In response to the importance
of green space in city landscapes, measuring the accessibility to urban green space has been a major
issue for urban researchers [8,9]. For instance, the accessibility gap between different social groups in
the UK [10] and an unbalanced distribution of urban green spaces within Africa [11] were identified in
previous research. Walkability has also been a crucial concept in determining how pedestrian-friendly
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and accessible urban green space is, in relation to the improvement of public health and equality in
park supply [12,13].

However, previous studies that measured access to urban green space have two common
limitations. First, accessibility studies have thus far mostly been carried out based on the distance
between population points and green area [14–16]. Distance-dependent measurement is insufficient in
explaining different factors that affect people’s access to green areas. Second, although urban green
elements exist in various forms (i.e., tree canopy, bush, lawn), polygon-type green space, primarily parks,
has only been included in the analysis for reasons related to the ease of data collection [17–19]. Due to
such limitations, increasing green space has been commonly suggested as one of the most direct
strategies to improve provision of green space in cities. Furthermore, the limited scope of analysis
has overlooked the complex nature of the relationship between people and green space, especially in
access situations.

Meanwhile, the recent trend of providing open source data has opened up possibilities for the
extensive use of high-resolution aerial images and various spatial data to monitor and evaluate the
urban environment. Digital orthophotography was found to be effective in analyzing the distribution
of the urban tree canopy [20–22], and street view imagery has become a promising as well as efficient
source to assess street-level environment at eye-level [23,24]. Furthermore, advancements in geographic
information systems (GIS) technology have enabled the integration of various sources of geospatial
information to assess accessibility in connection with the behavioral patterns of people or the city’s
physical or socioeconomic aspects [25]. In particular, space syntax theory, which interprets the
configuration of urban space as a network of street segments and their connections [26–29], is becoming
widely accepted in the fields of architecture and urban studies. Space syntax measures that result
from the network analysis of either street segment maps or axial maps are used to explain and predict
pedestrian movements in cities [30–33].

In this sense, there is a growing need for studies on how to utilize such advanced research
methods in an urban context to effectively evaluate the amount and distribution of urban green space
by associating it with the spatial structure of cities. Network analysis has been one of the most powerful
tools to assess green space accessibility. Chen and Chang [34] constructed a network of bus stops in
Hong Kong and suggested an optimization strategy that can help achieve equity in access to green
space. Ye et al. [35] calculated the green view index from Google Street View images and combined it
with a space syntax measure as a human-scale measurement of street greenery, in order to support
urban planning decisions by comparing the result with a top-down measurement approach.

Building upon previous studies, we aim to develop an analytical model of people’s accessibility
to green space in everyday lives by means of various indicators that explain the influence of greenness
and street network characteristics. The distinctive approach in this study is to integrate multiple
variables into individual green points that appear in the urban landscape, so that all forms of green
space can be comprehensively covered in analysis. To achieve the research objective, this research
was designed with two parts: developing the urban green accessibility (UGA) index and applying
the urban green accessibility (UGA) index to the study area. Specifically, the normalized difference
vegetation index (NDVI) and space syntax measures were obtained through a raster analysis of aerial
images and an angular segment analysis of the street network, respectively, and included in the model.
Then, we proceed by applying the developed model to the cases of New York and San Francisco
to reveal that considering greenness and street network factors in accessibility measurement better
highlights the qualitative aspects of access to urban green spaces that disagree with the quantitative
distribution of such spaces in the city. Our research makes several contributions to the existing literature.
A new measure proposed in this study is expected to provide a more human-centered evaluation
of accessibility to green spaces and help urban planners and designers establish better management
strategies for urban green spaces that are more responsive to real access situations.
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2. Model Development of the Urban Green Accessibility (UGA) Index

Following the research steps of each of the two parts, the first step was to develop the urban green
accessibility (UGA) index. Accessibility, in its most basic form, is understood as the relative proximity
of two points [36] and can be formulated using the following equation:

