
 International Journal of

Geo-Information

Article

An Adaptive Construction Method of Hierarchical
Spatio-Temporal Index for Vector Data under
Peer-to-Peer Networks

Chengming Li 1,2, Zheng Wu 1, Pengda Wu 1,2,* and Zhanjie Zhao 1

1 Chinese Academy of Surveying and Mapping, Beijing 100830, China; cmli@casm.ac.cn (C.L.);
wuzheng@casm.ac.cn (Z.W.); zhaozhanjie@casm.ac.cn (Z.Z.)

2 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application
Technology, Xi’an 710072, China

* Correspondence: wupd@casm.ac.cn

Received: 10 October 2019; Accepted: 7 November 2019; Published: 12 November 2019
����������
�������

Abstract: Spatio-temporal indexing is a key technique in spatio-temporal data storage and
management. Indexing methods based on spatial filling curves are popular in research on the
spatio-temporal indexing of vector data in the Not Relational (NoSQL) database. However, the existing
methods mostly focus on spatial indexing, which makes it difficult to balance the efficiencies of
time and space queries. In addition, for non-point elements (line and polygon elements), it remains
difficult to determine the optimal index level. To address these issues, this paper proposes an
adaptive construction method of hierarchical spatio-temporal index for vector data. Firstly, a joint
spatio-temporal information coding based on the combination of the partition and sort key strategies
is presented. Secondly, the multilevel expression structure of spatio-temporal elements consisting
of point and non-point elements in the joint coding is given. Finally, an adaptive multi-level index
tree is proposed to realize the spatio-temporal index (Multi-level Sphere 3, MLS3) based on the
spatio-temporal characteristics of geographical entities. Comparison with the XZ3 index algorithm
proposed by GeoMesa proved that the MLS3 indexing method not only reasonably expresses the
spatio-temporal features of non-point elements and determines their optimal index level, but also
avoids storage hotspots while achieving spatio-temporal retrieval with high efficiency.

Keywords: hierarchical spatio-temporal index; P2P networks; joint coding of spatio-temporal
information; spatio-temporal granularity; optimal index level determination

1. Introduction

With the development of Internet technologies, peer-to-peer (P2P) networks are currently receiving
considerable interest as they provide a decentralized architecture in which the shared resources on one
node can be directly accessed by other peers without passing through intermediate entities [1]. In recent
years, P2P communication software has become the mainstream solution for big data storage and
management in smart city construction for its excellent characteristics for processing spatio-temporal
data, such as full distribution, high availability, high throughput, and linear expansibility [2,3]. During
this process, the efficient index algorithms in P2P networks are facing serious challenges. For traditional
master-slave architecture system, the efficiency of the whole network can be improved by expanding
the performance of the hardware of central server. However, this strategy is difficult to apply to
P2P networks because data resources in P2P networks are randomly distributed in different nodes
with equal status and some of them have low performance. Hence, it is an urgent need to find a
high-efficiency global indexing structure in P2P networks, which can quickly locate the node where the
data are stored and the global query performance will not be affected by the data update of local nodes.

ISPRS Int. J. Geo-Inf. 2019, 8, 512; doi:10.3390/ijgi8110512 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi8110512
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/11/512?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 512 2 of 19

The volume of available spatio-temporal data have increased tremendously in the last few years.
Such data includes but is not limited to: taxi trajectory data, social network data, remote-sensing
image data, weather maps, and more. Beside the huge achieved volume of the data, space and time
are two fundamental characteristics that raise the demand for processing spatio-temporal data [4].
Even though existing big spatio-temporal data-management systems are efficient for time or spatial
operations by constructing a time index or a spatial index, nonetheless these systems with single index
or sequencing structure suffer when they are processing spatio-temporal queries, e.g., “find taxis in
nanjing road during the last two months”. If simply sequencing a spatial index and a time index, no matter
which query is done first, it always results in scanning through a lot of irrelevant data to the query
answer when the data set is great and complex. In addition, this kind of query is usually unaware of
the spatio-temporal granularity properties of the objects, especially when they are routinely achieved
on a large scale [4]. The construction of an efficient spatio-temporal index has been of great interest for
big data storage and management in geographic information system (GIS) [5,6] in recent research. For
distributed Not Relational (NoSQL) databases, spatio-temporal index research can be divided into two
categories:

