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Abstract: This work discusses the integration of multi-camera video moving objects (MCVO) and
GIS. This integration was motivated by the characteristics of multi-camera videos distributed in the
urban environment, namely, large data volume, sparse distribution and complex spatial–temporal
correlation of MCVO, thereby resulting in low efficiency of manual browsing and retrieval of videos.
To address the aforementioned drawbacks, on the basis of multi-camera video moving object extraction,
this paper first analyzed the characteristics of different video-GIS Information fusion methods and
investigated the integrated data organization of MCVO by constructing a spatial–temporal pipeline
among different cameras. Then, the conceptual integration model of MCVO and GIS was proposed
on the basis of spatial mapping, and the GIS-MCVO prototype system was constructed in this
study. Finally, this study analyzed the applications and potential benefits of the GIS-MCVO system,
including a GIS-based user interface on video moving object expression in the virtual geographic
scene, video compression storage, blind zone trajectory deduction, retrieval of MCVO, and video
synopsis. Examples have shown that the integration of MCVO and GIS can improve the efficiency of
expressing video information, achieve the compression of video data, rapidly assisting the user in
browsing video objects from multiple cameras.

Keywords: geovisualization; GIS; video-GIS; surveillance video; virtual reality

1. Introduction

At present, billions of surveillance video cameras have been deployed worldwide. The images
acquired from these cameras are widely used in security, transportation, environmental detection,
and other fields to monitor real-time changes in geographic scenes 24 hours per day. In the actual
monitoring process, displaying multiple video images in a grid interface cannot effectively express the
spatial relationship among different camera images in the urban environment (Figure 1). Furthermore,
monitoring tasks, such as spatial–temporal behavior analysis, video scene simulation, and regional
condition, cannot be effectively completed by only relying on image data. To solve the aforementioned
problems, monitoring images should be introduced into the geographic information systems (GIS) to
construct a video-GIS (V-GIS) surveillance system. V-GIS is a geographical environment perception
and analysis platform that integrates a traditional video analysis system within GIS. Under the unified
geographic reference, a geospatial data service supports surveillance image intelligence analysis and
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realizes image–scene integrated modeling [1], video data spatialization [2], video data management
analysis [3], virtual reality (VR) fusion expression [4], and other related functions. Unlike other GIS
data, videos have large data volume, sparse distribution of video moving objects (like pedestrians
and vehicles), and complex spatial–temporal correlation of video moving objects from different
cameras. These characteristics result in the low efficiency of manual browsing and video retrieval
and an insufficient ability to analyze a videos’ geospatial correlation. As a result, traditional GIS data
research methods cannot effectively analyze video data, and a specific research method for V-GIS must
be determined.
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Currently, studies on V-GIS involves a series of investigations on the specificity of video data,
including geographic video semantic expression [5], structured processing on geo-video [6], video
integration and GIS [1]. However, most existing research focuses on the integration of video image
and GIS, thereby ignoring the integration of video moving object and GIS. Video moving objects are
the main focus of users, whereas traditional manual retrieval and analysis on moving objects from
massive surveillance video requires considerable computational resources and time and generates many
misdetections and misjudgments. In recent years, new algorithms, such as mask region-convolutional
neural network (R-CNN) [7] and “you only look once” (YOLO.v3) [8], which improves the efficiency
and accuracy of video moving object detection and rapid recognition and make the information fusion
between video moving objects and GIS accurate and feasible has been presented. A new fusion type
on the integration of video moving object and GIS should be determined to enhance the effectivity of
the retrieval and analysis in V-GIS.

In this work, we considered the integration of multi-camera video moving objects (MCVO) and
GIS. This integration was essentially an augmented VR technique applied in GIS [9]. The integration
of single camera video moving objects and GIS has been discussed before [10]. Practically, V-GIS is
oriented toward multi-camera video information processing in a surveillance network, in which a single
video moving object may appear in multiple camera fields of view, and its trajectory and semantic
behavior have complex spatial–temporal associations related to multiple camera shots [11]. Therefore,
a system that can effectively organize the video moving objects associated with multiple cameras
should be proposed and constructed to perform comprehensive geospatial processing and analysis.