Accessibilityi j = f
(
wi, di j

)
(1)

where wi is the weight of point i, and di j is the distance between points i and j. This definition
connotes a positive correlation of the weight variable and a negative correlation of the distance variable
with accessibility. In general, the weight variable describes the importance of a specific factor that is
selected based on the study purpose. In other words, accessibility to a certain point increases with
the weight factor value, while it decreases as it gets farther away. Therefore, to develop the urban
green accessibility (UGA) index, this study began by defining variables that represent the weight and
distance factors in actual access situations to green areas in an urban setting. In total, three variables,
which are considered to affect accessibility, were included in the mathematical model: the greenness of
individual green points, the distance to the nearest street segment, and the topological importance of
the nearest street segment. The basic conception that explains the assumed access situation to green
points in cities is visually represented in Figure 1. Here, although various transportation methods exist
in cities, the model assumed and focused on pedestrians’ access situations, in order to measure the
accessibility to green spaces that people naturally experience in their daily environment. People can
simply approach green point i through a street segment that is adjacent to it and is in the nearest
distance—taking either street P or street Q in the case in Figure 1. For each segment that constitutes the
street network, a higher topological value represents higher traffic flow, which increases the possibility
of people reaching target point i. In addition, it is plausible that the intensity of greenness can affect
accessibility in a non-physical manner, especially in terms of people’s perception of how close they feel
to green areas. As a result, we proposed an urban green accessibility (UGA) index that includes these
relationships as follows:

UGAi =
TP ×Gi

Di
(2)
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Figure 1. Access situations to green points near a street in a city.

Note that the distance factor is in a simple inverse relationship with accessibility. Although the
power of distance parameter is commonly set to 2 in inverse distance weighting (IDW) to explain the
distance decay between any two points in a two-dimensional space [37,38], we adopt the concept of
geometric accessibility suggested by Jiang et al. [36] as access through linear segments of road network
is assumed in this study.
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Detailed information on the data collection and processing methods for each variable of the model
is further described below and Table 1.

Table 1. Description of values used for Topology and Greenness variables of the urban green accessibility
(UGA) index. NDVI: normalized difference vegetation index.

Variables

TP Gi

Choice
(Turner, 2007)

Integration
(Turner, 2007)

NDVI
(Sonwalkar et al., 2010)

Values

Bθ(x) =
∑n

i=1
∑n

j=1 σ(i,x, j)
(n−1)(n−2)/2

σ(i, x, j)
= 1, if the shortest path from
i→ j passes through x
= 0, otherwise

Cθ(x) = n∑n
i=1 Dθ(x,i)

Dθ(x, i) :
depth (length) of the shortest
path between segments x and i

NDVI = NIR−RED
NIR+RED

NIR : the spectral reflectance
of near-infrared radiation
RED: the spectral reflectance
of visible red light

2.1. Greenness Index of Green Point i: Gi

For the accessibility evaluation in the following parts of this study, the normalized difference
vegetation index (NDVI) was applied for the greenness variable to highlight the importance and role
of the green area itself as a measurement standard. This index is calculated as the ratio of the sum and
difference between the spectral reflectance of near-infrared radiation and visible red light, which can
be extracted from multiband aerial imagery [39]. During photosynthesis, the chlorophyll in the leaves
of green plants is known to absorb visible light, while the cellular structure reflects near-infrared rays.
For this reason, adjustments in the band settings of aerial images provide different results for parts
with green and nongreen elements (e.g., snow, cloud, road, etc.): a pixel that contains a green element
appears either dark under visible light radiation, due to absorption, or bright under near-infrared
radiation, due to reflection, and vice versa for pixels with nongreen elements. As the NDVI is defined
based on the biological characteristics of green plants, it has been widely applied in various studies that
primarily monitored vegetation and environmental conditions via remote sensing techniques [40–43].
In this study, the NDVI value was measured for each pixel in the raster images of the study area via
QGIS software, and those with NDVI values in the range of 0.3 to 0.8 were selected as green points [44].

2.2. Topological Importance of Street P: TP

The topology variable was defined as representing the importance that each street segment
possesses within the urban street network. In this study, the choice and integration index derived from
space syntax theory was applied. Space syntax is a series of theories and techniques that measure
the configuration of urban space to analyze the relative accessibility and hierarchy of road segments
based on the mutual topological relations within the entire road network [26,28]. Choice is useful for
understanding the flow or movement of information between spaces and is calculated by the total
number of shortest paths connecting any two segments in the region that pass through the target
segment [45]. Integration is a value indicating the spatial depth from one space to another and is
calculated by the reciprocal sum of the shortest distance between each road segment and all remaining
road segments. Angular segment analysis was conducted in depthmapX software [46] to obtain the
values for the TP variable that will represent the topology of street segments in the road network [31,47].
The analysis range was set to n (global), 400 m (1/4 mile), 800 m (1/2 mile) and 1600 m (1 mile) in the
measurement of two indexes to compare the differences in accessibility between citywide and walking
distance ranges.

