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Abstract: Landslide identification is a fundamental step enabling the assessment of landslide
susceptibility and determining the associated risks. Landslide identification by conventional methods
is often time-consuming, therefore alternative techniques, including automatic approaches based on
remote sensing data, have captured the interest among researchers in recent decades. By providing
a highly detailed digital elevation model (DEM), airborne laser scanning (LiDAR) allows effective
landslide identification, especially in forested areas. In the present study, object-based image analysis
(OBIA) was applied to landslide detection by utilizing LiDAR-derived data. In contrast to previous
investigations, our analysis was performed on forested and agricultural areas, where cultivation
pressure has degraded specific landslide geomorphology. A diverse variety of aspects that influence
OBIA accuracy in landslide detection have been considered: DEM resolution, segmentation scale, and
feature selection. Finally, using DEM delivered layers and OBIA, landslide was identified with an
overall accuracy (OA) of 85% and a kappa index (KIA) equal to 0.60, which illustrates the effectiveness
of the proposed approach. In the end, a field investigation was performed in order to evaluate
the results achieved by applying an automatic OBIA approach. The advantages and challenges of
automatic approaches for landslide identification for various land use were also discussed. Final
remarks underline that effective landslide detection in forested areas could be achieved while this is
still challenging in agricultural areas.

Keywords: landslide detection; OBIA; segmentation; DEM; LiDAR

1. Introduction

A landslide is a movement of a mass of rocks, debris, or earth down a slope [1]. This natural
hazard can lead to severe consequences such as economic and infrastructure damage and human
casualties [2].

To mitigate the negative effects of landslide occurrence, an effective risk assessment is
unavoidable [3]. Landslide identification in a specific study area is a fundamental step, which
enables an assessment of landslide susceptibility and the associated risk [3–5]. Landslide identification
can be carried out using a variety of techniques, which are mainly divided into conventional and remote
sensing techniques [6,7]. The conventional methods mainly comprise geomorphological field mapping,
aerial photo interpretation and surface and subsurface monitoring, which make these methods often
time-consuming [7]. Moreover, landslide detection is extremely challenging and, sometimes, even
unachievable, particularly in mountainous areas covered by dense vegetation [8,9]. Recently, remote
sensing technologies have increased in importance and they are mainly focused on data delivered by
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synthetic aperture radar (SAR), high resolution multi-spectral images [10] and digital elevation models
(DEMs) obtained from space or airborne sensors [3,11–13].

Among these, airborne laser scanning (LiDAR) provides highly detailed DEM, thus out-performing
traditional surveying techniques [14]. Analysis of DEM facilitates conventional methods as well as
accelerates the development of automated approaches for landslide detection, especially in mountainous
areas where accessibility is problematic. Moreover, due to the ability to penetrate vegetation, it is
also possible to generate a highly detailed DEM in forested areas [15]. Landslide detection using
detailed DEM can be performed using a pixel-based approach (PBA), which is based on the analysis of
individual pixel values, which are then classified into the corresponding classes [16]. An alternative and
relatively recent method, which out-performs PBA, is an object based image analysis (OBIA) [17,18].
OBIA uses the properties of image objects, derived from the segmentation process, for their subsequent
classification [19].

There are several examples of OBIA applications for landslide identification using optical remote
sensing data. However, there are only a few that investigate the application of OBIA to landslide
detection by only utilizing DEM data and its derivatives. Martha et al. [20] utilized 5.8 m multispectral
data (from Resourcesat-1) and a 10 m DEM (generated from 2.5 m Cartosat-1 imagery) for landslide
identification in the rugged Himalayas in India. DEM-derivatives such as slope, terrain curvature,
hillshade, and flow direction, along with the DEM and normalized difference vegetation index (NDVI)
were used as input layers for OBIA. Five landslide types were detected by this method with 76.4%
recognition and 69.1% classification accuracies. Seijmonsbergen et al. [21] applied multi-temporal
LiDAR derived DEMs for geomorphological change analysis in western Austria. DEM-derived layers
such as the slope angle layer, an elevation percentile layer and two topographic openness layers (with
kernel sizes of 25 m and 250 m) together with multi-temporal, ortho-rectified, panchromatic, color, and
infrared aerial photos, have been applied to stratified OBIA classification. This allows for the mapping
of six geomorphological features with an overall accuracy of 84%. Van Den Eeckhaut et al. [9] carried
out the OBIA by using only DEM. They utilized DEM-derivatives such as mean and standard deviation
of slope, curvature, roughness, openness, and Sky-View factor (SVF). This approach comprised two
stages: Firstly, after segmentation, large agricultural fields and potential landslides were identified;
secondly, two more classes were distinguished, such as landslide bodies and other areas. The overall
accuracy of this approach is approximately 70% for a landslide body while in the case of identifying
only the main scarps, the accuracy increased to 90%. Li et al. [17] utilized only DEM-derivatives such
as DEM, slope, aspect, and surface roughness and their textural features. After feature selection, they
resign from texture-related features, which suggested that they might be of little use. Then, using the
selected variables and random forest (RF) and support vector machine (SVM) classification, automatic
landslide identification was performed and overall accuracy of 77.36% for the RF algorithm and 76.87%
for the SVM algorithm was achieved.

