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Abstract: The impacts of earthquakes and secondary disasters on ecosystems and the environment are
attracting increasing global attention. Development of uncertainty reasoning models offers a chance
to research these complex correlations. The primary aim of this research was to construct a disaster
chain hazard assessment model that combines a Bayesian Network model and the ArcGIS program
software for Changbai Mountain, China, an active volcano with a spate of reported earthquakes,
collapses, and landslide events. Furthermore, the probability obtained by the Bayesian Networks
was used to determine the disaster chain probability and hazard intensity of the earthquake events,
while ArcGIS was used to produce the disaster chain hazard map. The performance of the Bayesian
Network model was measured by error rate and scoring rules. The confirmation of the outcomes of
the disaster chain hazard assessment model shows that the model demonstrated good predictive
performance on the basis of the area under the curve, which was 0.7929. From visual inspection
of the produced earthquake disaster chain hazard map, highly hazardous zones are located within
a 15 km radius from the Tianchi center, while the northern and the western parts of the studied area
are characterized mainly by “very low” to “low” hazard values.

Keywords: earthquake disaster chains; hazard assessment; Bayesian networks; ArcGIS; Changbai
Mountain volcano

1. Introduction

A disaster chain is the phenomenon by which a series of secondary disasters is induced by some
kind of primary disaster that forms a complex disaster transmission and amplification process [1,2].
There are currently three disaster chain taxonomies: Disaster chain classification based on disaster
type, disaster chain space-time structure, and disaster system element [3]. For example, Shi divided
disaster chain into typhoon-rainstorm disaster chain, cold wave disaster chain, dry disaster chain,
and earthquake disaster chain based on disaster type [4]. Guo divided disaster chain into causal
chains, homologous chains, mutually-exclusive chains, and even row chains based on disaster chain
space-time structure [5]. Since the end of the 20th century, there has been frequent disaster chain
incidents reported domestically and abroad. In 2003, a heat wave in central Europe was reported as the
“hottest since 1500”. The increase in temperature led to an increase in respiratory diseases and mortality
rates [6]. In 2004, the Indian Ocean earthquake and tsunami killed more than 223,000 people [7]. In 2005,
Hurricane Katrina caused the most hurricane-related damage and deaths recorded in the United
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States because of secondary disasters that included storm surges and floods [8]. In 2008, Wenchuan
earthquakes and secondary collapses, landslides, and debris flow disasters caused a huge number of
casualties and large economic losses in China [9]. In 2009, landslide occurred in the eastern mountain
of the Tianchi waterfall, resulted in 30,000m3 deposits volume, and then induced the occurrence of
debris flow disaster and caused 1.8 million economic losses. Because various disaster events display
a continuous chain-structured evolutionary trend, the damage and impact caused by the entire disaster
chain were far greater and farther-reaching than the individual disaster events. Frequently, disaster
events have shown that for every major disaster that occurs, a series of secondary disasters will always
be induced, ultimately combining as a considerable destructive power.

Earthquake disasters play a significant role in the structure and function of many world ecosystems.
For example, the effects of the Chile earthquake in 2010 and the Japan earthquake in 2011 have revealed
that nuclear power plants exposed to extreme events can lead to a series of disasters such as nuclear
radiation leaks, tsunami, and fire, which have had an unprecedented impact on the countries in
question [10]. For many years now, the performance of disaster chains induced by earthquake has
been a relevant topic [11,12]. Study of earthquake disasters and subsequent secondary disasters
has increased the research focus on the spatial distribution and risk of earthquake disaster chains
in human and natural ecosystems [13,14]. A multitude of financial losses, building damage, and
casualties have resulted from earthquake-induced secondary disasters, such as collapses, landslides,
debris flows, barrier lakes, floods, and fires. Liu [15] proposed that the complex interrelationships
between earthquake-induced secondary disasters and natural ecosystems should be identified, and
then Wang [16] recommended modeling disaster chains in earthquake secondary disaster analysis and
inspected the occurrence of secondary disasters. Tian [17] summarized a series of earthquake-induced
secondary disasters types and the earthquake disaster chain mechanism, while Fan [18] presented
a comprehensive discussion on early warning systems and assessment of secondary disasters. Chen [19]
proposed a method named Spatio-temporal evolution process Multi-level description Framework for
a Disaster Chain (STMFDC) to evaluate complex disaster chain. Zhang and Zhou [20] put forward
a conceptual model of disaster chain risk assessment and Chen [21] assessed the earthquake secondary
disaster risk through the information model in Wenchuan, China. Furthermore, Julijana [22] assessed
the hazard and risk of the earthquake-landslide disaster chain based on the Newmark model and the
geographic information system (GIS).