2.3. The Shortest Distance between Street P and Green Point i: Di

To obtain the accessibility of green point i, we assumed that access is made through the road
network formed in the city, and applied the shortest distance to the nearest street segment P to express
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the correlation between point i and segment P. The shortest distance variable Di was obtained by
finding the vertically connecting points from green point i to street segment P using vector analysis
tools in QGIS software.

3. Implementation of the Urban Green Accessibility (UGA) Index

For the second step, the application of the urban green accessibility (UGA) index, New York, NY,
and San Francisco, CA, both in the US, were selected as case sites because of the ease of collecting
multiband aerial photographs and road centerline data of the city that is needed for analysis through
open source online platforms. To obtain aerial images of both sites, we utilized the EarthExplorer
platform that is in operation for the purpose of releasing aerial image data by the US Geological Survey
(USGS). As the platform provides search option in county-level, eight images that cover the region of
New York County and San Francisco County, taken on May 22, 2015 and June 25, 2016, respectively,
were collected in GeoTIFF format. Each image was provided as 3.75◦ latitude by 3.75◦ longitude
four-band image tiles at a resolution of 1-meter ground sample distance by the National Agriculture
Imagery Program (NAIP). Four-band images contain red, green, blue and near infrared bands of values
between 0 and 255, which represent the brightness of each spectral band. The band settings of aerial
images were altered in QGIS software to measure the NDVI values for each pixel of the raster data.
In total, 110,439,603 pixels in New York County (and its surrounding region) and 42,230,594 pixels in
San Francisco County featured NDVI values in the range of 0.3 to 0.8, and were extracted as green
points from all pixels in the aerial images. Finally, these raster data were converted into a point vector
layer for the data merging required in the following steps. The entire process of the NDVI analysis for
San Francisco is shown in Figure 2a.
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manipulation–vectorization–close-up view); (b) Angular segment analysis result (integration).

To construct the road network of each city, road centerline data were collected from different open
source platforms. The NYC Street Centerline (CSCL) of June 26, 2015 was downloaded from NYC
Open Data (opendata.cityofnewyork.us) as a road-bed representation of New York city. In case of San
Francisco, road features of June 2016 were extracted from 2016 TIGER/Line Shapefiles collected from the
US Census Bureau (www.census.gov). A total of 36,919 street segments and 34,961 street segments in

www.census.gov
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New York and San Francisco County, respectively, were processed in depthmapX software to calculate
the topological hierarchy of the street network. Choice and integration measures were calculated in
different metric radii within the city boundaries through angular segment analysis. Figure 2b depicts a
sample image of the angular segment analysis result in San Francisco. The calculation results for the
topological values of streets were then loaded into the QGIS software. By finding the nearest road
segment from each pixel that is identified as a green space, we were able to construct a merged dataset
of green points containing information on the NDVI (Gi), the distance to the nearest road segment (Di)
and the topological values of the nearest road segment (TP). By integrating these values into a single
urban green accessibility (UGA) model, we intend to assess pedestrians’ accessibility to vegetation
points in a city.

4. Characteristics of Urban Green Accessibility in San Francisco

The aim of this study is to assess pedestrians’ accessibility to vegetation points in a real urban
setting by comparing the application results of the urban green accessibility index with the quantitative
distribution pattern of green spaces in the county of New York and San Francisco. In particular,
the urban green accessibility index proposed in this study includes a variable that implies the topological
importance of a street segment to fully measure the accessibility of pedestrians in different ranges from
the whole city to walking distance. The test results for both cases are visualized in a heat map by
manipulating the layer styles in QGIS software, to easily capture the pattern of relative highs and lows.
Calculated UGA values were colored from low to high (blue to green), while the lowest values were
intentionally set as transparent to effectively show the underlying road network. Heat maps of the
UGA distribution when choice and integration indexes are applied as the TP variable are shown in
Figures 3 and 4, respectively. Each figure includes the results for analysis conducted in four different
metric radii—n (global), 400 m (1/4 mile), 800 m (1/2 mile) and 1600 m (1 mile)—to compare differences
in the accessibility of green points according to the range of access distance.

