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Abstract: Oriented feature from the accelerated segment test (oFAST) and rotated binary robust
independent elementary features (rBRIEF) SLAM2 (ORB-SLAM2) represent a recognized complete
visual simultaneous location and mapping (SLAM) framework with visual odometry as one of its core
components. Given the accumulated error problem with RGB-Depth ORB-SLAM2 visual odometry,
which causes a loss of camera tracking and trajectory drift, we created and implemented an improved
visual odometry method to optimize the cumulative error. First, this paper proposes an adaptive
threshold oFAST algorithm to extract feature points from images and rBRIEF is used to describe the
feature points. Then, the fast library for approximate nearest neighbors strategy is used for image
rough matching, the results of which are optimized by progressive sample consensus. The image
matching precision is further improved by using an epipolar line constraint based on the essential
matrix. Finally, the efficient Perspective-n-Point method is used to estimate the camera pose and a
least-squares optimization problem is constructed to adjust the estimated value to obtain the final
camera pose. The experimental results show that the proposed method has better robustness, higher
image matching accuracy and more accurate determination of the camera motion trajectory.

Keywords: RGB-D cameras; image matching; visual odometry; accumulating drift; ORB-SLAM2

1. Introduction

Oriented feature from the accelerated segment test (oFAST) and rotated binary robust independent
elementary features (rBRIEF) simultaneous location and mapping 2 (ORB-SLAM2) [1–4] is a complete
simultaneous location and mapping solution based on monocular, binocular and RGB-Depth (RGB-D)
cameras. One of its contributions is to propose an efficient visual odometry (VO) method based on
improved oriented feature from the accelerated segment test (FAST) and rotated BRIEF operators.
The purpose of visual odometry as the front end of SLAM is to estimate the rough camera motion
based on information from adjacent images and provide a good initial value for the back end of SLAM,
which is one of the key visual SLAM research technologies. A complete visual odometry consists of
three main parts: (1) image feature extraction and matching, mainly including image feature detection,
description and matching; (2) mismatched points culling, which can help improve image feature
matching accuracy; and (3) motion pose estimation and triangulation measurement. This technology is
widely used in robotic autonomous positioning, virtual reality, augmented reality and autonomous
driving. In visual SLAM, since RGB-D cameras can obtain RGB and depth images simultaneously, they
have better for application scenarios than monocular and binocular cameras indoors, thus attracting
many researchers and enterprises to conduct in-depth research and development. More low-cost and
high-performance RGB-D cameras are being launched, further promoting the indoor application and

ISPRS Int. J. Geo-Inf. 2019, 8, 581; doi:10.3390/ijgi8120581 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-0722-028X
http://dx.doi.org/10.3390/ijgi8120581
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/12/581?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 581 2 of 19

development of RGB-D cameras [5–7]. However, as the application scenarios continue to increase,
higher requirements are placed on visual odometry based on RGB-D cameras. At present, some
problems exist with visual odometry based on the RGB-D camera, which can be improved using
feature point extraction and matching, camera pose recovery and so on [8,9]. Visual odometry has
been a research hotspot in the field of computer vision and image real-time processing. Researchers
have committed to proposing a more accurate and robust visual odometry method but the existing
visual odometry solution cannot meet the needs of increasingly complex application scenarios.

We mainly studied the problem of camera tracking loss and trajectory drift caused by the
accumulated error of a visual odometer. Based on the ORB-SLAM2 framework, a new visual odometer
scheme is proposed. Specifically, the main innovations of this paper are as follows. First, feature
point extraction is performed using adaptive threshold-based oriented features from the accelerated
segment test (AoFAST) algorithm to enhance the robustness of feature extraction. Second, the results of
rough matching are optimized using the fast library for approximate nearest neighbors (FLANN) [10]
algorithm with progressive sample consensus (PROSAC) [11] algorithm and epipolar line constraints
based on the essential matrix, thus improving the accuracy. The camera pose obtained using the
proposed scheme has better robustness and higher precision.

2. Related Work

Visual odometry technology has developed rapidly and many effective algorithms and strategies
have emerged. Although the existing algorithms can produce good results under certain conditions,
some key problems remain to be solved in the face of complex scenarios, especially in terms of accuracy
and robustness. Considering these problems, on the basis of literature and research work, we mainly
improve the visual odometry to produce a visual odometry scheme with higher precision and higher
robustness [12].