This study attempted to construct an integrated MCVO and GIS system. This integration
could achieve not only the video moving object information extraction and spatially-correlated
visualization but also the MCVO’s spatial–temporal associated analysis, which effectively assists users
in understanding multi-camera videos. The main contributions of this paper are presented as follows:
1. The conceptual fusion model between MCVO and GIS is proposed by comparing the characteristics of
different V-GIS fusion methods on the basis of the specificity of MCVO organization. 2. The GIS-MCVO
prototype system is proposed by describing the architecture and function design of the system. 3. The
unique functions and benefits of GIS-MCVO system, including GIS-based user interface on video
moving object expression, video compression storage, blind zone trajectory deduction, retrieval of
multiple camera video objects, and video synopsis, which cannot be easily achieved in the traditional
V-GIS integrated system, are analyzed.
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This study only investigated the video data obtained by camera with a fixed position and attitude.
The organizational structure of this work is presented as follows. Section 2 presents an overview of the
related work. Section 3 discusses the fusion modes and the organization of MCVO integrated with 3D
GIS. Section 4 describes the architecture of the GIS-MCVO prototype system and analyzes its main
features and key technologies. Section 5 lists the related applications and the potential advantages of
the GIS-MCVO system. Section 6 summarizes and concludes the study.

2. Related Work

A MCVO and GIS integrated monitoring system were developed on the basis of video moving
object detection and V-GIS integrated data organization technology to express video information
in the virtual geographic environment. This section describes the related research on intelligent
surveillance videos, video moving object extraction, V-GIS integrated data organization, and V-GIS
fusion expression.

Although the surveillance video technology has been partially used in the last century [12,13],
video surveillance systems that consist of closed-circuit television and analog signals have poor range
monitoring capabilities, information storage, and comprehensive analysis. Since the “9/11” incident in
2001, the demand for enhancing video surveillance has greatly increased along with the amount of
surveillance image data, thereby causing great difficulties on the manual retrieval and analysis of video
information. Computer vision technology has been applied to large-scale video surveillance systems,
and video image analysis technology is becoming more automated and intelligent to effectively process
massive image information [14].

Video object detection, tracking, and cross-camera recognition are required to execute MCVO
extraction. Object detection is conducted to determine the object’s location area from the image. The
current video object detection methods are mainly based on deep learning, which is divided into
two categories: The two-stage model based on region proposal and the one-stage model from end
to end. The two-stage model is developed from region-convolutional neural network (R-CNN) and
mainly includes fast R-CNN [15], faster R-CNN [16], and mask R-CNN [7], whereas the one-stage
model mainly includes the YOLO [8,17] series of methods. Furthermore, object tracking is conducted
to predict the size and location of the video object in subsequent video streams under the selection
of a tracking object from a given image. Currently, the most widely used tracking methods are
filtering [18] and deep learning-based methods [19]. Cross-camera recognition is necessary to determine
the spatial–temporal correspondence of video objects from multiple cameras. The implementation
methods include the metric-based learning recognition of image features [20] and the local feature-based
recognition [21] developed from prior studies. Meanwhile, video sequence [22] and GAN-based
recognition methods [23] are developed to introduce learning contents to overcome the insufficiency of
the training samples.

In the area of V-GIS integrated data organization, early researchers constructed prototype systems
such as multimedia GIS [24], geo-video [25], and video GIS [26] by describing the correspondence
between video frames and geographic locations. These studies implemented geographic video image
retrieval. In recent years, researchers have focused on the fusion of a projected video image and
geographic scene. The geographic video-scene data fusion organization method based on camera
spatialization model is formed by constructing image-geographic spatial mapping [2]. Typical camera
spatialization models include quadrilateral models applied to 2D planes [27], quadrilateral pyramid
models in 3D scenes [28], and grid camera-based coverage analysis models [29]. Researchers developed
a series of methods for organizing V-GIS data fusion by geolocation and annotation of video data using
the aforementioned models. In some of these methods (e.g., view-based R-tree [3] and camera-based
topology indexing [30]), video data organization is analyzed by examining the camera field of view. The
other methods used moving object texture association [31], spatial–temporal behavior association [32],
and semantic association [33].
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A suitable mapping method must be selected to project the video on to the virtual scene model to
integrate videos with geospatial information [34,35]. Katkere A. [36] first proposed the concept of fusion
expression between video and GIS by using different mapping methods for various semantic-type
regions, such as moving objects and video scenes, and building an immersing system based on
multi-camera video data. According to different mapping methods, the information fusion methods of
surveillance video and virtual scene are divided into two categories: GIS-video image fusion (image
projection) [37] and GIS-video moving object fusion (object projection) [38]. The implementation
forms of GIS-video image fusion, including video image linked search analysis [4] and videos that
are projected to the geographic scene [33], are easy to implement but lack the ability to analyze and
understand video image contents. The object projection method extracts video semantic objects from
the original video through object detection. Specific implementation methods are divided into three
types: (1) foreground and background independent projection [28,39]; (2) foreground projection [31,40];
and (3) foreground abstraction [41]. The foreground and background independent projections project
the foreground moving object subgraphs to their corresponding spatial–temporal position in the virtual
scene. The foreground projection shows the foreground moving object’s subgraph in the corresponding
spatial–temporal position in the scene while omitting the projection of the video background image.
Foreground abstraction projects the moving object’s avatar to the corresponding spatial–temporal
position in the geographic scene and simplifies the representation of the video moving object.