Choice value measures the number of shortest paths within the network that pass through each
street segment, thus showing high results for main roads that penetrate the road network. The results
for the distribution of urban green accessibility values when choice index is applied are shown in
Figure 3. Inevitably, in Figure 3a, Central Park, the largest and most iconic urban park in Manhattan,
presents high UGA regardless of analysis scale. In more detail, accessibility is higher at a local scale
than at a global scale, implying that the organized avenues and streets of Manhattan triggers better
pedestrian flow than vehicle traffic to Central Park. Other high UGA spots are detected in green
areas in the Bronx (the northeast of Manhattan), such as the Van Cortlandt Park, New York Botanical
Garden and Bronx Zoo. Interesting is the widespread appearance of smaller local parks in the results
of 400 m, 800 m and 1600 m analyses. Especially, riverside parks in Brooklyn that are “Down Under
the Manhattan Bridge Overpass (DUMBO)” shows that the popular scenic spot for the Manhattan
skyline becomes more accessible in walking distances. In Figure 3b, when the analysis scale includes
the entire city (n), Golden Gate Park, which is the largest park in San Francisco, and several pocket
parks in Pacific Heights, an expensive residential neighborhood in the northern-central area of the city,
are revealed to have high accessibility results. This is mainly because green spaces in these locations
are placed adjacent to long streets that pass through the city, such as Fulton Street and U.S. Route 101
near Golden Gate Park and Pacific Heights, respectively. In contrast, when the road network used for
measurement is reduced to walking distances, the accessibility results showed different distributions.
Green spaces in the central area and the northeastern corner of the city appear to have high accessibility
results. Another interesting result is observed in Lake Merced Park located in the southwest corner
of San Francisco. Despite being a 614-acre park popular for multiple purposes that is highly visible
through NDVI analysis, Lake Merced Park does not appear in Figure 3. Since choice value calculates the
number of shortest paths that pass through each segment, Lake Merced Park has been underestimated
for being located in the periphery of the constructed road network of San Francisco.
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As the integration value measures the total depth (or distance) from each segment to all the other
segments within the road network, inner areas that are relatively interpreted as “shallow” normally
show high results. Urban green accessibility distribution when integration index was applied for
calculation is shown in Figure 4. In Figure 4a, the results of global and local scale analyses do not show
any clear distinction, as the grid-like road structure of New York renders the relative depth of street
segments similar in both scales. On the contrary, in Figure 4b, Golden Gate Park, which appeared with
high accessibility values in a global scale, is either slightly or not included in the visualizations of local
scale measurements. This implies that parks that occupy larger areas promote access for people from
every corner of the city while lesser-known neighborhood parks can better appeal to people within
walking distance. Similarly, Lake Merced Park appears in the global and 400 m cases, and disappears in
the other two. The contrast between the result with global integration and results with local integration
values explains the difficulty in pedestrian access to large parks. Interesting is the slight appearance
in both Golden Gate Park and Lake Merced Park in the 400 m case compared to the other two local
scale analyses. This indicates the relative ease in accessing a large park by foot particularly when it is
located within 5-min walk.

The contrast between UGA distribution and the quantitative interpretation of green spaces with
the NDVI result will be further discussed in the following section.

5. Discussion: Analysis and Effect of Urban Green Accessibility

This study successfully develops an urban green accessibility (UGA) model and verifies its
effectiveness in measuring accessibility to green spaces through cases of New York, NY and
San Francisco, CA. Accessibility is comprehensively measured by adding two more variables other
than distance—greenness of each point and the topological importance of the nearest road segment.
The application of the UGA model to multiband aerial imagery of New York and San Francisco revealed
differences between accessibility in citywide and pedestrian ranges. While the heat map for citywide
UGA has similarities with the quantitative distribution of green space in both cities, unexpected hotspots
appear in the heat maps created for 400 m, 800 m and 1600 m. Moreover, such distinctions differ
between indexes used for the topological variable. Whether the choice or integration value was used
in the calculation resulted in a different heat map pattern, characterized by their theoretical definitions.