Image feature extraction and description technology is the basis of visual odometry and is
an independent research hotspot that can be applied to many fields. At present, many effective
feature extraction and description methods are available, such as the scale invariant feature transform
(SIFT) [13] algorithm, the speeded up robust features (SURF) [14] algorithm, the binary robust invariant
scalable keypoints (BRISK) [15] algorithm and the oriented FAST and rotated BRIEF (ORB) [16]
algorithm. Feature point matching establishes a reliable correspondence between the homonymic
feature points. The selection of matching strategy directly affects the matching accuracy of the
corresponding points [17,18]. A common matching method is the brute force matcher but it is slow, so
some scholars introduced a faster method: fast library for approximate nearest neighbors (FLANN).
These are the two most commonly used feature point matching methods in engineering applications.
However, points in the results of these algorithms can be mismatched, which may seriously affect
the success and accuracy of the camera pose calculation. To improve the accuracy of feature point
matching, scholars have used various methods and strategies to eliminate wrong matching points.
Random sample consensus (RANSAC) [19–23] is a simple and effective method that obtains an
optimal model by randomly selecting a specified number of matching point pairs and rejects the
mismatched points according to the calculated model. The RANSAC method can be used to calculate
the fundamental matrix of the image pair, which can be used to constrain the epipolar line to produce
a more ideal matching result. The method is well applied in many scenarios where high precision
matching is required. After image matching, the pose relationship between adjacent images can be
restored, that is, the rotation matrix and translation matrix between images can be calculated. In
photogrammetry and computer vision, image pose recovery is mainly divided into three categories:
(1) two-dimensional-two-dimensional (2D-2D), which uses two sets of 2D points to estimate camera
motion through epipolar line constraint; (2) three-dimensional-three-dimensional (3D-3D), which
generally uses the iterative closest point (ICP) [24] to calculate camera motion based on two sets of
3D points; and (3) 3D-2D, which estimates the motion of the camera using the Perspective-n-Point
(PnP) [25] method according to the 3D points of the object and their projection positions in the camera
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and is one of the most important pose estimation methods that does not require the use of epipolar
line constraint and can obtain better motion estimation in few matching points. 3D-2D is ideal
for real-time mapping and modeling of RGB-D sensor indoors. However, 3D-2D has insufficient
information use and is influenced by noise and mismatches, resulting in algorithm failure. Therefore,
suppressing noise, improving matching accuracy and improving use of matching information are
some of the solutions to improve camera pose recovery. Besides, to reduce drift in the trajectory,
landmarks [26], multi constraint Kalman filter [27] and 3D models have been used. For example,
reference [26] utilizes two calibrated cameras that form a stereo head. It minimizes the error associated
with each pose computation by allowing matching and pose estimating over longer motion baselines.
Reference [27] proposes a measurement model for omnidirectional visual-inertial odometry with visual
and inertial sensors for indoor positioning. Reference [28] proposes a building information model
(BIM) based visual tracking approach for indoor localization using a 3D building model. It can avoid
the accumulation of localization errors. Reference [29] proposes an indoor localization improved
by spatial context, which uses maps and spatial models to improve the localization by constraining
location estimates in the navigable parts of indoor environments. Reference [30] conducts a survey on
visual-based localization with heterogeneous data. It presents a survey about recent methods that
localize a visual acquisition system according to a known environment. They are limited to fixed
scenes, data and facilities but not applicable to all scenes. In recent years, there are some representative
achievements in the research of visual odometer based on image matching. For example, the adaptive
threshold selection strategy of reference [31] is to dynamically adjust the threshold within a given
range by comparing the number of FAST feature points with the threshold in the current window. In
this way, the visual odometry algorithm has the advantages of a constant stream of robust features and
feature count is nearly constant. In reference [32], a simple proportional controller is used to choose
the adaptive threshold for the FAST detector in visual odometry. They all made some improvements.
These improved ideas are worth learning. To summarize, given the existing problems, and under the
framework of the ORB-SLAM2 visual odometry, we introduce an adaptive threshold oFAST algorithm
for feature extraction to enhance its robustness and stability. PROSAC [33–35] is used to optimize the
matching results and the epipolar line constraint [36] based on the essential matrix is introduced to
further improve the image matching accuracy to improve the success rate and accuracy of camera pose
recovery, reduce the accumulated error of ORB-SLAM2 visual odometry and provide a more reliable
camera pose for local optimization and global optimization.

3. Methodology

The RGB-D camera used in this study was pre-calibrated. In the process of feature point extraction,
we propose an adaptive threshold oFAST algorithm (adaptive threshold oFAST, AoFAST) to extract
feature points and apply the FLANN algorithm for feature point coarse matching. Then, the obtained
matching sets of homonymous points are optimized by the PROSAC algorithm. To further improve
the matching accuracy of homonymous feature points, the essential matrix is introduced to conduct
epipolar line constraint to purify mismatched points. Finally, the efficient Perspective-n-Point (EPnP)
method is used to estimate the camera pose. Next, we introduce the improved visual odometry method
in detail and verify the effectiveness and superiority of this method through experiments. Figure 1 is
the flow chart of our improved visual odometry.
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3.1. Visual Odometry Algorithm in ORB-SLAM2