In contrast to the research methods presented above, earthquake disaster chain probability has
hardly attracted any research efforts. There are many existing methods of probability reasoning, fuzzy
logic, neural networking, expert systems and so on [23-25], but the existing models cannot adequately
describe the earthquake disaster chain structures and probability. Bayesian Networks (BNs) can
address this shortcoming owing to their capability to combine the probabilistic methodology with clear
diagrams that encrypt the causality between variables. BN models can also offer a frame for dealing
with uncertainty and complexity in earthquake disaster chain systems [26]. The existing BN models
mainly focus on a single event in the field of natural disasters [27-29], but Qiu [30] expanded the use of
BN to emergency event chains and applied the method to the analysis of the typhoon-rainstorm-flood
disaster chain. Because the principle governing the behavior of strong earthquakes is more complicated
than that of typhoons, strong earthquakes induce more extensive secondary disasters. It is therefore
very important to apply BN model in earthquake disaster chain hazard assessment.

In this research, we collect field survey data and remote sensing interpretation data of the studied
area and, referring to Wenchuan earthquake disaster chain types and the studied area’s topography
and geomorphology, select the earthquake-collapse-landslide-debris flow disaster chain as the research
subject. According to disaster risk theory, we construct a hazard assessment model based on BNs and
ArcGIS software, quantitatively evaluate the hazard of earthquake disaster chains, map the hazard
zoning map, and provide reference for early warning and prevention of disaster chain. BNs are used
to model the structure and probability of disaster chains, predicting the occurrence probability and
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scale of disaster events, and ArcGIS was introduced to draw the hazard zoning map. A flow diagram
summarizing the methodology followed in this research is given in Figure 1.
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chain parameters
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Figure 1. The flow diagram showing the methodology applied.

2. Areas of Study

Changbai Mountain is situated south-east of Jilin Province in China and has a total area of
approximately 3278 km?. The topography and geomorphology of the area is highly complex, and there
are numerous large mountains and rivers distributed throughout the region. The elevations range
from 2678 m to 725 m, slopes range from 59.31° to 0°, and many regions have slopes greater than 35°.
As a result, some regions exhibit topography and geomorphology that are conducive to the occurrence
of geological disasters with high frequency, and strong, sudden destructive characteristics. In recent
years, collapses and landslides continue to occur in Changbai Mountain North Slope tourist areas.
According to the statistics, there were 119 cases of geological disasters, including collapses, landslides,
and debris flow.

The Changbai Mountain volcanic structure is highly developed, and there is intense underground
magma activity due to the adjacent eastern deep seismic zone. The monthly frequency of earthquake
activity according to volcanic earthquake monitoring data is shown in Figure 2. Before June 2002,
the volcanic earthquake frequency was less than 20 per month, with lower reported magnitudes, and
weak volcanic activity; after July 2002, the volcanic activity showed a significant increase, reaching
a peak in 2003. Since then, the trend has gradually stabilized at this higher level. It is believed that
once Changbai Mountain volcano erupts again in the future, volcanic earthquake disasters and their
secondary disaster chains will have more serious effect. In 1991, the Mount Pinatubo volcano erupted,
and the largest associated earthquake magnitude was 5.6 [31]. Based on this, it is predicted that the
largest associated earthquake magnitude will be 6.0 when Changbai Mountain volcano erupts in the
future, according to the intensity attenuation formula for eastern China [32-35]:

I = 4493 + 1.454M; —1.792In(R + 16), 1)
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where I is earthquake intensity, M is the earthquake magnitude, and R is the epicentral distance.
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Figure 2. Frequency of volcanic earthquakes from 1999 to 2010 in the Changbai Mountain region.
The intensity within the radius of R = 40.11 km is 6 degrees, the minimum intensity of geological

disaster occurrence considered. Therefore, establishing Tianchi as the center, the Changbai Mountain
area with a radius of 40.11 km is selected as the area of study, as shown in Figure 3.
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Figure 3. Topographic features, epicenter, and magnitude distribution of the studied area. (Topographic
features: volcanic cone (I), lava platform (II); melted tableland (III); tectonic and denudated low
mountains (IV)).