Our work was inspired by two studies given by Van Den Eeckhaut et al. [9] and Li et al. [17],
which present an application of OBIA and DEM data for forested landslide detection. Automatic
landslide detection methods benefit from the uniqueness of landslide geomorphology (characteristic
roughness and landslide features such as main and minor scarps, crack, etc.). However, for rural areas,
typical landslide features can be degraded, or even vanished, due to direct or surrounding agricultural
activities. Therefore, having considered these issues, an open question remains to be explored: Based
on DEM derivatives only, what OBIA approach is scalable to various land cover conditions? This
research is an attempt to answer this question. We have applied the OBIA approach to areas with
different land cover. We test OBIA scalability on the heavily agricultural and vegetated areas in the
Polish Carpathians. We discuss the opportunities and challenges of automatic approaches under
diverse land cover conditions. An additional objective of our research is to analyze various aspects
influencing OBIA performance in the context of automatic landslide detection. More specifically, we
analyze the potential of additional DEM derivative layers and performed texture analysis in the context



ISPRS Int. J. Geo-Inf. 2019, 8, 321 3 of 18

of OBIA enrichment. Another novel aspect of this study is the investigation of OBIA performance
depending on DEM resolution.

2. Study Area

The study area was located in the central part of the Outer Carpathians (in the Małopolskie
municipality, Poland), close to Rożnów Lake (Figure 1), and covered latitudes 49◦43′ N to 49◦46′ N
and longitudes 20◦38′ E to 20◦43′ E. Most of the study area consisted of agricultural land (42%), while
forests accounted for 34% of the total area [22]. Despite the existence of landslides and landslide-prone
areas, the affected areas were still extensively used for economic purposes [22]. The broad analysis of
landslide density in various land use classes for the presented study area can be found in Kroh [22].
Landslide identification is challenging due to extensive land management, in the form of farmland,
grasslands, and pasture, and continuous development of constructions in this area (Figure 2).
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Figure 2. Perspective view of the study area, captured during the field investigation.

From a geological point of view, our study area is located in an area of allochthones mantle
built up mainly from flysch deposits [22–25]. Flysch deposits (i.e., clearly stratified rock series
consisting of numerous and alternately arranged layers of sandstones, siltstones, and shales, with
rare layers of conglomerates, marls, or limestone) generate very favorable conditions for landslide
occurrence [3,8,24,25]. An alternating arrangement of permeable and impermeable materials implies a
greater landslide occurrence probability. Additionally, the Łososina River flows through the study
area and this is the left tributary of the Dunajec River, which is a mountainous river with a rocky and
stony bottom, characterized by short-term and significant water surges [23]. During these surges,
water undercuts the slope, causing landslides [23,25]. This can be clearly observed in Figure 1, where
landslides are mostly located close to the Rożnów Lake or river valleys. Another factor causing
landslides within the study area is the infiltration of rainwater, which results in water accumulation
and increases pore water pressure. This reduces the soil strength and increases stress, abrasion, and
erosion [23,25].

3. Data

In this study, three datasets were used: A landslide inventory map from the Polish Geological
Institute database (Section 3.1), LiDAR data (Section 3.2; which allowed us to derive a high resolution
DEM) and the Open Street Map database (roads, Section 3.3.1 and river and streams, Section 3.3.2).