3.1.1. Feature Extraction and Description

In ORB-SLAM2 visual odometry, feature point extraction uses the oFAST algorithm, which is
an improvement of the traditional FAST algorithm. The traditional FAST algorithm functions by
considering that if the gray value of a pixel differs considerably from the gray value of a certain number
of pixels in its surrounding area, the pixel may be a corner point. To be more efficient, a pre-test
operation can be added to quickly eliminate most pixels that are not corner points. As shown in
Figure 2. The specific operation directly detects the gray value of the 1st, 5th, 9th and 13th pixels on the
neighborhood circle for each pixel. Only when three of the four pixels are greater than Ip + T or less
than Ip − T at the same time, the current pixel may be a corner point; otherwise, it should be directly
excluded. Ip is the gray value of the point p to be detected and T is the given threshold.
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Compared to other corner detection algorithms, FAST only needs to compare the gray value of the
pixels, so the algorithm is very fast. The main limitation of the FAST corner is the lack of directionality
and scale invariance. To solve this problem, the visual odometry in ORB-SLAM2 improves upon the
traditional FAST algorithm with the oFAST algorithm. In the oFAST algorithm, the directionality of
features is realized using the gray centroid method and scale invariance is achieved by constructing an
image pyramid and detecting corner points on each layer of the pyramid. FAST feature points have
many extractions but poor stability but the extracted feature points have strong robustness. Therefore,
the oFAST algorithm calculates the Harris response value for the original FAST corner points and then
selects the corner points with larger response values as the final set of corner points. However, the
oFAST algorithm uses a fixed threshold, which also makes it unable to meet the requirements of feature
point extraction in complex scenes.

3.1.2. Image Matching and Error Elimination

A correct matching result is the goal of image matching. If mismatched feature point pairs are
used to solve the polar geometry, large errors will be generated in the fundamental matrix obtained by
the polar geometry, which considerably influences the positioning accuracy. Therefore, mismatched
points culling is required after feature point extraction. In ORB-SLAM2 [2], the coarse-to-fine matching
strategy of FLANN + RANSAC + fundamental matrix-based epipolar line constraint is used to achieve
this goal. FLANN is a nearest neighbor search algorithm for large data sets and high-dimensional
features that can quickly perform coarse matching on images from a large number of feature points.
The RANSAC method is to randomly select some points as interior points in a set of sample points,
including exterior points and interior points, to calculate the data model of the sample and ensure the
data model generated by the selected sample points has good performance in the whole sample via
iteration and threshold comparison. Most of the exterior points can be eliminated by the RANSAC
method. However, due to the randomness of the initial sample selection of RANSAC, the running time
of RANSAC is extremely unstable, therefore, a new algorithm is needed to solve these problems.
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To further improve the accuracy of image matching, the epipolar line constraint is also used in
ORB-SLAM2 to eliminate mismatched points. The epipolar line constraint means that a set of matching
point pairs must be located above a corresponding set of epipolar lines on two images. As shown
in Figure 3, p1 is an image point in the left figure I1, p2 is the corresponding image point in the right
figure, P is the object point corresponding to p1 and p2 and O1 and O2 are the photography centers of
the left and right images, respectively. The intersection of the O1O2 line with the image plane I1,I2 is
e1,e2, which is the pole. O1,O2, form an epipolar plane and the lines with which it intersects I1, I2 are
the epipolar lines. For the epipolar line constraint for each pixel on the left image, the corresponding
homonymy point on the right image must be on the intersection line between the epipolar plane of the
point and the right image (i.e., the core line). However, because the fundamental matrix introduces
internal parameters, it also introduces more errors accordingly. Through the improvement of this point,
better error purification effect can be achieved.
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3.1.3. Pose Estimation

When restoring the pose relationship between images, the commonly used method is PnP.
However, PnP cannot fully use information and is susceptible to noise and mismatching points. To
solve these problems, a common method is using EPnP for pose solving as it can use more information
and iteratively optimize the camera’s pose to eliminate the influence of noise as much as possible. In
the ORB-SLAM2 visual odometry scheme, the EPnP algorithm is used to solve the camera pose and
the improved visual odometry scheme proposed in this paper also uses this algorithm.

3.2. Improved Visual Odometry Algorithm for ORB-SLAM2

Generally, even in the same image, due to the uncertainty and complexity of illumination and
surrounding environment information, problems may occur such as low contrast or strong local
features. When the oFAST operator detects the corner points, the threshold value is fixed. If the
threshold value is too low, many virtual corner points appear, thereby reducing the detection efficiency;
if the threshold is too high, a certain degree of missed detection occurs. Although the fixed threshold
is simple to calculate, it cannot meet the requirements of feature point extraction in different images.
Secondly, in the process of removing the mismatched points, since the initial sample selected by
RANSAC is completely random, RANSAC is prevented from selecting the interior point set that meets
the model requirement at one time, making the number of iterations large and unstable. Consequently,
the algorithm is slow. Due to the introduction of camera internal parameters, the epipolar line
constraint based on fundamental matrix adopted by ORB-SLAM2 also introduces new errors and the
calculation process is more complex. To solve these problems above, we improved the visual odometry
of ORB-SLAM2. The first step is to select the threshold of the oFAST feature detection algorithm with
an adaptive strategy, namely the AoFAST algorithm, which makes feature points extraction more
robust in more complex environments. Afterwards, the initial sample selection method of RANSAC
is improved to quickly obtain a relatively stable result. The fundamental matrix is replaced with
an essential matrix to perform the epipolar line constraint, thus realizing a visual odometry with
higher precision.
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3.2.1. Adaptive Threshold oFAST Algorithm for Feature Extraction Algorithm

