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Abstract: Speed detection of a moving object using an optical camera has always been an important
subject to study in computer vision. This is one of the key components to address in many application
areas, such as transportation systems, military and naval applications, and robotics. In this study,
we implemented a speed detection system for multiple moving objects on the ground from a
moving platform in the air. A detect-and-track approach is used for primary tracking of the objects.
Faster R-CNN (region-based convolutional neural network) is applied to detect the objects, and a
discriminative correlation filter with CSRT (channel and spatial reliability tracking) is used for
tracking. Feature-based image alignment (FBIA) is done for each frame to get the proper object
location. In addition, SSIM (structural similarity index measurement) is performed to check how
similar the current frame is with respect to the object detection frame. This measurement is necessary
because the platform is moving, and new objects may be captured in a new frame. We achieved a
speed accuracy of 96.80% with our framework with respect to the real speed of the objects.

Keywords: multiple object speed detection; faster R-CNN; discriminative correlation filter; feature
based image alignment; structural similarity index measure

1. Introduction

Real-time traffic monitoring is a challenging task. Even with all the best technologies we have,
we are still struggling with insufficient information on the road to solve traffic problems. Traffic
monitoring systems have become more intelligent than ever before. Traffic signaling systems are
adaptive, car counting is automated [1,2], and car density estimation on the road is also becoming
automated [3,4]. Every day, new technologies are introduced into this field to make intelligent traffic
monitoring systems (ITMS) better. One of the latest technological additions to this field is the use
of UAVs (unmanned aerial vehicles). UAVs could be very effective to monitor traffic where traffic
cameras are not available, especially for long driveways, forests, mountains and desert highways,
and public events [5]. In addition, UAVs could be very effective in tracking and monitoring a vehicle
for law enforcement and crime prevention. Static traffic cameras have a limited field of view, whereas
drone cameras can overcome this limitation. High efficiency in collecting data in remote areas as
well as for small and narrow lane data can be achieved by using a UAV platform. With this research,
we are now more capable of collecting detailed vehicle-level data instead of only road and lane-level
data. Vehicle-level data give us driving trajectories, which would be beneficial in monitoring driving
behavior and patterns [6].

UAVs can provide a large field of view with more mobility and lower cost compared to traditional
ground-based transportation sensors or low-angle cameras. UAVs can record and transmit data for
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investigation from the field directly but are rarely dedicated only to monitoring transportation and
roadways. The short battery lives of the UAVs and a lack of efficient algorithms to detect and track
moving vehicles [5] are the main factors preventing this technology from being widely used. It is
extremely difficult to predict accurate motions when both the platform and target are moving at
variable speeds. Since there are a total of six degrees of freedom for a UAV platform, compensating for
these movements is challenging. Moreover, vibration and natural weather can cause negative effects
during the detection and tracking processes.

In this study, we estimated the speed of multiple vehicles from a moving UAV platform using
video streams of optical cameras. Detecting speeding vehicles or stopped vehicles in unsafe positions
in real time will be a lifesaving solution. Locating trapped vehicles after natural disasters, such as
snow, rain, flooding, and hurricanes, will be a potential application of this research. This study will be
beneficial not only for civilian purposes but also for military purposes. In particular, tracking moving
vehicles from a UAV platform will be extremely effective if the speed of the moving vehicles can be
accurately estimated.

In this paper, the related work is introduced in Section 2. We describe the methodology in detail in
Section 3 and explain how the framework is built. Section 4 documents the dataset information used for
the experiments. The results of the framework and accuracy are discussed in Section 5. The conclusion
and future scope of the study are discussed in Section 6.