3. Fusion between Multiple Camera Objects and GIS

In this section, we first introduce the extraction and data organization for MCVO and then analyze
the characteristics of different V-GIS fusion methods and determine the implementation form of the
integration of MCVO and GIS.

3.1. Extraction and Data Organization of Multi-Camera Video Moving Objects

Video moving object extraction includes three steps: video moving object detection, tracking, and
cross-camera recognition. Figure 2 shows their process relationships. After completing the processes,
the original video images are transferred to the data of each video moving objects:

C =
{
I j, P j, ( j = 1, 2, . . . , n)

}
, (1)

where C represents the dates of a video moving object; n is the number of the video frames in which
the object occurred; and I j and P j represent the location and sub-graph image of the current object in
each frame, respectively.

This study adopts the spatial–temporal pipeline (STP) as the basic unit to uniformly describe the
MCVO information.

As Obj is the total set of all the moving objects from multiple cameras. Cubek represents each STP
in the current kth camera video range. A total of Nk video moving objects exist in Cubek, and Ck,i is the
STP of each moving object. Cubek and Ck,i can be expressed as:

Obj =
{
Cubek, (k = 1, 2 . . . L)

}
, (2)

Cubek =
{
Ck,i, (i = 1, 2, . . . , Nk)

}
, (3)

Ck,i =
{
Ik,i, j, Pk,i, j, ( j = 1, 2, . . . , n)

}
, (4)

where Ik,i, j and Pk,i, j represent the geolocation of the ith video moving object in the jth video frame
of the camera. This study proposes a data-based MCVO ontology so that the organization of the
video moving object data can effectively reflect the association among cross-camera video moving
objects, because a single video moving object may appear in many different cameras. This organization
realizes the unified organization record of a cross-camera video moving object with the same entity
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that appears in different camera videos and requires the merging of the original video moving object’s
STP. Let Lo denote the total number of video moving objects after merging on cross-camera video
moving objects with the same entity, and the expression of the STP of each video moving object is:

Obj =
{
Cubei(i = 1, 2, . . . , Lo)

}
(Lo ≤ L), (5)

Cubei =
{
Ck1,i, Ck2,i . . .Cko,i . . . , (k1, k2, . . . ko) ∈ (1, 2 . . . L)

}
, (6)

where Obj is the set of all video moving objects in multiple cameras, Cubei indicates the global STP of
the video moving object with serial number i in the surveillance video network, and Cko,i denotes the
STP subsequence of the video moving object number i in the koth camera. 5 of 20 
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3.2. Fusion between Video Moving Object and GIS

On the perspective of spatial positioning, the video’s field of view was georeferenced to determine
the geospatial range of the video image (Figure 3a). The video moving object had to locate the geospatial
trajectory to determine the position of the object’s subgraph in each video frame (Figure 3b). Both
of the fusions were carried out by determining the pairs of points with the same name between the
image’s geospatial coordinates, solving the camera parameters, and constructing the video’s geospatial
mapping equation.

The equations for geospatial video mapping were established using the homography matrix
method. Figure 4 shows the relationship between the geospatial and the image space coordinate
systems. The center of the camera is denoted by C; the image space coordinate system is denoted by
Oi Xi Yi ; and the geospatial coordinate system is denoted by Og Xg Yg Zg.
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Assuming that q and Q are respective points in the image’s spatial and geographic coordinate
system with similar names, then let the homography matrix be M such that the relationship between q
and Q is:

q = MQ, (7)

where M is represented as follows:

M =


k1 k2 tx

k3 k4 ty

0 0 1

, (8)

M has six unknowns. Thus, at least three pairs of images and geospatial points should be
determined to solve M. When M is determined, the coordinates of any point in the geographic space
can be solved as: 

X
Y
1

 = M−1


x
y
1

, (9)

The fusion of video moving object and GIS includes three implementations: foreground
and background independent projection, foreground projection, and foreground abstraction. We
qualitatively analyzed the information expression ability of various video moving object–GIS fusion
methods to select the appropriate fusion form of MCVO and GIS. Table 1 shows the results.