In the oFAST feature extraction, the selection of the threshold directly affects the effect of the corner
points extraction and the number of corner points changes with the threshold. The fixed threshold
is simple to calculate but lacks flexibility, complicating the extraction of satisfactory corner points.
Therefore, we used an adaptive method to determine the threshold. In detail, we extracted feature
points by setting the dynamic global threshold T1 and the dynamic local threshold T2.

For setting dynamic global threshold T1, the optimal histogram entropy method, which was
proposed by Kapur, Sahoo and Wong (KSW entropy method) [37] is adopted. In this method, the gray
histogram of the image is used as an approximate estimation of the probability distribution density
function of the gray value and then the objective function is constructed using the density function
combined with the principle of entropy to select the threshold value.

Let the threshold t divide the image with the gray range [0, H − 1] into two types of S1 and
S2. S1 and S2 are the pixel frequency distributions of [0, t] and [t + 1, H − 1], respectively. That is,
S1 =

{
p0, p1, p2, . . . , pt

}
and S2 =

{
pt+1, pt+2, pt+3, . . . , pL−1

}
, where pi is the probability of each gray level.

Set pt =
t∑

i=0
p(i). S1 and S2 are the entropies of the two types, whereas S is the entropy of the image.

The values of S1, S2 and S are
S1 = −

∑
t
i=0

pi

pt
ln

pi

pt
(1)

S2 = −
H−1∑

i=t+1

pi

1− pt
ln

pi

1− pt
(2)

S = S1 + S2. (3)

Tmax and Tmin are the gray levels that maximize and minimize the entropy of the image, respectively;
k is a coefficient, which is the same as in Equation (5). The dynamic global threshold T1 can be
expressed as

T1 = k ∗ |Tmax − Tmin|. (4)

Since the KSW entropy method ignores the grayscale variation of the image locality, it cannot
consider the effects of various changes, such as shadow, uneven illumination, burst noise and
background abrupt changes. As such, it is necessary to further judge and screen the candidate feature
points obtained using dynamic global thresholds. In this paper, the candidate feature points are further
filtered by setting the dynamic local threshold T2.

Assume that the point (x0, y0) in the image is the candidate feature point. Take (x0, y0) as the
center and take the side length of the rectangle as L, define the dynamic local threshold T2 as

T2 = k×
1
n

[∑n
i=1 Iimax −

∑n
i=1 Iimin

]
Iiavg

, (5)

where Iimax , Iimin represent the largest and the smallest n gray value in the rectangular area L,
respectively; Iiavg represents the average gray value in the rectangular area L; and k is the coefficient.

3.2.2. New Image Matching Algorithm

FLANN is a good image rough matching method. In the coarse-to-fine image matching strategy
in this paper, FLANN is used for image rough matching. In the fine matching phase, PROSAC and the
epipolar line constraint based on essential matrix are used to obtain the final matching results.

Compared with the RANSAC [18] algorithm, the PROSAC [1] algorithm ranks the points in the
sample set in advance; the interior points that can estimate the correct model are ranked higher and
the exterior points that hinder the model estimation are ranked lower. Then, select a high-level point
set to estimate the model that can reduce the randomness of the sampling and improve the success rate
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of obtaining the correct model. As a result, the number of algorithm iterations decreases. Specifically,
the PROSAC algorithm classifies the feature matching point pairs by introducing a quality factor and
high-quality matching point pairs are used to obtain the homography matrix [38].

In the image matching process, each pair of matching feature points produces a ratio β of Euclidean
distance. Equation (6) is the definition of β, which is a ratio of two Euclidean distances. dmin is the
minimum Euclidean distance and dmin2 is the sub minimum Euclidean distance.

β =
dmin
dmin2

. (6)

The analysis shows that the smaller the values of β and dmin, the better the quality of the matching
of feature points. Thus, PROSAC introduces a quality factor γ to measure the quality of the matching
point pairs.

γ =
1

βdmin
. (7)

According to the analysis above, the larger the value of γ, the higher the relative probability that
the matching point is an interior point or the higher the probability of obtained the correct model.

The specific steps of the PROSAC algorithm are shown in Algorithm 1.