2. Related Work

Vehicle detection and tracking is the building block of this study to detect the speed of the
vehicles. It is very important to detect and track the vehicles precisely and accurately to get accurate
speed detection results. Kanistras et al. [7] presented a survey on vehicle detection and tracking
using UAVs. According to the research community, detection of vehicles can be characterized into
two categories: (i) optical-flow and (ii) feature extraction and matching. Objects can be tracked
and detected in contiguous frames by optical flow, but the movement is a conjugate of both camera
and vehicular motion. Motions of the object and camera were separately calculated by a method
designed by Rodríguez-Canosa et al. [8]. They developed a system to generate a vehicle’s dynamic
information, such as positions and velocities, by using consecutive video frames. They developed four
major modules to generate the trajectory of a vehicle. These are feature extraction, image registration,
vehicle shape detection, and vehicle tracking. Alpatov et al. [2] developed vehicle detection and
counting systems considering road situation analysis tasks for traffic control and ensuring safety.
A vehicle detection and counting algorithm, and a road marking detection algorithm were proposed.
The algorithms were designed to process images obtained from a stationary camera. The vehicle
detection and counting algorithm was implemented and also tested on an embedded platform of
smart cameras. Eamthanakul et al. [4] designed a Traffic Congestion Investigating System by Image
Processing from closed circuit television (CCTV) Camera to check a traffic condition from a traffic
image on the road. Then, a user can check in advance for a traffic condition in a specific time.
Seenouvong et al. [9] proposed a computer vision-based video detection method for vehicle detection
and counting. The method found foreground objects using a background subtraction algorithm. Several
computer vision techniques, such as thresholding, hole filling, and adaptive morphology operations,
were applied to detect moving vehicles. Qin et al. [10] implemented a dynamic target detection method
based on the fusion of optical flow and neural network. Xu et al. [11] used low-angle camera videos for
detection and tracking and used a cellular neural network for background subtraction. Then, optical
flow was used on the refined video. Elloumi et al. [12] proposed a UAV-based real-time monitoring
(RTM) system with multiple UAVs to monitor traffic within city roads. To this end, the authors studied
the impact of mobile UAV trajectories and the number of controlled vehicles on the event detection rate.

To make a detection, feature extraction methods for object detection extract features from a region of
interest are used and then matched with feature banks (also called training features). Gleason et al. [13]
applied multiple feature extraction with vehicle features, such as edge orientation, histogram of oriented
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gradients (HOG), and color, to increase accuracy. CNNs are very popular these days because of their
accuracy. Current high-performance GPUs and unlimited storage make them successful. An OverFeat
framework was used in [1] to detect and to count the cars. Through-traffic cameras, Single-shot
detection, and MobileNet convolutional neural networks (CNN) were used to detect the front and back
sides of cars in [3]. Leifloff et al. [14] used improved Haar-like features and line features of the vehicles to
detect cars in city areas from high-resolution satellite images. Tuermere et al. [15] used a sophisticated
blob detector, HOG, and Haar-like features to detect vehicles. Leitloff et al. [16] used extended Haar-like
features and support vector machines (SVM) for vehicle detection. Hardjono et al. [17] proposed a
solution to traffic monitoring and planning by using nonintrusive traffic sensors only, namely the
virtual detection zone (VDZ) and closed circuit television (CCTV). When VDZ is combined with CCTV
snap shots as a system, it can replace the traditional system based on inductive loop detector sensors.

Photo-based vehicle detection can obtain only static information, such as the positions of vehicles,
the gap between two vehicles, and the lane position of the vehicles. However, video-based vehicle
detection can provide dynamic information, including speed and acceleration of the vehicles. That is
why video-based vehicle detection gives an advantage over photo-based detection. Cao et al. [18] used
the Kanade–Lucas–Tomasi (KLT) feature-based framework for multi-motion layer analysis, which is
effective and robust, in the detection and tracking of moving vehicles. A feature extraction matching
method was used by numerous researchers for vehicle tracking. Lingua et al. [19] implemented an
auto-adaptive version of the scale invariant feature transform (SIFT) used in photogrammetry.