3. Method

3.1. System Components of the Volcanic Earthquake-Collapse-Landslide-Debris Flow Disaster Chain

The disaster itself is defined as the Earth’s surface variation system composed of the disaster
environment, the hazard factor and the disaster body; thus, the disaster is the outcome of the elements’
coactions in the system [36]. According to system theory, each disaster event in the earthquake disaster
chain is also considered as a system, and various factors related to the event can be divided into the
following three types.
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Input element: Input elements refer to the extrinsic factors that can lead to a change in an
earthquake disaster chain sub-event’s intrinsic states [37]. The input element incorporates anomalous
substances, energy, and information from the extrinsic environment, which will influence the disaster
chain events status and result in the occurrence of additional sub-events.

State element: These describe the nature and characteristics of an earthquake disaster chain system
at a particular time, with the key elements representing the behavioral characteristics, describing the
destruction ability of the earthquake disaster chain systems, and influencing the kind and number of
the disaster bodies [37]. Each event has a trigger state to indicate whether the event occurred, when the
state of some key events exceeds a certain threshold value, the event is categorized in the “occurrence”.

Output element: Some system elements affect the external environments and lead to a change of
the internal state of the earthquake disaster system, as well as some environment state.

According to the relation of variables of collapses, landslides, and debris flows [38,39], the input
elements, state elements, and output elements of the earthquake-collapse-landslide-debris flow disaster
chain are listed in Table 1.

Table 1. Variables of earthquake-collapse-landslides-debris flow disaster chains.

Events Set of Input Variables Set of State Variables Set of Output Variables
Casualty
Earthquake Volcanic eruption occurs or not Earthquelirl:teeﬁ;csl s or not Property loss
Y Ecosystem
Earthquake occurs or not
. Casualty
Intensity, Slope, Collapse occurs or not
Collapse . . Property loss
Elevation, Lithology, Collapse area
. > Ecosystem
Aspect, Distance to river
Earthquake occurs or not
Collapse occurs or not
. . Casualty
. Intensity, Slope, Landslide occurs or not
Landslide . . . Property loss
Elevation, Lithology Landslides area
. H Ecosystem
Aspect, Distance to river,
Precipitation,
Earthquake occurs or not
Landslide occurs or not
. . Casualty
. Intensity, Slope, Debris flow occurs or not
Debris flow . . . Property loss
Elevation, Lithology Debris flow area
. H Ecosystem
Aspect, Distance to river,
Precipitation

3.2. Data Collection and Processing

The monitoring of geological disasters in the Jilin Province is done using SPOTS5 satellite data (with
a resolution of 2.5 meters in the panchromatic range, and a resolution of 15 meters in the multispectral
band) and the latest Landsat8 satellite data (with a resolution of 15 meters in the panchromatic range,
and a resolution of 30 meters in the multispectral band) combined to create a 2.5-m-resolution color
image map. A total of 360 disaster points were selected for Jilin Province, that were obtained from
the visual interpretation of remote sensing data; the dataset containing these points was divided
into training (n = 300) and verification (n = 60) sets. A digital elevation model (DEM) was extracted
from a 1:50,000 topographic map prepared in 2016 by the Jilin Institute of Geological Environment
Monitoring (JIGEM), from which the elevation, slope, and slope aspect parameters were obtained.
The lithology map was digitized from 1:200,000 geological maps. To establish the distance to the
river, drainage lines were digitized from a drainage line distribution dataset with a 1:250,000 scale.
The average annual precipitation map was prepared by JIGEM. These maps are shown in Figure 4.
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Figure 4. Topographic and climate condition parameters: Elevation (a), lithology (b), slope (c), aspect
(d), distance to river (e), precipitation (f).