3.1. Landslide Inventory Map

The Carpathian Division of the Polish Geological Institute developed a Landslide Counteracting
System, called SOPO (http://geoportal.pgi.gov.pl/portal/page/portal/SOPO/Wyszukaj3). The SOPO
project mainly aims to develop and deliver geological data and information about landslide locations
and areas prone to mass movements in Poland. These maps provide significant information for spatial
planning and management institutions [3,13,23,25] and help them to avoid landslide-endangered areas
when planning building and infrastructure development. SOPO aims minimizing potential losses
resulting from landslide activity [22,25].

Existing landslide-related information within the SOPO database was acquired using conventional
techniques, mostly using field reconnaissance, visual interpretation of aerial photographs and analysis
of historical data. Landslide identification over the study area was carried out in 2010 to 2011 [25,26].
The investigation covered an area of 26 km2, of which 6.72 km2 are affected by landslides. This means
that landslides occupy almost 25% of the entire study area. 372 landslides were identified with areas
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ranging from 500 m2 to almost 3000 m2 [25,26]. Following Vernes [27] updated classification provided
by Hungr et al. [28], landslides within the study area are represented by rock rotational, clay/silt
rotational, planar, and compound slides, which are slow to very slow-moving. Slides are mostly
located on the slopes of valleys and water reservoirs and places where backward erosion increases
slope failure, such as areas around roads and rivers [23,25].

3.2. LiDAR Data

LiDAR data were collected in the framework of the Country’s Protection System, called the ISOK
project (http://www.isok.gov.pl). Point clouds were captured using the Riegl LiteMapper 6800i system,
based on the Q680i laser scanner in the year 2012. The planimetric density of the point cloud is 4
to 6 points per square meter and the estimated RMSE for the height component is approximately
0.15 m [29]. After the point cloud filtering, the final DEM (representing bare earth topography) was
generated at a resolution of 0.5 m [13].

3.3. Auxiliary Data

We used auxiliary data for the segmentation step because landslides are mostly located on the
natural slopes of valleys and places where backward erosion increases landfalls, such as areas around
roads and rivers. For a better representation of landslide object geometry (especially in the case of the
landslide foot located close to rivers or roads) road and river layers were included into the segmentation
process. However, this process does not affect landslides located far from roads or rivers. In these
cases, the segmentation was performed without consideration of auxiliary data.

3.3.1. Road Network

The road layer was captured by the OpenStreetMap platform, which is a free map service that
provides vector data for the whole world. The road network acquired by OSM has been updated at
various times and the oldest update was recorded in 2012. The acquired data was visually validated
using satellite imagery available on Google Earth and a good match with the contours represented on
the DEM was observed. Based on visual evaluation, OSM road data represents all paved roads. Small
dirt roads were not been included in this data. Many researchers stated that the high road density
in mountainous areas increases the probability of landslide activation [3,9,30–34]. The main reason
for this is that roads may redistribute and concentrate surface water flow, undercut the slopes, and
break the rock structures and, therefore, decrease the slope stability [35]. The road network within the
study area was very dense (Figure 1); therefore, for a precise segmentation process, the road network
was utilized.

3.3.2. Generation of Accurate River and Stream Networks

Based on visual inspection of satellite data in Google Earth and shaded DEM, many small rivers
and streams were observed within the study area, which were not presented on OSM. Since the
OSM rivers layer contained only the Lososina River and Rożnów Lake, we decided to extract a more
complete river network by calculating the flow direction and flow accumulation from the DEM. Since
river network extraction was not a goal of the research and this was only used for better representation
of the segmented object in the conceptual term, we decided to extract this network by calculating the
flow direction and flow accumulation by using only DEM. To identify streams and watercourses, we
performed classification of flow accumulation values. This classification was carried out using natural
breaks method. Six classes were classified where the first three classes with the highest values were
considered to be the best for river and watercourse extraction. This threshold was suitable enough
to digitally represent the rivers, based on visual interpretation. Data from rivers and streams are
considered to be helpful in the segmentation process, where landslides usually border the rivers or
streams [9]. All analyses performed within this subsection were performed using ArcGIS.

http://www.isok.gov.pl
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4. Methodology

The overall methodology is presented in Figure 3 while landslide detection using OBIA is presented
in Figure 4. Besides landslide detection, significance analysis of the different aspects influencing OBIA
was also analyzed. This was performed by comparing accuracy indexes from various strategies (which
involve various data and parameters). The starting point for further investigation was the generation
of the DEM. Since our study aimed, inter alia, at determining the impact of the DEM resolution on
the accuracy of the OBIA classification, DEMs with a resolution of 1 m up to 10 m were created by
resampling original DEM with the majority of elevation values. Then the river’s pixels were excluded
from the reference data by applying the previously extracted, precise rivers and streams network. All
analyses were performed using ArcGIS and eCognition software.
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4.1. Generation of First and Second-order DEM-derivatives