Ibrahim et al. [20] implemented a speed detection system using video streams. They used an
adaptive background subtraction technique for object detection. For object tracking, they monitored
the object’s entrance and exit of the scene. They counted the number of frames an object takes in the
travel to measure the speed. Wu et al. [21] and Rad et al. [22] presented an automatic speed detection
algorithm using video cameras. They first mapped the coordinates from the image domain to the
real-world domain. The second part of their framework was vehicle detection using the segmentation
and adaptive background subtraction algorithm. Finally, they calculated the speed of the vehicles by
calculating the number of frames a vehicle takes to travel from one scene to another. Ranjit et al. [23]
implemented a motion vector technique to determine the speed of the vehicles. Wang [24] presented
a vehicle speed detection algorithm using video surveillance. In this approach, they used three
frame differencing and background differencing to extract features from moving vehicles. Then,
they implemented vehicle centroid feature extraction for tracking and positioning. Finally, the speed of
the vehicle was detected using the differencing mapping algorithm between pixel distance and actual
distance. Hua eta al. [25] implemented a tracking and detection based vehicle speed estimation system
coupled with an optical-flow-based approach.

Image registration is another important factor in calculating the accurate movement of the
vehicles. Zitova and Flusser [26] presented a review of image registration methods. They separated
the registration methods according to the image registration procedure. Aicardi et al. [27] presented an
image-based approach to co-register multitemporal UAV dataset. They implemented an automated
method to register the images using anchor images. Sheng et al. [28] used hydrological images to
implement an automatic way to register based on the extraction of lakes centroids from satellite
images. Using the alignment of orthorectified data from optical satellite remote sensing images,
Behling et al. [29] detected landslides.

Finally, the data acquisition plan is also a significant factor for this study. The acquisition of
data from a UAV platform needs to consider several factors. These are flight planning strategies,
ground control points, checkpoint distribution, and measurement, etc. Aicardi et al. [30] evaluated the
possibility of acquiring and use of oblique images for the 3D reconstruction of a historical building,
for the realization of the high-level-of-detail architectural survey, obtained by a UAV and traditional
COTS (Commercial Off-the-Shelf) digital cameras. Jiang et al. [31] exploited the use of a UAV for
outdoor data acquisition and conducts accuracy assessment tests to explore potential usage for offsite
inspection of transmission lines. Vacca et al. [32] studied the accuracy of 3D building modeling based
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on both nadir and oblique UAV images. They demonstrated that the integration of oblique UAV
images can substantially increase the achievable accuracy compared with traditional modeling using
the terrestrial point cloud.

3. Methodology

Vehicle detection and tracking using a UAV platform are attracting numerous researchers. This type
of research can open many new avenues beyond our imaginations. Still, some issues need to be
addressed more carefully. First, (a) increasing the detection rate when vehicle size is very small needs
attention. Faster region-based convolutional neural network (R-CNN) [33] addresses this problem,
and that is why we have adopted this CNN algorithm in our study to solve detection problems. Another
existing issue in this research area is (b) maintaining tracking for a longer time while both the platform
and the object are moving. The final problem is (c) extracting the speed information of the vehicle.
Solving the last problem is challenging because reference objects to measure the exact distance traveled
by the vehicles are not always available. Furthermore, a UAV platform does not move with the same
elevation or direction at all times. We handled this problem very tactically in our study. We created
a database for different sizes of vehicles, and when a particular category of vehicle was detected,
we used the vehicle as a reference object to measure the distance traveled. After that, we converted the
distance information into speed with respect to time. In this section, we discussed Faster R-CNN as a
vehicle detection algorithm, channel and spatial reliability tracking (CSRT) as a tracking algorithm,
feature-based image alignment (FBIA) as an image alignment algorithm, and structural similarity
index measurement (SSIM) as a similarity index measure algorithm.

3.1. Faster R-CNN

Faster R-CNN is used for vehicle detection in this research. The R-CNN family was originally
introduced by Girshick et al. in 2013. After several iterations and improvements, Girshick published a
second paper, Fast R-CNN, in 2015. A few months later, Girshick published the third paper of this
series, Faster R-CNN [33]. The Faster R-CNN algorithm can be performed in three steps. Figure 1
explains the basic functionality of Faster R-CNN. It takes a raw image as input.