Algorithm 1. Progressive sample consensus (PROSAC) algorithm steps

Input: Maximum number of iterations Im, interior point error threshold δ and interior point number threshold
K
Output: Homography matrix H

1. Calculate the minimum Euclidean distance dmin, the Euclidean distance ratio β;
2. Calculate quality factor γ;
3. Select m points with the best quality ranking, combine every four points, calculate the sum of the quality

of each group and arrange them in descending order according to the sum of the quality of
the combination;

4. Select the four matching points with the highest quality sum to calculate the homography matrix H;
5. Excluding these four matching points, calculate the corresponding projection points of the remaining

matching points according to H;
6. Calculate the error e of the projection point and the matching point and compare it with the error

threshold δ. If e < δ, it is determined an interior point; otherwise, it is an exterior point;
7. Count the number of interior points k and compare it with the interior point number threshold K. If

k > K, update the number of interior points to k; otherwise, increase the number of iterations by 1 and
repeat steps 4 to 7.

8. Recalculate the homography matrix H and the new interior points using the updated k interior points;
9. If I < Im, return the homography matrix H and the new set of interior points. Otherwise, the

corresponding model cannot be found.

After the above processing, the proposed approach produces a more accurate matching point set
and homography matrix. Thus, the fundamental matrix and the essential matrix can be calculated,
both of which can be used to realize the epipolar line constraint to purify the set of matching points.
The visual odometry of ORB-SLAM2 uses the epipolar line constraint based on the fundamental matrix.
The fundamental matrix is more complex than the essential matrix in which the internal parameters
may introduce more errors and the elimination the mismatches may not be satisfactory. Therefore,
the proposed algorithm uses a simpler essential matrix to perform the epipolar line constraint, which
is easier to calculate and the elimination the wrong matching point pairs is improved, so that a
more accurate matching point set can be obtained, which is conducive to calculating a more accurate
camera pose.
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From Figure 3 above, assume that the coordinates of the object point P are

P = [X, Y, Z]T. (8)

According to the pinhole camera model, the pixel positions of the two pixel points p1 and p2 are
shown in Equation (9), where K is the camera internal parameter matrix and R and t are the camera
motion rotation matrix and translation matrix, respectively.

s1p1 = KP, s2p2 = K(RP + t). (9)

Assume that x1, x2 are the coordinates of the pixel on the normalized plane, which can be calculated
by Equation (10):

x1 = K−1p1, x2 = K−1p2. (10)

Substitute Equation (10) into Equation (9):

x2 = Rx1 + t. (11)

Multiply Equation (11) by xT
2 [t] and simplify it, where [t] is the antisymmetric matrix of t.

xT
2 [t]Rx1 = 0, (12)

where
E = [t]R. (13)

The proposed method uses eight pairs of points to estimate the essential matrix. When considering
a pair of matching points, their normalized coordinates are x1 = [u1, v1, 1]T and x2 = [u2, v2, 1]T.
According to the epipolar line constraint, the Equation (14) can be obtained:

(
u1 v1 1

)
e1

e4

e7

e2

e5

e8

e3

e6

e9




u2

v2

1

 = 0. (14)

Eight pairs of matching points can realize eight equations and the linear equations composed of
these eight equations can obtain the value of the essential matrix E.

According to the definition of the essential matrix:

x′TEx = 0. (15)

Equation (15) can be used to eliminate the mismatched point, where x, x′ are a set of corresponding
points on the two images.

3.2.3. Pose Estimation Algorithm

At present, the most commonly used camera pose recovery methods are PnP, EPnP [39],
uncalibrated PnP (UPnP) [40] and the direct least-squares method for PnP (DLS) [41]. To compare the
effectiveness and practicability of these methods, we conducted an experiment on the camera pose
calculation of a pair of images and the experimental results are shown in Table 1.
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Table 1. Comparison of camera pose recovery methods.

Method Error (mm) Time (ms)

PnP 4.277 5.531
EPnP 1.311 5.111
UPnP 2.796 5.309
DLS 2.684 5.479

From the experimental results, whether in terms of accuracy or time, EPnP provides more
advantages than the other methods, so we chose EPnP method for camera pose estimation.

4. Experiments and Analysis

4.1. Experimental Data and Computing Environment

To verify the effectiveness of the proposed method, we used the proposed improved visual
odometry method to conduct experiments and compared the experimental results with the results of
the ORB-SLAM2 open source code. Since the improvement produced by this method only involves the
visual odometry, the modules of loop detection and global optimization in ORB-SLAM2 are closed
in the following experiments. In this study, we use Visual C++ based on OpenCV to program the
proposed new method. In the experiment of the entire visual odometry, we used an Intel®Core™
i7-8750H processor and with 8 GB memory. We obtained video stream data from the open data
set RGBD-Benchmark of the Technical University of Munich (TUM, Munich, Germany). The two
video streams were rgbd_dataset_freiburg2_desk and rgbd_dataset_freiburg3_structure_texture_near.
The track length of rgbd_dataset_freiburg2_desk is 18.880 m and the number of frames is 2964.
For rgbd_dataset_freiburg3_structure_texture_near, the data are 5.050 m with 1065 frames. In the
experiment comparison, the image pairs shown in Figure 4 were used.ISPRS Int. J. Geo-Inf. 2019, 8, 581 10 of 19 
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Figure 4. Four pairs of experimental images: (a) video stream data, (b) drone images, (c) mobile phone
camera in Wuhan University Library and (d) mobile phone camera at the Wuhan University Remote
Sensing Comprehensive Test Site.