Table 1 shows that the foreground and background independent projections simultaneously
mapped the background and foreground information of the video, thereby making the video’s
foreground object less prominent. Meanwhile, foreground abstraction completely abandoned the
expression of the original video image data, and no image- and scene-associated expressions were
observed. As a result, neither of the two implementations were suitable for the integration of MCVO
and GIS. By contrast, foreground projection can express image and scene correlation and represent
images spatially. The remaining discussion of this paper on the integration of video moving object
and GIS was based on foreground projection because it was suitable for MCVO and geographic scene
fusion expression. However, although this problem can be alleviated by optimizing the selection of the
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viewpoints to some extent, one disadvantage of foreground projection is that it can only support a
certain range of viewpoints displayed in the virtual geographic scene.

Table 1. Analysis of visual feature characteristics of virtual and real expression patterns.

Title 1 Displaying
Environment

Ability on
Supporting

Virtual View
Browsing

Correlation
Representation

Ability between
Image and Virtual

Scene

Ability on
Highlighting

Video Foreground
Object

Image projection 2D/3D Range view Yes No

Foreground and
background
independent

projection

3D Range view Yes No

Foreground
projection 3D Range view Yes Yes

Foreground
Abstraction 2D/3D Arbitrary view No Yes

3.3. Data Organization of Spatial–Temporal Trajectory

A single camera can only record the spatial–temporal trajectories of the moving objects within
the field of view of this camera. While the fields of view of different cameras are not continuous, for
analyzing the trajectory of a video moving object in a multi-camera environment, it is necessary to
re-organize the trajectory of the same object occurred in different cameras.

The processing steps came as follows: using the automatic object detection algorithm developed
from computer vision to detect the video moving objects, extract the positions and sub-pictures, then
use the tracking algorithm to generate the spatial–temporal trajectories of moving objects. Based on
the mapping model described in Section 3.2, we can get the instantaneous position of the moving
object in each frame. In each camera’s field of view, all instantaneous spatial positions of a moving
object are temporal aligned, combining into the local trajectory of this object in the current camera.
Since the field of view of different cameras in geospatial space is discontinuous, it is necessary to use
the moving object re-recognition algorithm to perform cross-camera recognition to obtain the global
trajectory of each video moving object in a multi-camera environment (as shown in Figure 5).

In order to effectively reorganize the association of different levels of video moving object trajectory,
Obj is the total set of all moving objects in the geographical scene, and there are Nk -th moving objects
in the k-th camera field of view, and the local trajectory of each dynamic object within the camera’s
field of view is Ck,i. The expression of Obj and Ck,i are as follows:

Obj =
{
Ck,i, (k = 1, 2 . . . L)(i = 1, 2, . . . , Nk)

}
(10)

Ck,i =
{
Pk,i, j, ( j = 1, 2, . . . , n)

}
, (11)

where Ik,i, j and Pk,i, j respectively represents the geospatial position of the i-th moving object in the j-th
video frame in the k-th camera. Since the same moving object may appear in different camera fields, in
order to express the moving object cross-camera association, Lo represents the actual total number of
moving objects in the geographic scene, and Cubei is the global trajectory of each moving object. The
expression of Cubei and Obj are as follows:

Cubei =
{
Ck1,i, Ck2,i . . .Cko,i . . . , (k1, k2, . . . ko) ∈ (1, 2 . . . L)

}
, (12)

Obj =
{
Cubei(i = 1, 2, . . . , Lo)

}
(Lo ≤ L), (13)
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where Cubei represents the global trajectory of the i-th moving object in the geographical scene, and
the local trajectory of the moving object in the k1, k2, . . . ko -th camera is Ck1,i, Ck2,i . . .Cko,i. Obj is still
the total set of all moving objects in the geographical scene. 8 of 20 
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4. Architecture of GIS-MCVO Surveillance System

The video surveillance system was integrated with GIS, and the prototype of GIS-MCVO system
was designed and developed on the basis of data organization and MCVO spatialization. The system
assists the users to achieve rapid reorganization and effective understanding of multi-camera video
content and geospatial association in the urban environment, which are evacuated by storing geospatial
information, surveillance video, and video moving object information separately and performing
fusion display and comprehensive analysis.

4.1. Design Schematic of the System

The overall system design of GIS-MCVO followed the framework of service-oriented software
architecture. The framework of the system was divided into a function layer, data layer, service layer,
business layer and representation layer from bottom to up, as shown in Figure 6.