Step 1 performs feature extraction using pre-trained CNN. In Step 2, the extracted features are
passed in parallel to two different components of the Faster R-CNN. (a) A region proposal network
(RPN) determines the potential objectness, i.e., whether any object is present at a certain location. (b) A
region of interest (ROI)—pooling layer, pools and scales down the image and passes proposed ROI
bounding boxes to two different CNN networks. Step 3 determines the object type and the location of
the object, using these two CNN networks.

Implementation of Faster R-CNN: Vehicles are labeled using the ‘Labeling’ [34] software from the
training images. Against every labeled image, an annotation file is created. Tensorflow object detection
(TFOD) API is used as a training platform. Three different kinds of record files are created that store
the location and class information about the datasets.

The record directory stores these three files:

i. Training.record: The serialized image dataset of images, bounding boxes, and labels used
for training.

ii. Testing.record: The images, bounding boxes, and labels used for testing.
iii. Classes.pbtxt: A plaintext file containing the names of the class labels and their unique

integer IDs.

A special configuration file is used to instruct the TFOD API how to train the model. This file
contains information about the location of training data, size of the images, and hyper-parameters,
such as learning rate, number of iterations. After the training is done, frozen models (model files) are
created with weights. The model is later used for vehicle detection purposes. The number of iterations
performed is 50 k, and the learning rate 0.0001 is used for this experiment.
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Figure 1. Faster region-based convolutional neural network (R-CNN) architecture.

3.2. CSRT

Object detection does not preserve the information about the detection of previous frames. In object
tracking, the algorithm gathers lots of information from each object’s previous location, such as direction
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and motion of the objects. Moreover, before tracking, detection is mandatory. From the detection, it is
possible to know the appearance of the objects. A good tracking algorithm will use all the information
it has to predict the next location of the objects. Several common tracking algorithms include (a)
BOOSTING Tracker is slow and does not work well. (b) MIL Tracker gives better accuracy than
BOOSTING Tracker but does a poor job reporting failure. (c) KCF Tracker is faster than BOOSTING
and MIL Trackers but is not able to handle occlusion. (d) MedianFlow Tracker does a nice job of
reporting failure but is unable to handle too fast-moving objects. (e) TLD Tracker does best under
multiple occlusion conditions, but it has a higher false-positive rate. (f) MOSSE Tracker is very fast
but not very accurate. We chose CSRT Tracker [35] for our experiment, as this algorithm gives good
accuracy, and we were not concerned about occlusions.

CSRT uses a spatial reliability map to adjust filter support to the part of the selected region from
the frame for tracking. CSRT uses only two standard features, HOGs and color names, to achieve
correlation responses among channels.

Pseudocode for CSRT

Inputs:

Image, object position on the previous frame, filter, scale, color histogram, channel reliability.
Localization and scale estimation:

1. Create a new target position using the position of the maximum in the correlation between
filter and image patch features extracted on the previous position and weighted by the channel
reliability scores.

2. Estimate detection reliability using per-channel responses.
3. Use the new location to get a new scale.

Update:

1. Extract foreground and background histograms.
2. Update foreground and background histograms.
3. Estimate reliability map.
4. Estimate new filter.
5. Estimate learning channel reliability.
6. Calculate channel reliability.
7. Update filter.
8. Update channel reliability.

Repeat:

Perform (i) Localization and scale estimation and do (ii) Update for every new detection.

3.3. FBIA

Image alignment is a necessary step for speed estimation. Image alignment is done for all the
consecutive frames with respect to the detection frame to get the exact distance a car moves in a
particular time. Image alignment, or image registration, is a technique to find out common features
between two images where one image is lined up with respect to the other image.