Further discussion is possible by applying the results to real-world situations. In Figures 5 and 6,
a comparison was made between the NDVI analysis and UGA modeling results of each topological
measure in a 1600 m analysis range, in which the typical characteristics of local scale analysis are best
confirmed. That is, we marked areas that feature low NDVI and high UGA values at the same time,
in order to reveal which areas pedestrians are likely to perceive as intimate green spaces regardless
of their size, quantity or greenness. Accordingly, in Figure 5b,c of New York, three spots were
identically labeled as A, B and C. The South Bronx area in A are surrounded by two expressways,
Cross Bronx Expressway and Bruckner Expressway, that connect it with the adjacent Upper Manhattan
and Queens regions. In areas B and C, road networks in the neighborhoods of Queens and Brooklyn are
formed in a rectilinear grid pattern with Brooklyn Queens Expressway penetrating the two boroughs.
Similarly, in Figure 6b,c of San Francisco, common hot spots were detected in the southwest and
northeast areas of the city, marked with points A and B, respectively. The road network near area A
is formed with a highway that connects the outskirts with the downtown area and many short road
segments. In area B, a diagonal path penetrates the center, and the shorter segments that diverge from
that center construct a grid-like road network. Such road structure makes the area both a passageway
and a central space in local-scale boundaries, letting it appear with high values in both analyses
using choice and integration indexes. However, anomaly is found in the result in area C, whose road
network lacks a segment passing through the area but is rather chopped into a small grid pattern.
Accordingly, high results for urban green accessibility only appear in Figure 6c. In order to discuss
these results in further detail, we confirmed green spaces in each highlighted location through Google
Maps (maps.google.com) in Figure 7. In reality, areas A and B in Figure 7a are high-density and low-
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to middle-income neighborhoods in New York City. Green spaces in this area include neighborhood
parks and cemeteries that are mainly used for recreational and memorial purposes by local residents.
In contrast, area C is rather a more vibrant location with multiple tourist spots and Downtown Brooklyn.
Especially parks located in the riverside are one of the most frequently visited places in New York City
to view the Manhattan skyline. In case of San Francisco in Figure 7b, area A is a relatively upscale
residential sector, including neighborhoods such as Forest Hill or Saint Francis Wood and consisting
of small block sizes and connected to the city’s downtown area via Market Street; area A contains
plenty of green spaces, but these are mostly for landscaping purposes. Area B is the functional center
of the city, with the financial district and various attractions; the blocks here are cut on the diagonal
by Columbus Avenue. The green spaces that appear to be highly accessible in this study include
Washington Square, Pioneer Park, Lombard Street and Ina Coolbrith Park.
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6. Conclusions

Until now, various studies in the past that attempted to measure accessibility to green spaces have
overemphasized the distance between population centers and urban parks that exist in a polygon-shaped
data format [10,11]. However, this study complements the conventional research approaches in two
ways. First, by analyzing each pixel of aerial imagery, not only were parks in polygon shapes included
in the research scope but single trees and bushes were as well. Second, the greenness index of each green
element and road network topology was included in the measurement of accessibility, resulting in the
discovery that access to green spaces is affected differently in various situations rather than being solely
dependent on the quantitative number of green elements. In fact, the green spaces that resulted with
high accessibility in the UGA analysis were not major parks of New York and San Francisco but those
that were linked to other urban functions such as tourist spots, residential areas and public squares.

In conclusion, this study proposes a new measure to efficiently evaluate the accessibility of
green spaces with the use of open-source spatial data. In particular, the study extends the discussion
beyond a one-dimensional approach, which simply calls for a quantitative increase and enables
the suggestion of qualitative solutions based on people’s accessibility and spatial relation to green
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spaces. Particularly, this study can provide implications and basic information to governmental
planning officials on how to establish better management strategies for urban green spaces in cities.
Furthermore, the overall research design and results in this study suggest the prudence of constructing
a road centerline and aerial imagery database to enable the widespread application of this model to
other cities for comparative analyses in further studies.

However, although this study has made various contributions, limitations should be highlighted
for future work as well. In order to better validate the model and elaborate the accessibility to various
forms of green space, a correlation analysis between NDVI and UGA calculations can help compare the
quantitative and qualitative assessments. There is also potential for improvement in the UGA model
by incorporating vehicle-driving factors to further explain the complex mechanisms in people’s access
to green spaces. Since the proposed accessibility model was applied to a limited number of cases,
it would be necessary to examine the proposed model in more cities. Testing the UGA model with
multiple cities and confirming whether it gives consistent results would help generalize the model to
be used in future urban green space accessibility studies. For instance, selecting different cities from the
US as a comparison group for the results in this study and testing the model in pedestrian-dominant
cities from different regions, such as Asia or Europe, are two of the feasible options to be considered
for further studies. Additionally, it is necessary to collect data from various cities in a uniform format.
However, due to difficulties in widespread application, it is suggested that conducting an interview
or questionnaire with residents of a city could help confirm whether the derived result in the related
study coincides with the actual perception or behavior of the city residents.
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