(1) Function layer: The function layer is a server with data processing and analysis functions.
This layer is used for pre-processing GIS and video data and comprises functional modules
for video data acquisition, video moving object extraction, video data geospatial mapping, and
cross-camera object recognition. In addition, the function layer can provide basic data support
for real-time publishing.

(2) Data layer: This layer is supported by the database and is mainly used to store, access, and
manage geospatial, video image, and video moving object data and to provide data services
to clients.

(3) Service layer: The service layer publishes the data service of the underlying system database,
including video stream image, video moving object, and geospatial information data services. This
layer provides real-time multisource data services to terminal users and remote command centers.

(4) Business layer: The business layer selects relevant data service content according to the demand
of the system user. Through analysis, this layer fetches different services and generates and
transmits the corresponding result to the representation layer.
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(5) Representation layer: In the representation layer, the user can apply multiple modes on the
MCVO and GIS fusion, along with related functions on application and analysis by using a
common browser under various operating system platforms. 9 of 20 
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camera object recognition. In addition, the function layer can provide basic data support for real-
time publishing. 

(2) Data layer: This layer is supported by the database and is mainly used to store, access, and 
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(3) Service layer: The service layer publishes the data service of the underlying system database, 
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This layer provides real-time multisource data services to terminal users and remote command 
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transmits the corresponding result to the representation layer. 
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common browser under various operating system platforms. 
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This section describes the modules in the function layer and their functional support 
relationships (Figure 7). 

Figure 6. Design Schematic of the system.

4.2. Design of System Functions

This section describes the modules in the function layer and their functional support relationships
(Figure 7).

(1) Moving object extraction module: This module uses detection and tracking algorithms to
extract moving objects; separate the video’s foreground and background; achieve cross-camera
recognition on objects from different cameras; and stores the trajectory, type, set of sub-graphs,
and other associated information of the moving objects.

(2) Video spatialization module: This module constructs the mapping matrix by selecting the
associated image and geospatial mapping model and calibrates the internal and external
parameters of the camera for video spatialization.

(3) Virtual scene generation module: This module is mainly used to load the virtual geographic
scene, virtual point of view, position of the surveillance camera, and sight of video image. This
module builds the foundation of fusion representation. Many applications based on GIS-MCVO
system are applied under the condition of establishing this module.

(4) Moving object spatial–temporal analysis module: To achieve some specific applications, this
module synthesizes the related information on the video moving objects and the geographic
scene. This module also obtains the necessary result to be outputted in the representation module.

(5) Fusion representation module: This module selects the fusion pattern between the moving
objects and the virtual geographic scene by performing visual loading on video images, moving
object trajectory, sub-graphs, and spatial–temporal analysis results.
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8. 

Figure 7. Diagram of system functions.

5. Applications and Potential Benefits for GIS-MCVO Surveillance System

In this chapter, we have briefly described the applications and potential benefits of the GIS-MCVO
surveillance system and compared the results with the evacuation results of traditional and GIS-video
image surveillance systems. The implementation of GIS-MCVO system is shown in Figure 8.

1 
 

 

Figure 8. Implementation of GIS-MCVO system.

5.1. GIS-Based User Interface

The user interface of a traditional video surveillance system includes a monitor that displays
video from a selected camera, which can switch among different cameras or simultaneously display
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multiple channels of video in a grid interface. As the number of cameras increases, the visual
interface architecture becomes less usable. When users need to retrieve and comprehensively analyze
multi-camera video information with complex spatial relationships, the situation becomes unfavorable
because the grid interface cannot express the spatial relationship of the cameras nor can it express video
object information in different cameras. Effective identification requires three factors: familiarity of the
users on the camera’s shooting direction; spatial relationship to the camera’s field of view; and the
ability to manually and rapidly complete camera selection, switching operations, and moving object
tracking tasks. These operations require long-term training and experience, and even if the user can
effectively master them, mistakes are still inevitable. The defects of the grid interface of multi-camera
videos include: (1) the lack of ability to express a spatial relationship among camera views; and (2) the
lack of ability to extract video moving object information and cross-camera identification. The video
image and GIS integrated visualization system, can effectively solve the defect described in (1), but did
not solve the defect stated in (2) because the system still needs to manually search and analyze moving
objects in long-term and large-data scaled video and artificially determine the spatial relationship of
the video objects from different cameras due to the lack of extraction and analysis processes on video
moving objects. Therefore, the GIS and video image integrated visualization system still experienced
considerable manual processing pressure when dealing with actual multi-camera video monitoring
tasks as object retrieval and behavior analysis (Figure 9a). 12 of 20 
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To reduce the user’s information retrieval pressure on surveillance video and promote the
expression effectiveness of a video moving object and 3D geographic scene model, the GIS-MCVO
system, in which the geospatial visualization of video information was achieved by dynamically
expressing the video object subgraph in a geographic scene, and was constructed on the basis of
video object trajectory and sub-graph data. The advantages of this visual interface were presented
as follows: (1) Only the video moving object’s sub-graph is expressed, thereby greatly reducing the
amount of video information that the user needs to retrieve and watch; (2) The video object sub-graph
is displayed in a 3D geographic scene using a planar map, thereby avoiding the video image texture
distortion–alignment problem in 3D scene model fitting, reducing the amount of image rendering
calculation, and improving the efficiency of video information expression; and (3) the GIS-MCVO
system can synchronously and relatedly express the MCVO trajectory by adding the view polygon,
identifying the same entity object, and optimizing a virtual viewpoint because the same entity video
object trajectory is associated with multiple spatial–temporal cameras (Figure 9b).