Slope was considered as a direct indicator of landslides. Its exposition (aspect) can also influence
landslide creation [3]. Openness as the difference between original DEM and smoothed DEM presents
residual topography, which reflects landslide characteristic signatures [9,13]. Similarly, curvature
represents concavity and convexity and can indicate the main scarp, which is concave in its geometry [3].
In [13], roughness, openness, and curvature and in [9] slope, aspect, curvature, roughness, openness,
and the Sky-View factor (SVF) have been considered as important variables for landslide detection.
Li et al. [17] also considered slope, aspect, and texture layers as useful for landslide detection.
According to previous findings [5,13,36], a hillshade layer is especially informative for landslide
detection, therefore, it was used in this research [13,36]. The above mentioned topographical layers
are currently widely applied in various landslide-related studies, therefore broad descriptions of
these layers is presented in [3,5,9,13,17,36]. Based on previous experiences aspect, curvature, slope
roughness, openness, SVF, hillshade, and DEM were also used in this study. ArcGIS software and
Relief Visualization Toolbox were applied for calculation of these derivatives. Size of the calculation
matrix was selected based on [13]. Due to the space limitation, a graphical representation of this
DEM-derivatives and its relation to landslides can be found in our previous studies in [3,13,36].
According to previous findings [13,36], a hillshade layer was also used in this investigation. It was
decided to call them first-order DEM-derivatives because they are diverse mathematical computations
of DEM. Since textural features consider the spatial relationship between pixels [17,37], the layers
of entropy, correlation, angular second moment, homogeneity, contrast, and dissimilarity were
implemented. These layers have been called second-order DEM-derivatives, because they were
calculated from first-order DEM-derivatives. Each second-order layer (entropy, homogeneity, etc.)
was calculated from all first-order DEM derivatives. Specifically, entropy was calculated from slope,
DEM, aspect, etc. This provides a total of 64 layers (eight first-order multiplied by eight second-order
layers). These measures of textural image features are defined, inter alia, in [17,37]. Moreover, after the
segmentation process also the minimum, maximum, mean, and standard deviation were calculated for
each segmented object and all DEM derivatives. These second-order DEM-derivatives were calculated
using eCognition software.

4.2. Classification Using OBIA

4.2.1. Segmentation

The general concept of OBIA classification is presented in Figure 4. It comprised of subsequent
steps, namely multiresolution segmentation, classification, and post-processing. eCognition was
considered to be the most suitable software for this purposes and was used for all of the steps described
in this section. Multiresolution segmentation (MRS) is the widely used method for segmentation
purposes [17]. It is a bottom-up segmentation based on a grouping technique. MRS uses region growing
algorithms that, starting from individual pixels, connect the most similar neighboring regions, as long
as the user-defined threshold factor of internal heterogeneity is not exceeded. The algorithm uses three
parameters: Scale, shape weight, and compactness. For the MRS, first-order DEM derivatives and
auxiliary data with the same weights were applied.

The selection of an appropriate scale is probably the most important step. The scale should
consider the resolution of the input data used as well as the size and complexity of the landslides within
the study area. To eliminate large agricultural fields and to find potential landslides, ref. [9] applied,
for 2 m DEM resolution, two scales equal to 13 and 35 representing object areas of 53 m2 (13 × 4 m2)
and 140 m2 (35 × 4 m2). Li et al. [17] selected the scale parameter based on an iterative trial-and-error
optimization method for the 3 m DEM resolution they visually selected the segmentation result with a
scale value of 10, which is equivalent to an area of 90 m2 (10 × 9 m2). Similar to the aforementioned
papers, in this study we also tested a wide range of scales, covering values from 10 up to 130. For 2 m
DEM, it was found that the optimal scale parameter was between 20 and 40, which referred to an
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object area between 80 m2 and 160 m2. For the selection of scale parameters, the DEM resolution and
desirable area of segmented object have to jointly be taken into account.