3.3. Construction and Validation of BNs Model

The BN model is supported by a graphical network representing cause and effect relationships
between different factors considered in a study [40]. The qualitative component of a BN is a directed
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acyclic graph (DAG), in which nodes and directed links (“edges”) signify system variables and their
causal dependencies [41]. In this paper, the occurrence and evolutionary process of the disaster chain
is deconstructed as the interactions between every disaster event indicated by the input elements,
state elements, and output elements. In individual disaster events, the input element determines
the state element that then influences other state elements, which would lead to the particular event
results; output element. In the disaster chain, the state element and output element of primary disaster
affect the input element, state elements, and output element of secondary disaster. On the basis of
a three-layer structural model of earthquake, collapse, landslide, and debris flow disaster events,
all input elements, state elements, and output elements were considered as nodes, and the relationships
between the three elements were considered edges in the BN model. The resultant BN model of
the earthquake-collapse-landslide-debris flow disaster chain is shown in Figure 5. Error rate and
scoring rules were used to validate the accuracy of the BN model for use in hazard assessment models.
The scoring rules used extensively were the logarithmic loss, quadratic loss, and spherical payoff that
could be obtained using the Netica software. For logarithmic loss (0—c0) and quadratic loss (0-2), scores
close to zero indicate that the model is sufficiently accurate whilst for spherical payoff (0-1), scores
equal to 1 indicate the best model performance [42]. In this study, there were 300 cases used for learning
though the Gradient technique in the Netica software and 60 cases were used for verification. The error
rate and scoring rule results are shown in Table 2. The error rate of collapse, landslide, and debris flow
nodes was 0, the area under the receiver operating characteristic (ROC) curve was 1, and the error rate
of the collapse area, landslide area, and debris flow area nodes was 20%, suggesting that the model
could correctly predict the majority of disaster event occurrence. The scoring rule consequences of
collapse, landslide, and debris flow events show remarkable model performance and the model is able
to obtain the occurrence probability of disaster events, while the scoring rule results of collapse area
and landslide area nodes prove the model’s excellent predictive capability. In summary, the BN model
performance of the earthquake-collapse-landslide-debris flow chain is sufficiently good enough that
the model can be applied in the hazard assessment model of earthquake disaster chains.

Earthquake Collapse
Yes 50.0 ; Yes ; i
No 500| | No . l
N
\ NN\
Slope CollapseArea Lithology
VeryLow VeryLow VeryLow
Low Low - Low
Medium Medium Medium
High High High
VeryHigh | VeryHigh VeryHigh
i/
4
Landslide ol
Yes ; I
No I Y
b
N 3
Eevation LandslideArea RiverDistance
VeryLow  20.0 VeryLow VenyLow  20.0
Low 20.0 Low - Low 200
Medium 20.0 Medium Medium 200
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DebrisFlow (|
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o200 Wl
I
Aspect DebrisFlowArea Precipitation
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Figure 5. Bayesian Network (BN) model of the earthquake-collapse-landslide-debris flow disaster chain.
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Table 2. Confusion matrix and performance of the BNs model.

Collapse Error rate 0
Predicted Actual Logarithmic loss 0.0002
Yes No ctua Quadratic loss 0
60 0 Yes Spherical payoff 1
0 0 No Area under ROC 1
Collapse Area
Predicted Actual Error rate 20%
Ver}; édow L(iw Mec(l)lum Hlogh VeryOngh Very Low Logarithmicloss 0302
4 1 .
0 10 g 2 8 M]e:::l)ylm Quadratic loss 0.201
0 0 1 7 0 High .
0 0 0 0 8 Veryl%—ligh Spherical payoff  0.8812
Landslide Error rate 0
Predicted Actual Logarithmic loss 0.0004
Yes No ctua Quadratic loss 0
60 0 Yes Spherical payoff 1
0 0 No Area under ROC 1
Landslide Area
Predicted Actual Error rate 20%
Ver};}ow Lolw Mec(l)lum Hlogh Veryongh Very Lows Logarithmic loss  0.2952
12 1 L .
g 1 2 8 0 Megi‘:;m Quadpratic loss 0.1953
0 0 1 3 4 High .
0 0 0 1 15 Verylig-ligh Spherical payoff  0.8842
Debris flow Error rate 0
Predicted Actual Logarithmic loss 0.0051
Yes No ctua Quadratic loss 0
60 0 Yes Spherical payoff 1
0 0 No Area under ROC 1
Debris flow Area
Predicted Actual Error rate 20%
Ver};imw L(iw MedOlum Hlogh Very Ongh Very Low Logarithmicloss  0.2964
3 12 0 0 0 L .
) ) . 0 0 Megivl"lm Quadraticloss  0.1953
0 0 ! 3 4 High Spherical payoff  (.8843
0 0 0 1 15 Very High

3.4. Hazard Assessment Model of Earthquake Disaster Chain

Wang [43] regards disaster events in the disaster chain as “nodes” in the context of system
engineering, and the connections between disaster events are correspondingly identified as “edges”,
consistent with the BN model’s formulation. In this study, the probability of the edges and the losses
of nodes were considered in the hazard assessment model of the earthquake disaster chain. It is
important to consider the chain probability between disaster events and the hazard intensity of an
individual disaster event. The probability of the edges (chain probability) is the possibility that
secondary disasters will be induced by a primary disaster. The loss of the node (hazard intensity) is
the degree of destruction to the disaster environment and the secondary disaster. We consider the
hazard evaluation of the earthquake disaster chain in terms of chain probability and hazard intensity.
The edge probabilities between the near disasters were determined by the influence on the secondary
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disaster, depending on the state element and output element of the primary disaster. The losses of the
nodes were determined by the state element of disaster events, and obtained, like the edge probability,
from BN inference. The hazard of the overall earthquake disaster chain is the sum of every disaster
event hazard and the product of occurrence probability and hazard intensity. Therefore, the hazard
assessment model of the earthquake disaster chain is constructed as shown in Equation (2):