4.2. Experimental Analysis

4.2.1. Experimental Results and Analysis of Image Feature Extraction Algorithm

We first compared the feature extraction results for the same image by two feature extraction
methods. As shown in Figure 5, we selected Figure 4a to perform the comparison experiment. Figure 5
shows that the improved AoFAST feature extraction algorithm can extract more feature points than the
oFAST algorithm.
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To prove that the points extracted from AoFAST are robust and were suitable for the following
feature point matching, we conducted a feature point matching experiment based on two feature
extraction methods. To compare the effects of the two methods, we used the precision–recall curve. The
precision rate is P and the recall rate is R, which are calculated as Equations (16) and (17), respectively:

P =
TP

TP + FP
(16)

R =
TP

TP + FN
, (17)

where TP is the true positive, which is the number of real matching points that are predicted as
matching points; FP is the false positive, which is the number of real mismatching points that are
predicted as matching points; and FN is the false negative, which is the number of real feature matching
points that are predicted as mismatching points.

In the feature matching algorithm, high precision rate and high recall rate are simultaneously
needed to obtain a larger number of correct correspondence points. However, this is challenging. The
increase in recall rate is accompanied by a decline in precision rate. Therefore, a good algorithm has a
higher precision rate under the same recall rate and higher precision rate under the effective recall rate.

Figure 6 compares the precision–recall of the oFAST and AoFAST algorithms. Obvious differences
can be observed between the two curves. Under the same recall rate, the precision rate of AoFAST
algorithm is better than that of the oFAST algorithm.
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The above results show that the AoFAST feature extraction algorithm performs better in feature
point extraction than oFAST. Calculation speed is also an important aspect of a feature extraction
algorithm. Table 2 compares the time efficiency of oFAST and AoFAST. Table 2 shows that the
calculation speed difference between the AoFAST and oFAST algorithms for the four pairs of images in
Figure 4. Table 2 shows that the time difference between the two algorithms is less than 0.1 ms and
both produced good real-time performance.

Table 2. Comparison of time between oFAST and AoFAST.

Image oFAST (ms) AoFAST (ms)

Figure 4a 0.200 0.215
Figure 4b 0.401 0.447
Figure 4c 0.443 0.451
Figure 4d 0.429 0.444

4.2.2. Experimental Results and Analysis of Image Feature Matching Algorithm

For PROSAC and RANSAC, we compared the ability of the two algorithms to eliminate the
mismatching point pairs through an image matching experiment. Figure 7 shows that some obvious
mismatches remain after RANSAC and PROSAC eliminates them. This proves that PROSAC’s ability
to reject mismatching points is significantly better than RANSAC’s.ISPRS Int. J. Geo-Inf. 2019, 8, 581 12 of 19 
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requirements of feature matching. This occurs because as the threshold increases, more interior points 
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Figure 7. Comparison of eliminating mismatches between random sample consensus (RANSAC) and
PROSAC. (a,b) Results of the feature point extraction, (c) the result of the feature point matching
without mismatching points elimination and (d,e) the results of culling the mismatching points after
RANSAC and PROSAC. Red rectangles are the highlight of the mismatches that RANSAC cannot
remove while PROSAC correctly removes.

Similarly, we used the precision–recall curve to measure the performance of the two algorithms.
Figure 8 depicts the result. We used the AoFAST feature extraction algorithm uniformly in the
experiment. Figure 8 plots the precision rate and recall rate obtained by changing the thresholds of
RANSAC and PROSAC.
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From the precision–recall curve of RANSAC and PROSAC, when the recall rate is low, the
precision rate of two algorithms are similar high because when the threshold is small, only few points
are determined as interior points and these interior points have high precision. Since the threshold is
small, many correct matching points remain that are not determined as interior points, so the recall rate
is low. In practical applications, having too few feature points cannot meet the requirements of pose
solution. When the recall rate gradually increases, especially when it is greater than 0.5, the precision
rate of PROSAC is significantly higher than that of RANSAC, so can better satisfy the requirements of
feature matching. This occurs because as the threshold increases, more interior points are selected
into the interior point set and inevitably some exterior points are selected into the interior point set, so
the precision rate of the interior point decreases while the recall rate increases. However, PROSAC
has higher precision rate than RANSAC at the same recall rate, which is crucial for successfully
solving camera poses. When the recall rate approaches 100%, all interior and exterior points are
roughly selected into the interior point set and the accuracy of the two converges to a fixed value.
The relationship between the recall rate and the precision rate shows that when the recall rate is too
high, many exterior points are regarded as interior points and large uncertainty is introduced into the
pose solution. When the recall rate is too low, there are few interior points, which cannot meet the
requirements for a pose solution. A robust image matching method requires the best recall rate with
enough correct interior points. Figure 8 shows that the PROSAC algorithm always has advantages
over RANSAC algorithm in terms of precision rate under the same recall rate, especially when the
recall rate is between 0.6 and 0.7. In this range, the number of interior points is sufficient and the
precision rate is also high. This is consistent with the conclusion in the literature that the recommended
recall value is around 0.65, which can ensure that the image matching interior point set can satisfy both
the number and quality requirements [42].