4.2.2. Training and Validation Dataset

For supervised classification, training samples are necessary. Stratified random sampling design
suffers from the effects of spatial auto-correlation [37,38] and, therefore, can artificially influence
identification results. To avoid such shortcomings, randomly selected landslides sample objects (SLS)
and non-landslide sample objects (SNLS) were considered in this study. Table 1 presents statistics of
selected training samples. Chen et al. [37] and Li et al. [17] utilized a lot of training data (50% of the
landslide objects and non-landslide objects ≈ 11 km2, when the study area covered 21.6 km2) and,
thus, the results were very close to the reference polygons. In contrast, we tested whether using a
smaller amount of training samples led to worse identification results. Therefore, based on Table 1, our
training samples utilized around 20% of the total study area

Table 1. Training and validation dataset.

Training Dataset (km2) Validation Dataset (km2) Total Dataset (km2)

Landslides 2.01 4.71 6.72

Non-landslides 3.11 16.17 19.28

Total 5.12 20.88 26.00

4.2.3. SVM Classification

After the segmentation and training sample selection from referenced data acquired from SOPO,
supervised classification was performed. Minimum, maximum, standard deviation, and mean values
of segmented objects were used from each DEM derivative layer and classified using SVM classification.
Several publications demonstrated an effective performance of the support vector machine (SVM)
classification when compared to other supervised classification methods [5,13]. The SVM classification
searches for an optimal hyperplane that separates the two classes by maximizing the margin between
the nearest class points; the points lying at the borders are called vector supports and the center of the
margin is the optimal separating hyperplane. In the case where data were not linearly separable, data
points were projected onto a higher dimensional space in which data points effectively became linearly
separable. For this projection, implementation using kernel techniques is necessary [39]. The most
popular type of kernel functions used in SVMs is radial basis functions. This type of kernel function
was also used in this study. Other SVM parameters implemented in eCognition were used as defaults.

4.3. Various Strategies of OBIA Classification Used for Multi-Aspect Significance Assessment

Based on Figure 3, we mainly analyzed four crucial aspects, which influence the performance
of the OBIA classification. Specifically, we analyzed: (1) DEM resolution, (2) segmentation scale,
(3) significance of DEM derivatives, and (4) how accuracy changes when particular DEM derivatives
were subsequently added.

Having considered our previous work [5,13], the finest DEM resolution is not always the best
choice. Therefore, we tested various DEM resolutions and their effect on OBIA performance. DEM
resolution directly influences the selection of the scale, which is used for image segmentation, thus,
we also tested this parameter. Finally, we also assessed the significance of each DEM-derivative in
landslide detection using OBIA. This was performed via many single-layer OBIA classifications and
analysis of accuracy indexes (OA, KIA). This significance assessment was performed for first- and
second-order DEM derivatives. Li et al. [17] revealed that second-order layers (texture) do not increase
identification accuracy. Therefore, an additional goal of the present study was to verify this fact
and to test the second-order features effectivity in another study area with different land uses. The
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studies that inspired us [9,17] were performed for forest areas only. Our investigation also covered
agricultural areas.

Independently, we checked how the accuracy of the classification would subsequently change by
adding each layer into the classification. As described in Section 4.1, second-order DEM derivatives
were calculated from first-order DEM derivatives. Therefore, starting from the entropy calculated from
eight first-order DEM derivatives, an additional second-order layer calculated also from first-order
layers was added subsequently. Finally, taking into account eight first-order DEM derivative and eight
second-order derivatives, 64 layers were used (in the end of the Figure 6b.)