In summary, the proposed GIS-MCVO system can demonstrate the spatialization of video image
and video object trajectory. In addition, the system can not only effectively express the spatial
relationship within the camera’s field of view but can also bring about the visual representation of
the video information based on the video object trajectory and sub-graph data, thereby resolving the
defects of the grid interface of multi-camera videos. The GIS-MCVO system eliminates the manual
processing of multi-camera surveillance video information.
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5.2. Video Compression Storage

The GIS-MCVO system only stores the sub-graph and spatial–temporal trajectory information of
the video moving object, but not the background information. Therefore, when storing and analyzing
video moving objects, video data compression, also known as VR fusion video compression, occurs [42].
This method converts video data from an image level to an object level. The obtained compressed data
constitutes a series of correlated compression levels in different combinations (Figure 10).
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From the perspective of a compression mechanism, video image compression is achieved by
constructing predictive models in accordance with the H.264 standard, which predicts video image
pixels via intra- or inter-frame prediction. Video image compression aims to reconstruct the original
video by using compressed data. Thus, the capability of recovering the original video images should
be considered. Furthermore, VR fusion video compression represents video information in simplified
approaches (e.g., showing only the sub-graphs or avatars of the moving object). As a result, the ability
of the latter to recover the original video image does not need to be considered. In terms of the data
compression effect, the video data used in the object projection fusion patterns have data compression
relations with the original video sequence images. Furthermore, data compression relations exist
among the three patterns of object projection fusion.

First layer of compression: In this layer, the compressed data were oriented to the foreground and
background independent projection patterns. The sub-graphs of the moving objects, spatial–temporal
position, and background images were extracted and stored separately. This compression layer
converted video information from the image level to the object level.

Second layer of compression: In this layer, the compressed data were oriented to the foreground
projection pattern, and the virtual scene model was used instead of the video background. This
compression layer transferred the background that represented the camera view from the image to the
virtual scene model.

Third layer of compression: In this layer, the compressed data were oriented to the abstract of
the foreground projection pattern. The virtual avatar in a semantic symbol was used instead of the
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sub-graphs to display video moving objects in a virtual geographic scene, and the spatial–temporal
position was the only information that needed to be stored.

To test the compression efficiency of the data for storage, we examined a set of video images and
recorded the trend of the compression rate Ki with respect to the number of input video frames for the
different layers. The experimental results are presented as follows:

In Figure 11, the magnitudes of compression rate in the first layers as K1, was in the order of
10−2,whereas the magnitude of compression in the second and third layer as K2 and K3, were in the
order of 10−4. These results proved that the video compression process in the GIS-MCVO system could
effectively reduce the amount of video data.
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5.3. Trajectory Deduction in Visual Blind Zone

In the GIS-MCVO system, the trajectory of an arbitrary video object, which appears in a plurality
of the camera’s fields of view, can be determined through cross-camera video object recognition.
However, factors, such as the size of the camera field of view, the number of cameras, and the size of
the monitoring area limit the trajectory. Several visual blind zones, in which visual information cannot
be captured by any camera, exist, but the object’s general motion trends and paths in these zones can be
determined on the basis of camera spatial relationships, road network, and 3D geographic scene model
(Figure 12). Through trajectory deduction in visual blind zones, the global trajectory in multi-camera
surveillance areas can be estimated and supplemented by the implementation of specific functions in
GIS-MCVO as video object retrieval, video synopsis, and video object behavior understanding.
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5.4. Retrieval of MCVO

Even when a user detects a large amount of video moving objects, they will always be interested
in several video moving objects with specific conditions. Thus, video moving object retrieval is needed.
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The search conditions are divided into two types: appearance and trajectory descriptions. In this
section, we discuss the problems of the trajectory description of MCVO retrieval.