From the perspective of time cost, PROSAC is faster. Figure 9 shows the curve of time varying
with the proportion of interior points when changing the threshold of RANSAC and PROSAC.
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Figure 9 shows that the average time cost of PROSAC is significantly lower than RANSAC because
the random sampling of the RANSAC algorithm leads to more iterations. In general, the average
number of iterations is larger than one, so the time cost of the algorithm is relatively large. Since
PROSAC pre-sorts the interior points, it can obtain better samples during the sampling process, so the
number of iterations is far lower than the RANSAC algorithm. Generally, one iteration can obtain
the correct model and the corresponding number of iterations is low. As the percentage of interior
points increases, the probability that RANSAC selects the interior point when randomly selecting
samples increases and the success rate of obtaining the correct model is correspondingly higher, so that
the number of iterations decreases and the calculation time decreases. The running time of PROSAC
is almost independent of the proportion of interior points and it is more robust to sample error. In
general, when the proportion of interior points is less than 0.8, the time cost of PROSAC is significantly
lower than that of RANSAC, which also increases the robustness of PROSAC to feature matching,
especially for images with some mismatched points.

4.2.3. Experimental Results and Analysis of Different Epipolar Line Constraints

Figure 10 shows that the epipolar line constraint based on the essential matrix is better than that
based on fundamental matrix because some mismatched pairs are better eliminated
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Figure 10. Comparison of eliminating mismatches between two kinds of matrices: (a,c) the results of
the epipolar line constraint using the fundamental matrix; (b,d) the results of the epipolar line constraint
using the essential matrix. Red rectangles are the highlight of the mismatches that the epipolar line
constraint using the fundamental matrix cannot remove while the epipolar line constraint using the
essential matrix correctly removes.
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Similarly, we used the precision–recall curve to compare the two algorithms. Figure 11 shows that
curves of the two are different. Under the same recall rate, the precision rate of the matching results
after the epipolar line constraint based on the essential matrix is significantly higher than that after the
epipolar line constraint based on the fundamental matrix.
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The four sets of data in Table 3 shows that the calculation speed of the epipolar line constraint
based on the essential matrix is slightly faster than that based on the fundamental matrix.

Table 3. Comparison of calculation speed between two kinds of matrices.

Data Fundamental Matrix (ms) Essential Matrix (ms)

Figure 4a 4.710 4.598
Figure 4b 5.351 5.346
Figure 4c 5.095 4.961
Figure 4d 5.826 5.809

4.2.4. Experimental Results and Analysis of Two Visual Odometry Methods

The aim of visual odometry is to restore the camera pose through image matching, which is
achieved by solving the camera’s rotation matrix and translation vector. We compared the ORB-SLAM
2 visual odometry with the improved visual odometry through a pose recovery experiment using
Figure 4c and calculated the translation vectors using two methods and compared them with the real
value to determine accuracies of the two methods. The results are shown in Table 4.

Table 4. Comparison of translation vectors between two methods of visual odometry.

Direction Ground Truth (M) ORB-SLAM2 (m) Our Method (m)

X 0.905 0.909 0.904
Y –0.046 –0.042 –0.047
Z 0.421 0.414 0.424

RMS 0.009 0.003

The ground truth was measured using a TS60 measurement robot and the last two columns in
Table 4 provide the results of the translation matrix solved by the two visual odometry methods. The
visual odometry in this paper is more accurate than the original ORB-SLAM2 visual odometry method.