The core of the image alignment techniques consists of a 3 × 3 matrix. This core matrix is called
homography. If (x1, y1) is a point at first frame and (x2, y2) is the same point at the second frame,
then homography relates them in the following way:

x1

y1

1

 = H


x2

y2

1

 =


h00 h01 h02

h10 h11 h12

h20 h21 h22




x2

y2

1

. (1)
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We need four or more points to find the homography (H). The ORB feature detector is applied
to find the same points for two comparable frames. ORB stands for “oriented FAST and rotated
BRIEF”. The FAST algorithm locates the coordinates that are stable under image transformation,
such as translation, scale, and rotation. The BRIEF algorithm works as a descriptor that encodes the
appearance of the points to find the features. The same descriptor is used for the same physical point
in two images. Hamming distance is implemented to measure the similarity between two features,
but it is not uncommon for 20% to 30% of the matches to be incorrect. A robust estimation technique
called random sample consensus (RANSAC), which produces the right result even in the presence of a
large number of bad matches, is applied to remove the outliers. After calculating the homography,
the transformation is applied to all the pixels in one frame to map it to the other frame.

Figure 2 shows the result of a frame alignment. Figure 2a,b show a reference frame and a frame to
align. A match result is shown using Hamming distance in Figure 2c, and finally, the aligned image is
displayed in Figure 2d.
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3.4. SSIM

Structural similarity index measure (SSIM) is used in this experiment to make sure that contiguous
frames have enough similarity. The SSIM threshold for this study is set to 0.50. That means the
detection frame and the current frame should have at least 0.50 SSIM. This index is a very important
part of the experiment because SSIM is used to determine when the detection algorithm (Faster R-CNN)
needs to perform based on its value. The tracking algorithm (CSRT) is performed when SSIM is
greater than 0.50. In Figure 3, SSIM is 0.21, which means it is time to perform the detection algorithm.
The optimal SSIM index is set to 0.50 after performing several experiments to make sure there is enough
overlapping between the frames. At the same time, duplicated detection can be avoided. The detection
algorithm is much slower with respect to the tracking algorithm, which turned out to be a bottle-neck
to limit the real-time performance.
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SSIM attempts to model the perceived change in the structural information of the image. Rather
than comparing for the entire image, Equation (2) compares two windows (small sub-samples).
In addition to the perceived changes, this approach accounts for changes in the structure of the images.
The value of SSIM can vary between −1 and 1, where 1 indicates perfect similarity.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ
2
y + c1

)(
σ2

x + σ
2
y + c2

) (2)

Equation (2) indicates the (x, y) location of a N X N window in each image, where µ indicates the
mean of the pixels at x and y direction, σx and σy indicates the variance of x and y. σxy denotes the
covariance of x and y. c1 and c2 are two stabilizers to act on weak denominator.

3.5. Speed Estimation

Two categories of vehicles are detected for this study. These are small vehicles and large vehicles.
Sedan cars from the category of small vehicles and eighteen-wheel trucks from the category of large
vehicles are considered as a reference object to measure the speed of the vehicles. The average length
of the sedan cars are 186 inches [36], and the average length of the multi axel eighteen-wheel trucks are
840 inches [37]. The number of pixels is calculated against the length of the vehicle when a sedan car
or an eighteen-wheel truck is detected in a frame. Then the traveled distance of a vehicle is calculated
by measuring the centroid displacement of the vehicle from the reference frame to the current frame.
Finally, the speed of the vehicles is measured by the traveled distance with respect to time (time is
calculated from the frame rate).

Figure 4 explains the complete framework of the study. The object detection algorithm (Faster
R-CNN) must be applied under the three conditions. (a) for the first frame, (b) frame number multiple
of 100 or c) SSIM index is less than 0.5. Then FBIA is applied for image alignment, and CSRT is applied
for object tracking when SSIM index is more than 0.5. The speeds of the vehicles are calculated from
the gathered statistics during the tracking process. Image alignment (FBIA) process can distort the
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video frames; hence, applying inverse homography is important to get undistorted video frames with
tracking information.ISPRS Int. J. Geo-Inf. 2019, 8, 259 9 of 15 

 

 

Figure 4. Complete flow chart of the framework. 