4.4. Post-Classification Processing and Accuracy Assessment

After significance assessment and selection of the most suitable DEM resolution, segmentation
scale, and DEM-derivatives, the final landslide detection was performed by applying post-processing
steps in order to refine the final results. The aim of the post-processing step is to remove false
positive results from the classification results. Despite the fact that river pixels were removed from
the training process, some false positive objects still appeared in the results. This is common in the
river-beds or agricultural scarps, where geomorphology is very similar to the landslide. However,
these false positives can be removed by applying post-processing algorithms. Four post-processing
steps were applied in our investigations (Figure 4). Firstly, a tool named sign class by thematic layer
within eCognition software was applied. This allowed us to group classify objects into one class
with consideration of thematic layers. Secondly, by analyzing the geometry of landslides, it could
be observed that they were characterized by consistent areas. The landslide objects are represented
as closed objects without “holes” inside them. In GIS language these holes are called ‘do-nut’ holes,
which usually need to be filled (some islands of pixels/objects, which were somehow not classified as
landslides and they are not desirable). Therefore, closing geometry algorithms were used to exclude
holes inside the detected landslide objects. Thirdly, by analyzing the geometry of the landslide segments
it can be observed that landslide objects were not long and narrow (e.g., 1 m in width and 50 m in
length), thus objects having such geometrical properties should be eliminated from the landslide class.
To apply this, a length to width index was evaluated. Our result shows that elimination of objects
whose length/width index was greater than 5 refined the detection results. This threshold was assessed
based on a visual interpretation of randomly selected false positive objects, resulting from the OBIA
classification. Moreover, it was noted that on the resulting classification map, there were a lot of objects
with a very small area, not adjacent to other objects; they did not indicate the existence of landslides in
those places. Therefore, the size of the landslides that existed in the studied area was investigated.
Concerning reference data, the smallest landslide in this area covered an area of 500 m2. Therefore, this
value was set up as the threshold and landslide objects that were detected, which were smaller than
this threshold were removed from the final landslide class. In the case of transferability to another
study area, this threshold should be assessed according to the minimum landslide size in the given
study area. However, it is post-processing that only refined the final results, thus, KIA was increased
from 0.55 into 0.61 and OA was increased from 83.4% into 85.5%.

In order to assess the accuracy of the results, two indices were applied: Kappa index (KIA) and
overall accuracy (OA). The OA shows the sum of correctly classified objects divided by the total object
number. The Kappa index is extensively used in accuracy assessment of classifications [13,17,39]. The
KIA measures the agreement between a classification and truth values. A kappa value of 1 represents
perfect agreement, while a value of 0 represents no agreement. For accuracy assessment, we adopted
these indices to measure the agreement between the results achieved and the reference data from
SOPO database (validation dataset, see Section 4.2.2). eCognition was used in this work, for all steps
described in this section.
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5. Results

Besides the OBIA analysis, a significance analysis of first- and second-order DEM derivatives,
DEM resolution and segmentation scale were evaluated. All of these analyses are presented in the
following subsections.

5.1. DEM Derivatives Significance Assessment

The first step in methodology processing was to analyze the significance of the selected DEM
derivatives. Based on Figure 5a it can be observed that OA and KIA values were quite similar for
particular layers. The results indicated that the selection of first-order DEM derivatives was appropriate
and each of them were relevant and provided valuable information for landslide detection processing.
Based on OA and KIA values (Figure 5), slope, curvature, and hillshade layers were slightly more
significant than other layers. Identification of a landslide using only the slope layer provided 72% of
OA and KIA were equal to 0.30, while using the curvature layer, OA and KIA were equal to 72% and
0.28 was achieved, respectively. As was observed on Figure 5b, the second-order analysis of mean
standard deviation and second moment had a KIA index and OA close to zero, while other layers had
similar values of OA and KIA index.
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DEM-derivatives, and (b) second-order DEM-derivatives.

Based on the result provided by the significance assessment that was presented on Figure 5,
particular DEM derivatives were subsequently added as an input dataset. Then classification was
performed for a given stack of layers in order to evaluate the classification accuracy when using a
given combination of input layers. Input layers were added successively in their order of decreasing
significance. Figure 6a shows the accuracy increase when input layers (first-order derivatives) were
successively added. It can be observed that by using more than four of the most significant layers, the
accuracy of landslide identification did not increase significantly (the OA and KIA were almost stable).
If the subsequently added layers were not ordered based on their significance, the subsequent OA and
KIA could not adequately increase, however, ordering issues were not analyzed in this research.

In Figure 6b, the OA and KIA indices of subsequently added second-order DEM derivatives are
presented. When analyzing Figure 6b it can be seen that the initial four second-order derivatives
provided the bigger increase of accuracy. Based on this, it can be observed that a similar situation
existed in both situations (the first- and the second-order DEM derivatives). Very small changes in
OA and KIA were observed when a fifth and sixth layer was added to the input dataset. However,
the KIA index and OA did not exceed 0.4 and 0.8, respectively. When comparing these results to the
first-order derivatives (OA = 0.85 and KIA = 0.55), it could be concluded that better accuracy could be
achieved with a first-order DEM derived layer, therefore the application of other, second-order layers
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was abandoned from further processing. Thus, only eight first-order DEM-derivatives were used
for the significance assessment of DEM resolution, segmentation scale, and final landslide detected
map generation.
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and (b) second-order DEM-derived layers.