• Studies focused on improving or expanding traditional spatial index (QuadTree, R-Tree, Grid index,
etc.) for distributed environments [7–10]. For example, as an extended MapReduce framework,
SpatialHadoop provides a generic global indexing algorithm which was used to implement Grid,
R-tree, R+-tree, Quad-tree, and k-dimensional (KD) tree based partitioning [11]. Spatio-temporal
(ST) Hadoop, which is a comprehensive extension to Hadoop and SpatialHadoop, takes the
advantages of applying the aforementioned spatial bulk loading techniques that are already
implemented in SpatialHadoop and spatiotemporally loads and divides data across computation
nodes, which result in achieving orders of magnitude better performance than Hadoop and
SpatialHadoop [4]. GeoSpark also provides uniform grid, R-tree, Quad-Tree, and KDB-Tree (the
combination of KD-tree and B-tree) spatial data indexing algorithm and it builds local spatial
indexes on each Spark data partition to speed up the local computation [12]. Such index structure
always need long constructing time, high updating cost and the index consistency is difficult
to maintain, hence it is not suitable for the spatio-temporal data which updated frequently in
distributed environments.

• Studies focused on constructing an index based on space-filling curves (SFCs; Z-Order, Hilbert,
Google S2, etc.). Fox et al. [13] proposed a spatio-temporal index structure that uses a GeoHash
string to identify the spatial information and interleaves the time attribute string to form the index
key value. Le et al. [14] proposed a spatial index method by combining R-Tree and Geohash.
Google implemented a spatial index called S2 by combining a quadtree and Hilbert curve,
enabling the expression of multi-level spatial elements [15,16]. GeoMesa [17], a popular open
source project, involves implementing an extended Z-ordering (XZ-ordering) spatio-temporal
indexing method based on Z-order [18]. In this approach, XZ sorting is utilized to express
spatial information at arbitrary resolution, and the query performance does not deteriorate with
increasing resolution [19,20]. Moreover, Eldawy et al. [21] extend the traditional spatial index by
introducing Z-curve and Hilbert curve partitioning techniques in SpatialHadoop. The SFC-based
strategy can better describe the spatial continuity characteristics of spatio-temporal data due to its
spatial agglomeration characteristics [22,23]. Therefore, this approach has been widely used in
spatio-temporal index studies in recent years. However, in the existing SFC index-based research,
the spatial and temporal attributes have generally been separated, which has made it difficult
to take into account the efficiencies of temporal and spatial queries simultaneously. In addition,
for line and polygon elements with different geographic ranges, the efficiencies and accuracies
of queries are closely related to the index level used, and a means of achieving a reasonable
spatio-temporal expression and determining a practical index level has not yet been identified.

As a NoSQL database in a P2P network, Apache Cassandra database [24,25] has shown
great advantages in the management of massive data with dynamic growth in GIS. However,



ISPRS Int. J. Geo-Inf. 2019, 8, 512 3 of 19

the spatio-temporal management of NoSQL databases, such as vector data, has rarely been
researched [26,27]. Although GeoMesa provides the XZ3 spatio-temporal index method, which
can be used in P2P networks, its efficiency for spatial data retrieval requires improvement due to its
fixed level and the poor continuity of its expressions of non-point elements. This paper focuses on the
global spatio-temporal joint indexing of vector data under the P2P network by proposing a multilevel
expression structure of spatio-temporal elements and an optimal index hierarchy determination
algorithm considering the time granularity and spatial distribution feature of input files in the NoSQL
database based on the S2 spatial index, which can achieve efficient spatio-temporal queries and stable
query performance as well as a low index-maintaining cost.

The remainder of this article is organized as follows. Section 2 describes the two main
spatio-temporal indexing methods and their limitations in vector data management in P2P networks.
Section 3 presents an adaptive construction method of hierarchical spatio-temporal index. Section 4
discusses a series of experiments that was conducted to validate the reliability and efficiency of the
proposed method. Finally, Section 5 summarizes the conclusions and topics requiring future work.