The input modes of trajectory description-based video object retrieval include moving object
instance, graphical description, and semantical description. The trajectory graphical description is
divided into area of interest (AOI)-based type and trajectory template-based type. The topological
relationship between the search object and the AOI or template trajectory is used to determine whether
the search condition is met. The research on traditional trajectory description is limited by generating
AOI or trajectory template in the image space [43,44]. Moreover, realizing geospatial comprehensive
retrieval on video object trajectory is impossible in a multi-camera environment. Thus, the search
work was divided and refined, and the retrieval analysis was processed individually in each camera
to obtain the search results. In recent years, some studies have attempted to construct an AOI [45]
and trajectory template [46] in geographic space by combining multi-camera fields of view to carry
out the spatialization of trajectory retrieval condition description. Although these methods realize
the geospatial analysis of the retrieval conditions, the video content of each camera must be retrieved
separately due to the lack of spatial–temporal correlation analysis of different camera video object
trajectories. To solve the problems mentioned above, the proposed GIS-MCVO system had the function
of integrated representation and analysis of geospatial video moving object. The video object retrieval
function in GIS-MCVO can analyse the video object trajectory retrieval condition globally, thereby
deviating from the limitations of the camera lens. Video object sub-graphs can be integrated in the
3D scene model to express the retrieval results (Figure 13). The camera-by-camera search and the
global search can be realized by sketching the trajectory template in the virtual geographic scene of the
GIS-MCVO system. The camera-by-camera search analyzes the spatial relationship between the search
condition and the camera’s field of view, and then matches the search condition with the trajectory of
video moving object in each camera’s field of view and returns the results of the query. The global
search directly matches the search condition with the cross-camera global trajectory of video moving
objects and returns the results of the query. The search results are as shown in Figure 14. 15 of 20 
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5.5. Synopsis of Multiple Videos 

The video moving objects are timely sparse distributed in the original video. If the video moving 
objects are watched after the original time, then a blank screen, which is not conducive to the efficient 
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5.5. Synopsis of Multiple Videos

The video moving objects are timely sparse distributed in the original video. If the video moving
objects are watched after the original time, then a blank screen, which is not conducive to the efficient
expression of the video and wastes the user’s working time, might be displayed for a long duration. In
response to this problem, several research studies have attempted to increase the temporal displaying
density of the video moving object by reducing the video playback duration; this method is referred
to as video synopsis [47]. Video synopsis changes the playback sequence of the video moving object
according to their spatial–temporal relationships and concentrates on expressing large amounts of
video moving objects in a short period of time while these video moving objects appear in different
time segments in the original video (Figure 15). The image platform is utilized to generate video
synopsis by creating a short video. Although this generation mode is applied in multi-camera video
synopsis, it produces problems in two aspects: First, the optimization in image generation appears as
an overlap of the video moving object sub-graphs and as continuous updates of the video background
image; and second, the spatial information expression among different videos appears as an inability to
express spatial–temporal associations among the video objects from different cameras and optimized
selection in virtual view. At present, existing research focuses on fusion processing of video information
in different cameras using image matching [48], camera angle optimization [49], and video image
cropping fusion. These studies only consider the correlation of pixel content among video images
but fail to effectively solve the spatial information expression problems, such as MCVO correlation
expression and optimized selection in virtual view. 16 of 20 

 

 

Figure 15. Schematic diagram of video synopsis. 

To overcome the problems above, the proposed GIS-MCVO system was designed on the basis 
of video moving object extraction and cross-camera correlation to flexibly select the video moving 
objects and cameras, thereby effectively expressing the spatial–temporal information of a large 
amount of MCVO in the geographic scene and achieving multi-camera video synopsis. GIS-MCVO-
based multi-camera video synopsis concentration converts from the object level, in which the video 
moving object’s playback time is adjusted and is extended to the camera level. This level achieves 
integrated operations, including camera lens switching and cross-camera video moving object 
playback time reset (Figure 16). 

 

Figure 16. Schematic diagram of multi-camera Geo-spatial video synopsis. 

The proposed GIS-MCVO system expresses the video object as a 3D geographic scene model. 
This mode not only avoids image optimization problems, such as overlapping of video objects and 
continuous updating of the video background however, can also optimize the selections on object 
display and camera display sequences along with its effective expression on the spatial–temporal 
association of video objects among different cameras (Figure 17). 

    
(a) (b) 

Figure 17. Comparison of effects between different kinds of video synopsis. (a) Single camera Video 
synopsis in image. (b) Multi-camera geo-spatial video synopsis. 