R=PyxH + (P(i(i+1)) X H(i+1)), 2)

n
i=1

where R is the hazard of the overall disaster chain, P; and Hj are the hazard factor probability and
hazard intensity of the chain source, respectively; P;(;,1) is the induced probability that the (i+1)th
disaster event is induced by the ith disaster event, and Hj,; is the hazard intensity of the (i+1)th
disaster event,i=1,2,3,...,n.

It is assumed that the magnitude of the earthquake induced by volcanic eruptions is 6.0 and the
earthquake intensity of the studied area is also 6.0; therefore, the hazard factor probability and hazard
intensity of the chain source is 1. The hazard intensity of an individual disaster event is defined by
Equation (3):

_So
H= 5 3)

where Sy is the disaster event occurrence area and S is the total area of each grid cell.

3.5. Hazard Assessment of Earthquake Disaster Chain

The entire area of study is divided into 1 km X 1 km grid cells; the total number of grid cells
is 2847, and all attribute values (elevation, slope, aspect, lithology, distance to river, average annual
precipitation) of each cell center-point were extracted by the spatial analyst tools in the ArcGIS software.
The total grid cell data were converted into case file format and input to the BN model in the Netica
software so the occurrence probability of collapse, landslide, and debris flow disaster events and the
scale of the collapse area, landslide area, and debris flow area nodes of each grid cell could be obtained
from inference of the BN model.

The BN model’s total grid cell output results were converted into ArcGIS file format, according
to the natural space classification method that maintains the consistency of the category. The raster
reclassification tool in ArcGIS spatial analysis was used to classify the earthquake disaster chain
hazard map into five subzones corresponding to the evaluation factor grade assignment: Very high
hazard areas, high hazard areas, medium hazard areas, low hazard areas, and very low hazard areas.
The probability and hazard intensity of collapse, landslide and debris flow disasters are shown in
Figure 6, and the earthquake disaster chain hazard zoning map of the studied area as obtained by
ArcGIS is shown in Figure 7.
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Figure 6. Probability and hazard intensity zoning map in the Changbai Mountain region. Collapse (a),
landslide (b), debris flow (c).
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Figure 7. Earthquake disaster chain hazard zoning map in the Changbai Mountain region.
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4. Results and Discussions

Following the hazard assessment model described with the methodology, the hazard zoning map
of the Changbai Mountain earthquake disaster chain was obtained on the basis of the BN model and
ArcGIS. In disaster risk theory, BNs are used to obtain the chain probability and hazard intensity of
disaster chain sub-events, while the ArcGIS program was introduced to produce the hazard zoning
map. As a result, the quantitative hazard assessment of the disaster chain was successfully achieved.
The specific results and discussions are as follows.

4.1. Comparative Analysis of the Hazard Map

Figure 6 illustrates the probability and hazard intensity of collapses, landslides, and debris flows
derived from the BN based on Netica software. From the visualization analysis of the probability
map, it can be seen that the occurrence probability of disaster events indicates approximately the
same trend. From collapse to debris flow, the probability of disaster decreased in the northern and
western region of the studied area, mainly because of the variation in rainfall. From the areas of very
high hazard intensity located around the Tianchi, it is obvious that the spatial mode of the hazard
intensity follows the distribution of the slope and elevation observed in the Changbai Mountain region.
The other hazard intensity classifications differ due to common effects of topographic factors and
occurrence probability.