To further prove that the visual odometer method proposed in this paper provides excellent
continuous camera pose calculation, we selected two video streams: the TUM data sets mentioned
above, rgbd_dataset_freiburg2_desk (video 1) and rgbd_dataset_freiburg3_structure_texture_near
(video 2), to conduct a continuous camera pose calculation experiment. First, the trajectories of the two
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methods were compared. As shown in Figure 12, the ORB-SLAM2 visual odometry and our method
were used to estimate the pose for the same video stream and we compared the pose estimation. We
all know that there is an incremental error in the camera pose calculation for each frame. With the
accumulation of camera frames, the error is also accumulated accordingly, which makes the calculated
camera trajectory more and more deviate from the real camera trajectory. This can be reflected obviously
at the end of the trajectory. Therefore, the tails of the trajectories were selected separately for detailed
observation and more intuitive and obvious differences were observed. Figure 12 shows that with
the accumulation of cumulative error, our algorithm provides obvious advantages and its calculated
trajectory is closer to the true trajectory of the camera, whereas the visual odometry of ORB-SLAM2
has a larger error.
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Intuitive trajectory comparison shows that the visual cumulative error of the two visual odometry
methods differs. The numerical difference between the cumulative errors of the two can be demonstrated
from the perspective of data quantification. Table 5 shows the accumulated errors in X and Y directions
when using ORB-SLAM2 visual odometry and our method to realize the pose estimation of the same
video stream.

Table 5. Comparison of errors in X and Y directions between two visual odometry methods.

Data/Direction ORB-SLAM2 (cm) Our Method (cm)

Video1
X 2.626 2.352
Y 4.868 2.410

Video2
X –1.147 0.721
Y 1.365 0.793
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We used the ratio of the error to the total length to measure the effect of two methods, where the
total length of the trajectory was provided in Section 4.1. Table 5 shows that in the Video1 experiment,
the errors of the ORB-SLAM2 visual odometry method in the X and Y direction were 1.26% and 2.9%
of the total length of the trajectory, respectively; the errors of our visual odometry method in the X
and Y directions were 1.14% and 1.45% of the total track length, respectively, which is 9.62% and
50% less than ORB-SLAM2. In the Video2 experiment, the error rates in the X and Y directions of
the ORB-SLAM2 visual odometry method were 1.41% and 1.13% of the total length of the trajectory,
respectively; the error rates of our method in the X and Y directions were 0.9% and 0.7%, respectively,
which are reductions of 34.5% and 41.91%, respectively.

We also compared the results of the two methods using the evaluation method provided by the
TUM data set and obtained the results provided in Table 6. Table 6 provides the root mean square error
(RMSE) and mean value of the translation error and rotation error of the two methods. For the four
indicators of the two sets of data, our method produced better performance than ORB-SLAM2 visual
odometry. Compared with the ORB-SLAM2 visual odometry method, the RMSE and mean value of
the translation error of the two sets of data in this algorithm are reduced by 37.48%, 31.93%, 42.99% and
32.78%, respectively; the rotation error is reduced by 35.86%, 29.85%, 37.87% and 37.59%, respectively.

Table 6. Comparison of translation and rotation errors between two visual odometry methods.

ORB-SLAM2 (m) Our Method (m)

Video1
translational_error.rmse 0.075 0.047
translational_error.mean 0.058 0.040

rotational_error.rmse 2.407 1.544
rotational_error.mean 1.969 1.382

Video2
translational_error.rmse 0.047 0.027
translational_error.mean 0.034 0.023

rotational_error.rmse 1.002 0.964
rotational_error.mean 0.848 0.816

Time is also another key factor in visual SLAM. A good algorithm should be both accurate and
fast. The same video stream data were implemented using the two methods and we compared their
calculation speed. Table 7 lists the average time required for each pair of adjacent frame images, which
is the time of the entire tracking thread divided by the number of image frames. The time cost of the
proposed method is significantly less than that of the ORB-SLAM2 visual odometry method, which is
reduced by 7.83% and 8.98% for Video1 and Video2, respectively.

Table 7. Comparison of time between two visual odometry methods.

Data ORB-SLAM2 (ms) Our Method (ms)

Video1 28.613 26.373
Video2 26.066 23.726

5. Conclusions

Visual odometry is one of the key technologies in the field of visual SLAM, which has a wide
range of applications in autonomous navigation, automatic driving and augmented reality. In this
study, we addressed the problems experienced by ORB-SLAM2 visual odometry: robustness and
cumulative error in the process of restoring camera pose. Based on the previous research, we created an
improved visual odometry method. Specifically, this paper illustrated the following: (1) On the basis of
ORB-SLAM2 visual odometry, the threshold value of feature extraction is obtained in an adaptive form
and the AoFAST algorithm was proposed, which increases the robustness and stability of the feature
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extraction. (2) PROSAC is used instead of RANSAC to optimize the matching and improve the feature
matching accuracy. (3) The epipolar line constraint based on the essential matrix is used to further
refine the matching point pairs. (4) The performance of the proposed visual odometry and ORB-SLAM2
visual odometry were compared and analyzed using experiments. The experimental results showed
that the proposed method is better than the ORB-SLAM2 visual odometry method in both accuracy
and speed. The proposed method is efficient and precise in the calculation of camera motion trajectory,
effectively optimizing the visual odometry estimation error and reducing the cumulative drift.
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