4. Datasets 

An Inspire I V2.0 UAV with a ZENMUSE X3 optical camera is used for this study. The camera 
is equipped with 4 k video, 16 MP, 3-axis gimbal. Two types of videos are captured for the 
experiment: while the drone is static and while the drone is moving. The videos are collected from 
three different locations for this study: (a) the intersection of Glades Road and State Road 441 in Boca 
Raton, FL (Static video), (b) Burt Aaronson South County Regional Park, Boca Raton, FL (static and 
moving), and (c) Bluegrass Yeehaw junction, Okeechobee, FL (moving). Figure 5 shows their 
locations in Google Maps. 

Faster R-CNN 

Input Frame Vehicle Detected Frame 
FrameNo = 0 

or  multiplier 

NO Perform SSIM 

NO 

SSIM>0.5 

Perform CSRT 

Calculate Speed 

Track Vehicles 

Uncorrected Video 

Aligned Frames 

Perform FBIA 

Perform Inverse 

Homography 

Display Corrected Video 

Figure 4. Complete flow chart of the framework.

4. Datasets

An Inspire I V2.0 UAV with a ZENMUSE X3 optical camera is used for this study. The camera is
equipped with 4 k video, 16 MP, 3-axis gimbal. Two types of videos are captured for the experiment:
while the drone is static and while the drone is moving. The videos are collected from three different
locations for this study: (a) the intersection of Glades Road and State Road 441 in Boca Raton, FL (Static
video), (b) Burt Aaronson South County Regional Park, Boca Raton, FL (static and moving), and (c)
Bluegrass Yeehaw junction, Okeechobee, FL (moving). Figure 5 shows their locations in Google Maps.

From these videos, two classes are prepared for this study, “SmallVehicle” and “LargeVehicle”.
All the small cars, sedan, SUVs, and small trucks are labeled as “SmallVehicles”. The big vans, buses,
and eighteen-wheel trucks are labeled as “LargeVehicle” A total of 17,304 small vehicles and 784 large
vehicles are used as training and validation for Faster R-CNN. Among these data, 70% is used for
training, 26% is used for validation, and 4% is used for manual testing. Open source software called
“Labelimg” [34] is used for image labeling. The images are collected in different light conditions.
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5. Results and Discussion

The results of this study are presented in two tables below. Table 1 shows the detection results,
and Table 2 represents the speed estimation results. Table 1 compares manual detection and Faster
R-CNN detection. We collected sample frames from all three video capture locations. Glades Road
is a city road, so we obtained fewer sample data for large vehicles at that location. Burt Aaronson
is a public park, so big trucks are not allowed there. We obtained some good sample data for large
vehicles on the highway turnpike at Bluegrass Yeehaw junction. We achieved 90.77% average accuracy
for small vehicles and 96.15% average accuracy for large vehicle detection. F score is also calculated

following the equation
(

recall−1+precision−1

2

)−1
. F score for large vehicle is 98.04% and for small vehicle,
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it is 95.16%, since there is no misclassification among the two classes although we found a number of
missing detections.

Table 2 reports the speed accuracy of the framework. In the static video of Glades Road,
we observed 43 vehicles with an average speed of 0 mph, 10 vehicles with an average speed of 30 mph,
and 15 vehicles with an average speed of 25 mph. Our framework gives 100% accuracy for 0 mph
vehicles, 98.33% for 30 mph, and 96% for 25 mph. The average RMSE is 0.564 for our case studies.
Figure 6a shows speed estimation results for the Glades Road video. The Bluegrass video was recorded
from a moving platform; we obtained a 100% accuracy for stopped vehicles and 95.83% accuracy
for moving vehicles. Figure 6b shows speed estimation results for the Bluegrass video. At Burt
Aaronson, we achieved 100% accuracy for stopped vehicles from a moving UAV and 96% accuracy for
moving vehicles.

Table 1. Vehicle detection results.