2. Related Work

2.1. XZ3 Spatio-Temporal Index

The XZ3 spatio-temporal index is an extension of XZ ordering [18]. Its basic idea is to combine
quadtree with a Z-order curve, interlace GeoHash strings of spatial information with temporal
information strings to achieve spatio-temporal information encoding, and distribute data to P2P
networks with a random binary number as Row Key. However, this algorithm has some shortcomings
in vector data management in P2P networks, which can be summarized as follows:

(1) The algorithm uses a Z-order curve as an SFC, which has a hopping problem when expressing
two-dimensional space. Consequently, the data expressed by proximity coding are not spatially
adjacent and leading to a large number of ineffective queries when querying hopping regions.

(2) When dividing spatial hierarchy, the XZ3 algorithm decides whether to divide further by judging
whether the number of cells divided in a hierarchy meets a certain threshold. However, the
threshold setting does not fully consider the spatial distribution and density of all the elements in
the same layer.

2.2. S2 Spatial Index

The S2 spatio-temporal index was proposed by Google in 2011. The basic idea is to combine a
quadtree with a Hilbert curve to geocode a global space, where the quadtree is used to realize multi-level
division of the geographical space and the Hilbert curve is used to reduce the two-dimensional space
to a one-dimensional space. The construction process consists of five main steps [15,16].

Step 1 Assume a cube surrounding the Earth with radius 1, [−1,1] × [−1,1] × [−1,1], and the center of
the earth as the origin. For a certain point or region on the Earth, transform the longitude and
latitude coordinates of point p on the minimum bounding rectangle (MBR) surrounding the
point or region into three-dimensional coordinates of a cube, p = (lat, lng) => (x, y, z).

Step 2 Project point p onto a certain surface of the cube by following the radial direction, (x, y, z) =>

(face, u, v), where face represents the number of the surface of the cube, face = {0, 1, 2, 3, 4, 5},
u and v represent the projection coordinates of each surface. Then normalize the projected
coordinates u and v to the interval [0, 1].

Step 3 Discrete normalized u and v into i and j, respectively, (face, u, v) => (face, i, j), where i, j ∈
[0, 2n

− 1] denotes the maximum effective bit of the quadtree cell, and n ∈ [0, 30] denotes the
depth of the quadtree, which is a hierarchical series.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 4 of 19

Step 4 Map the quadtree cell identified by face, i, and j to a Hilbert curve of a certain level, and
calculate the corresponding cell ID, (face, i, j) => CellId, where CellId is a 64-bit integer and can
uniquely represent a point or region.

S2 can describe spatial continuity characteristics better than XZ3 due to the spatial agglomeration
characteristics of the Hilbert curve, so it can achieve better multi-level expression of global elements.
However, the following limitations remain.

(1) Regarding the joint expression of spatio-temporal information, S2 only expresses the spatial
information. For spatial geometric elements with multiple time series, an effective means of
combining temporal and spatial information has not yet been determined.

(2) The expression of non-point elements. For line and polygon elements, the spatial scale varies
greatly, and for geographic element queries, the spatial span and spatial query mode are both
random. It is necessary to take into account both accurate and fast queries in a small range and
scanning operation on a large scale. A reasonable method of spatio-temporal expressions is the
second limitations.

(3) The determination of time granularity and optimal hierarchy. In the research on traditional
spatial index including regular grid, Quadtree-based grid and R-tree based grid, Belussi et al. [28]
pointed out that the efficiencies and accuracies of queries are closely related to spatio-temporal
dataset distribution characteristic. Therefore, the lack of a reasonable means of achieving
spatio-temporal expression and determining a practical index level according to the spatial and
temporal characteristics of elements for the SFC-based index is the third limitation.