5.2. Scale Significance and DEM Resolution Assessment

After evaluation of the input DEM derivative layers, the scale size was evaluated. It can be
observed that with increasing scale, OA and KIA decreased rapidly when the scale was greater than 40.

For the scale equal to 20, significance of DEM resolution was also evaluated and presented in
Figure 7b. It can be seen that the classification accuracy for data with a resolution between 2 m and 5 m
remained stable. The highest OA value was recorded for the 2 m × 2 m dataset (OA = 0.8340), while
the highest KIA was obtained for the 5 m × 5 m data (KIA = 0.5541). The accuracy of the classification
using a resolution above 5 m was clearly degraded.
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5.3. Post-Processing and Final OBIA-Derived Landslide Map Generation

After the classification step, post-processing algorithms were applied in order to achieve a final
map showing the detected landslides. For first-order DEM-derivatives, four steps were performed,
including assigning class by thematic layer, object closing, thresholding of length/width index, and
minimum object analysis. As a thematic layer, we used the river and road network. A final landslide
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map was generated by means of OBIA, 2 m DEM, first-order DEM-derivatives, and post-processing
with OA and KIA equal to 85.50% and 0.6, respectively (Figure 8 and Table 2).
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Table 2. Accuracy assessment (confusion matrix) of the final landslide map.

No Landslide Objects Landslide Objects

Producer Accuracy 0.89 0.71

User Accuracy 0.91 0.67

KIA 0.58 0.61

6. Discussion

Discussion of the results described can be divided into four subsections: Section 6.1—DEM
derivative significance, Section 6.2—segmentation scale and DEM resolution, Section 6.3—capabilities
and limitations of automatic approaches, and Section 6.4—OBIA versus PBA.

6.1. DEM Derivative Significance

Among the tested DEM derivatives, first-order DEM derivatives (such as slope, aspect, curvature,
hillshade, openness, SVF, and roughness) provide useful topographical information for automatic
identification of landslides. Furthermore, our results showed that using more than four input first-order
derivatives did not significantly increase classification accuracy. Thus, these layers could be omitted in
cases where input layers are limited.
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Second-order DEM derived layers (texture layers) were significantly less useful for automatic
landslide identification than first-order DEM derived layers because they did not provide effective
information, retrievable by OBIA. Moreover, the application of second-order features was more time
consuming, especially in the classification training process [17] confirmed that second-order features
are of less use.

6.2. Segmentation Scale and DEM Resolution

The authors of previous studies [13] found that high resolution DEM was not effective for automatic
landslide mapping using PBA. In the our investigations, we found that OBIA was not sensitive to
the DEM resolution used and it was found that the resolutions between 2 m and 5 m achieved the
best accuracy of automatic landslide detection using OBIA. The accuracy of the classification using
a resolution above 5 m was clearly degraded. This is mostly contributed to the loss of details in the
DEM and characteristic landslide morphology cannot be represented on such a coarse DEM. Scale is a
very important parameter for the segmentation process. For 2 m DEM, it was found that the optimal
scale parameter was between 20 and 40. It is worth considering that the segmentation scale is directly
related to the DEM resolution used. For a segmentation scale equal to 25, DEM resolution between
2 m and 5 m provided the best results. Thus, in order to select an appropriate segmentation scale
and DEM resolution, both aspects have to be jointly examined. Therefore, for effective consideration,
the area of segments should be used. The best accuracy was demonstrated for an object covering
an area of approximately 100 m2. This value depends on the landslide size within the study area.
However, similar areas of segmented object equal to 90 m2 were reported as also being effective by
other authors [9,17]. Choosing the right scale is currently the subject of many studies, as it is a very
challenging issue. It is difficult to determine a method that would mathematically select appropriate
scale for the specific study area.