Manual Count Faster R-CNN Count Accuracy

Small
Vehicle

Large
Vehicle

Small
Vehicle

Large
Vehicle

Small
Vehicle

Large
Vehicle

Glades Road/441 Intersection 506 2 437 2 86.37% 100%
Bluegrass 38 13 35 12 92.10% 92.30%

Burt Aaronson (Static) 19 0 19 0 100% -
Burt Aaronson (moving) 39 0 33 0 84.61% -

Total average 90.77% 96.15%

To measure the accuracy at the Glades Road and Bluegrass locations, we picked out two spots on
the map and measured the distance using Google Maps. Then we counted the time each car took to
cover the distance to calculate the speed of the cars. At Burt Aaronson Park, we drove two cars and
recorded the speedometer readings. Later in the lab, we matched the speedometer recording video
with UAV recording and compared the speedometer reading to our framework outputs. In Figure 6c,
we can see that the right-side speedometer reads 21 mph, and the framework also shows 21 mph.
The left-side speedometer displays 23 mph while the framework shows 24 mph.

Table 2. Speed detection results.

Number of
Cars Observed

Average Speed Manually
Observed (mph)

Average Speed from
the Framework (mph) Accuracy % RMSE (mph)

Glades Road/441 Intersection (Static drone) 43 0 0 100% 0
Glades Road/441 Intersection (Static drone) 10 30 30.5 98.33% 1.194
Glades Road/441 Intersection (Static drone) 15 25 26 96% 1.111

Bluegrass (Moving drone) 15 0 0 100% 0
Bluegrass (Moving drone) 5 12 11.5 95.83% 0.604

Burt Aaronson (Moving drone) 19 0 100% 100% 0
Burt Aaronson (Moving drone) 2 25 26 96% 1.044

Average 96.80% 0.564
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6. Conclusions and Future Work 

This study is a stepping stone to solve a long-existing problem. In this study, we achieved 100% 
speed accuracy while vehicles are non-moving. In addition, we achieved over 96% speed accuracy 
from a static platform (Table 2). The most challenging problem to solve was to estimate the speed 
when both the platform and target were moving. We accomplished a speed accuracy of over 95% in 
this scenario. We observed that when the number of vehicles is lowered, the frame per second rate 
(fps) of processing is higher, but as vehicles increase, the fps of processing reduces. The tracking 
algorithm takes more resources for more vehicles in the frames. We did not perform any comparative 
study to check how fps performs with respect to the number of vehicles. 

Since UAV technologies, computer vision, and photogrammetry algorithms are under active 
development, we can skip the image alignment steps (FBIA) if the geolocation of frames from the 
UAV videos can be accurately determined. We would not need to perform FBIA to estimate the 
speed. Furthermore, we could handle the UAV elevation and angle fluctuation better with 
georeferenced videos, as image alignment alone cannot handle elevation or angle fluctuation well. 
Implementing the framework under different weather conditions and different light conditions is a 
future direction to pursue as well. 
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6. Conclusions and Future Work

This study is a stepping stone to solve a long-existing problem. In this study, we achieved 100%
speed accuracy while vehicles are non-moving. In addition, we achieved over 96% speed accuracy
from a static platform (Table 2). The most challenging problem to solve was to estimate the speed
when both the platform and target were moving. We accomplished a speed accuracy of over 95% in
this scenario. We observed that when the number of vehicles is lowered, the frame per second rate (fps)
of processing is higher, but as vehicles increase, the fps of processing reduces. The tracking algorithm
takes more resources for more vehicles in the frames. We did not perform any comparative study to
check how fps performs with respect to the number of vehicles.

Since UAV technologies, computer vision, and photogrammetry algorithms are under active
development, we can skip the image alignment steps (FBIA) if the geolocation of frames from the
UAV videos can be accurately determined. We would not need to perform FBIA to estimate the speed.
Furthermore, we could handle the UAV elevation and angle fluctuation better with georeferenced
videos, as image alignment alone cannot handle elevation or angle fluctuation well. Implementing the
framework under different weather conditions and different light conditions is a future direction to
pursue as well.
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