Figure 15. Schematic diagram of video synopsis.

To overcome the problems above, the proposed GIS-MCVO system was designed on the basis
of video moving object extraction and cross-camera correlation to flexibly select the video moving
objects and cameras, thereby effectively expressing the spatial–temporal information of a large amount
of MCVO in the geographic scene and achieving multi-camera video synopsis. GIS-MCVO-based
multi-camera video synopsis concentration converts from the object level, in which the video moving
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object’s playback time is adjusted and is extended to the camera level. This level achieves integrated
operations, including camera lens switching and cross-camera video moving object playback time reset
(Figure 16).
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The proposed GIS-MCVO system expresses the video object as a 3D geographic scene model.
This mode not only avoids image optimization problems, such as overlapping of video objects and
continuous updating of the video background however, can also optimize the selections on object
display and camera display sequences along with its effective expression on the spatial–temporal
association of video objects among different cameras (Figure 17).
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In order to analyze the duration reduction effect of video synopsis, the following function was
used to calculate the compression ratio of video frames of multiple cameras.

η = [(ni)t0 + max( fw)]/F, (14)

where ni represents the number of video moving objects; t0 represents starting interval frames between
each two adjacent video moving objects; max( f ) represents the largest number of frames among all
the video moving objects; F represents the summary of the original video frames from all the cameras.
Under different values of t0, the compression ratio of video frames is shown in Figure 18.

As can be seen in Figure 18, video synopsis based on GIS-MCVO can reduce the video play-back
time; on the other hand, the compression ratio obtained after video object cross-camera recognition is
lower than that without cross-camera recognition, which proves that object cross-camera recognition
can improve the efficiency of the expression of MCVO.

In summary, GIS-MCVO-based video synopsis can assist users in rapidly retrieving the
spatial–temporal trajectory and image information of many video moving objects in a multi-camera
environment, along with efficiently understanding the spatial–temporal behavior of MCVO.
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6. Conclusions

This work mainly discussed the integration of MCVO and GIS. The implementation of the
integration was carried out on the basis of V-GIS fusion [9], V-GIS practical application [1,3], and
our preliminary work on single camera video object and GIS integration [10]. The advantage of this
integration was that it could achieve not only the extraction of video key information and spatial
correlation visualization but also the spatially associated analysis of multi-camera video object, thereby
assisting users to effectively monitor video operations. The main contributions of this paper are
presented as follows:

(1) The research on single-camera video object and GIS integration is extended to MCVO and GIS
integration along with the consideration of the spatial–temporal correlation among different camera
objects. In addition, the conceptual fusion model between MCVO and GIS is proposed.

(2) The GIS-MCVO system is built on the basis of constructing multi-camera video moving objects
and GIS integration related data organization. The overall architecture and function design of the
system are presented and analyzed.

(3) This paper analyzed the related applications of the GIS-MCVO system by comparing the
traditional image-based surveillance system with GIS-video image integrated surveillance system. The
results showed that GIS-MCVO is advantageous in the applications of system user interface, video
compression storage, trajectory deduction, video object retrieval, and video synopsis.

GIS-MCVO realizes data organization, spatial–temporal analysis, and visual expression of MCVO
integrated with GIS. Compared with GIS-video image fusion, the fusion between GIS and MCVO
has the following advantages: (1) multi-camera video object and the geographic scene are integrated
for expression and analysis, rather than video image–GIS integrated fusion; (2) video moving object
from different cameras with the same entity are integrated, analyzed and expressed in GIS; and (3) the
GIS-based user interface assists users in retrieving and analyzing video moving objects quicker and
more concisely; and (4) the compression rate of video data is in the order of 10−2 to 10−4 by achieving
the integration. However, the fusion between GIS and MCVO has the following disadvantages: (1) Loss
of video information, in which some visual image information of video objects are abandoned during
evacuation; and (2) uncertainty on video object due to the missed or false detection of the video object.
Moreover, the visual blind zone between the cameras, which decreases the accuracy of the extracted
MCVO results in multi-camera video moving objects’ trajectories, that are not necessarily accurate.

We implemented a prototype of the GIS-MCVO surveillance system, which can be used to illustrate
the proof of integration of GIS-video object integrated analysis or considered a platform to carry out
the interactive monitoring and analysis of video and geographic information by adding other functions
in the future. In further research, we will introduce GPS real-time positioning data, remote sensing
images, and lyric data in the integration of video and GIS by investigating the geographic video
understanding and analysis supported by multisource information.
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