Figure 7 shows the earthquake-collapse-landslide-debris flow disaster chain hazard zoning map
that was constructed according to the disaster chain hazard assessment model. From visual analysis of
the earthquake disaster chain hazard map, it seems to fit the trend of elevation and slope. Zones of
very high hazard are predominantly located within a 15-km radius of Tianchi, with a distribution area
accounting for approximately a fifth of the total studied area. The high-hazard zones are situated in
the southern region of the studied area. While the northern and the western regions of the studied
area mainly contain very low-to-low hazard values, the distribution area in this case accounts for
approximately half of the total studied area. According to this analysis of the earthquake disaster chain
hazard zone, it is evident that the spatial trend of the earthquake disaster chain hazard zone follows
the distribution of elevation and slope. The interrelations between the lithological coverage and the
earthquake disaster chain hazard values are also noted. More importantly, regarding the development
of the disaster chain, the favorable terrain for collapses to be induced by earthquakes was that with
high elevation and slope, with their occurrence directly leading to a change in the surrounding disaster
environment and an increase of hazard factors, which led to landslides and even full disaster chains in
certain geological environments. The southern region of the studied area with very high elevation
and slope is characterized by high hazard values, of which the probable reason is that there is low
annual average precipitation in this region compared with the Tianchi center. Minimal rainfall is seen
to significantly limit the occurrence of landslides and debris flows, which is consistent with the results
of previous research [44,45]. From this analysis, it can also be concluded that the distance of the region
to the river was not a critical factor in the hazard assessment of the earthquake disaster chain.

4.2. Test of Hazard Assessment Results

To determine the accuracy of the disaster chain hazard assessment models applied in the study,
two validation methods, the relative operating characteristics (ROC) and seed cell area index (SCAI),
were used. According to the ROC methodology, the accuracy of the model was validated by correctly
estimating the occurrence or non-occurrence of disaster chains based on the training and verification
datasets. The area under the ROC curve (AUC) is used to represent the accuracy of the assessment
method, with values ranging from 0.5 to 1.0, which indicates an inaccurate method and a perfectly
accurate method, respectively [46]. Figure 8 presents the AUC that shows the accuracy of the model’s
quantitative evaluation results. The test results show that the ROC curve of the disaster chain hazard
evaluation result is evidently convex, indicating that the number of disaster chain in areas of very high
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hazard and high hazard is greater, and that the accuracy of disaster chain hazard evaluation results is
sufficiently high. The AUC value is 79.29%, meaning that the accuracy of quantitatively measuring the
disaster chain evaluation results is 79.29%.

1.0 —
——— ROC curve —

Reference Line /

Sensitivity
T

0.0 L
0.0 0.5 1.0

1-Specificity

Figure 8. Receiver operating characteristic (ROC) rate of the hazard results.

The disaster chain hazard assessment results were also verified by applying the SCAI method,
which shows the density of disaster chains among the classes put forward by Suzen and Doyuran [47].
The logic behind the SCAI method lies in the correct classification of seed cells within a very conservative
areal extent. The high- and very high-susceptibility classes should have a very small SCAI value while
low- and very low-susceptibility classes should have higher SCAI values. In the context of this study,
the hazard area proportions are divided by the disaster chain seed cell proportions in order to obtain
the SCAI density of disaster chains for the different classes (Table 3). The SCAI values reveal that the
produced maps are similarly accurate because the higher hazard classes do exhibit lower SCAI values,
whereas the lower hazard classes yield higher SCAI values.

Table 3. The densities of disaster chain among the disaster chain hazard classes for hazard
assessment model.

Hazard Classes  Area (%) Seed (%) SCAI

Very low 32.17 5.56 5.79
Low 13.60 8.33 1.63
Medium 14.38 11.11 1.29
High 20.20 28.70 0.70
Very high 19.65 46.30 0.42

5. Conclusions

Collapses, landslides, and debris flows have always been a primary focus of geological disaster
scholars. This study presented a volcanic earthquake disaster chain hazard assessment model in
which the BN model was used for determining the chain probability and hazard intensity in the
disaster risk assessment elements while ArcGIS was used to produce the earthquake disaster chain
hazard zoning maps. Specifically, the BN model was applied in order to determine the occurrence
probability for every pair of adjacent disaster events and hazard intensity of individual disaster events.
The development of the methodology was carried out in the Changbai Mountain region, China, on the
basis of the disaster chain hazard assessment model and analysis of disaster chain sub-events with
a three-layer structure. According to the hazard assessment results of this research, the BN model
demonstrated satisfactory performance of disaster chain probability prediction, through the evaluation
of error rate and scoring rules. From visual inspection of the produced earthquake disaster chain
hazard maps, the very high hazard zones are mainly located within the 15-km radius focus on the
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Tianchi, the high hazard zones are located in the southern region of the studied area, while the northern
and western parts of the studied area mainly feature very low-to-low hazard values. The areas of
medium hazard values are sporadically distributed over the entire studied area. The AUC value of the
volcanic earthquake-collapse- landslide-debris flow disaster chain hazard assessment model is 0.7929,
indicating that the model is not yet perfected; the author intends to improve the accuracy through this
research in the future.
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