6.3. Capabilities and Limitations of Automatic Approaches

Kroh et al. [22] reported that there are no land changes within the study area, resulting from
landslide activity. Around 34% of the study area is covered by forest and 40% is covered by agriculture.
Landslides within the study area are slow and very slow forming, therefore their activity does not
imply a loss of vegetation. Simultaneously, human activity (e.g., agriculture) smooths or even erases
typical landslide features, which makes landslide identification extremely challenging. Despite the
achievements of OA and KIA index, it is worth highlighting the complexity and challenges of automatic
approaches for landslide identification. These approaches can be effectively applied in forested areas,
where the morphology of the terrain has not been greatly altered by human activities. In Figure 9,
detection of the landslides covered by forest is presented. Green areas represent the existing landslide
database and pink areas represent landslides detected by means of our presented approach. This
picture underlines the performance of the automatic approach. Based on the reference data provided
by conventional methods, two diverse landslides were mapped (Figure 9d). However, the automatic
approach using OBIA identified the area as being one landslide (Figure 9c). Visual interpretation of
the DEM derivatives showed that it is, in fact, one landslide. The imprecise identification is probably
connected to limited terrain visibility in the forested areas as well as the unavailability of high-resolution
DEM data during the landslide investigation.

On the contrary, where landslide vanishing factors appear, it is very challenging and even
impossible to precisely detect landslides using automatic approaches. Figure 10 presents an example
that demonstrated the limitations of the automatic OBIA approach. In this case, the morphology was
changed by agricultural activities, as well as natural processes such as denudation etc. In such a case,
topographic information, provided by DEM alone, was insufficient to detect landslides efficiently.
In the present study, OBIA was not able to detect the landslide completely (see Figure 10c).
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Landslide images taken during field reconnaissance are presented in Figure 11. It could be
observed that land cultivation changes the topography significantly. Even during fieldwork, it can be
very difficult to distinguish landslide areas from non-landslide areas.
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6.4. OBIA versus PBA

PBA for automatic landslide identification in this study area was examined in depth during our
previous research work [13]. The same study area, input data, SVM classifier but various approaches
or units (pixels/objects) were used in this research and in [13]. The last one utilizes pixels while this
paper utilized objects. Based on the results obtained within this work and the aforementioned paper,
it can be stated that OBIA provides better accuracy than PBA. Comparing these two approaches for
5 m DEM resolution and SVM classification, the KIA index was 0.237 and 0.5541 for PBA and OBIA,
respectively. This means that OBIA out-performed PBA. A similar conclusion was also presented
by [17]. Moreover, when comparing our results with those achieved in the aforementioned paper, OBIA
shows poor sensitivity to the selected DEM resolution while PBA was very sensitive to the selected
DEM resolution. From another perspective, PBA could also achieve favorable results (KIA = 0.55),
largely by using a coarser DEM resolution. The probable explanation for this is that PBA is based on
individual pixels and very fine DEM resolution provides noisy results. OBIA is based on segments,
therefore the results were more consistent. Contrary to PBA, OBIA demonstrated the best accuracy for
DEM resolution between 2 and 5 m.

7. Conclusions

This research investigated OBIA applicability and performance for landslide identification, based
on DEM data obtained from LiDAR in a study area of flysch deposits in the Polish Carpathians.
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Application of an experimentally defined set of rules allowed for effective landslide detection. The
methodology was tested in an area affected by more than 370 landslides [25,26]. The identification
procedure included (1) the preparation of DEM derivatives, (2) multi-resolution segmentation,
(3) classification using SVM, and (4) post-processing classification refinement. Besides landslide
identification, the diverse aspects influencing this approach (such as DEM resolution, segmentation
scale, and the selection of DEM-derived input layers) were analyzed.

Based on a sensitivity analysis, the following features were chosen for the OBIA: Mean, standard
deviation, minimum, and maximum of eight prepared DEM-derivatives, i.e., DEM, aspect, slope,
curvature, roughness, openness, Sky-View factor, and hillshade. The multi-stage feature selection
allowed for the exclusion of textural features because they did not improve the final accuracy but
significantly extended the algorithm’s working time.

Furthermore, other findings showed that OBIA was not sensitive to the resolution used however,
a resolution between 2 m and 5 m allowed for the best accuracy in landslide identification. On the
other hand, the results showed that the scale was also a very crucial parameter for OBIA applications
in landslide detection. In this perspective, for a 2 m DEM resolution and a scale between 20 and 40,
OBIA provided outstanding results.

By comparing our results with those from previous research studies [13] it was concluded that
OBIA performed better than PBA for the same study area, under the same DEM resolution and
classifier used.

In summary, the presented algorithm effectively identified landslide areas with an OA of 85% and
a KIA of 0.60, revealing the potential of OBIA in landslide identification, especially in forested and
agricultural areas.
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