To address the aforementioned issues, this paper proposes an adaptive construction method of
hierarchical spatio-temporal index for vector data based on the S2 spatial index. Firstly, interleaved
joint spatio-temporal information coding based on the combination of the partition and sort key
strategies is presented, which makes full use of spatio-temporal granularity properties of the objects to
support space and time joint query. Secondly, the multilevel expression structure of spatio-temporal
elements consisting of point and non-point elements in the joint coding is given, and this structure will
reflect the hierarchical characteristics of spatio-temporal elements. Finally, an adaptive multi-level
index tree is proposed to realize the spatio-temporal index, and the optimal index levels are determined
by the spatio-temporal dataset distribution characteristic.

3. Methodology

The distributed spatio-temporal index in the NoSQL database is essentially a way of encoding
spatio-temporal information in Row Key. Based on the S2 spatial index, this paper proposes an
adaptive construction method of hierarchical spatio-temporal index for vector data under P2P
networks. We extend the S2 spatial index, which is a Quad tree + Hilbert curve indexing algorithm,
by introducing the hierarchical strategy of time and space information and hierarchical dynamic
adjustment algorithm according to the spatio-temporal dataset distribution characteristic. The detailed
contents of our method are as follows. Firstly, spatio-temporal information is divided according to
time granularity and spatial hierarchy. Secondly, mixed encoding is performed based on the refined
time granularity and spatial hierarchy, and the codes are stored in Row Key. Thirdly, an adaptive
multi-level index tree is proposed to construct the spatio-temporal index (Multi-level Sphere 3, MLS3)
based on the spatio-temporal characteristics of geographical entities. Finally, according to a consistent
hash algorithm, Row Key is hashed to achieve distributed storage of spatio-temporal data in the P2P
network, as shown in Figure 1.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 5 of 19

Figure 1. Spatio-temporal index framework.

3.1. Joint Coding of Spatio-Temporal Information

The notion of a table in NoSQL database, such as Cassandra, is different from the notion of a
table in a relational database. In general, each partition in a table has a unique partition key and each
row in a partition may optionally have a unique sort key (clustering key). The combination of the
partition and sort key is defined as the compound key, which can uniquely identifies a row in a table.
The advantage of the compound keys is that they can accelerate the efficiency of data retrieval and
ensures that the data directly read from the disk is the ordered data satisfying the query conditions [27].
We proposed a joint spatio-temporal information coding based on compound keys. The partition
key is used to describe the large granularity spatio-temporal, so as to locate quickly the storage node
where the data is stored in the P2P networks, and the sort key is used to describe the small granularity
spatio-temporal, so as to realize the sequential retrieval of data in the storage node.

3.1.1. Time Information Coding

The time information is divided into six levels according to the data update period or sampling
frequency. The time granularity ranges from seconds to years and is marked as gi (i = 0, 1, . . . , 5),
as shown in Table 1.

Table 1. Time information coding.

Time Granularity Partition Key
Partition Key Time

Format Sort Key Sort Key Time Format

0 Year yyyy Month-Day Hour-Minute MMdd hh:mm:ss

1 Year-Month yyyyMM Day Hour-Minute dd hh:mm:ss

2 Year-Month-Day yyyyMMdd Hour-Minute-Second hh:mm:ss

3 Year-Month-Day Hour yyyyMMdd hh Minute-Second mm:ss

4 Year-Month-Day Hour-Minute yyyyMMdd hh:mm Second ss

5 Year-Month-Day Hour-Minute-Second yyyyMMdd hh:mm:ss — —

Supposing Tbase is the starting point, Tcurrent is the number of milliseconds from the current time
to Tbase (under time granularity g5), i.e., Tcurrent = T(g5) − Tbase. Take the integer part of the current time
corresponding to the time granularity in Table 1 as the partition key, named Tpartition(gi) and the sort
key Tsort(gi) = Tcurrent − Tpartition(gi). The coding of time information part in the Row Key is shown in
Figure 2.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 6 of 19

Figure 2. Time information part in Row Key (‘ . . . . . . ’ refers to other parts in Row Key).

3.1.2. Spatial Information Coding

According to the basic idea of constructing S2, each spatial element could be identified by one or
more cells containing the element. Taking the line element as an example, as shown in Figure 3, the
cell set of the line element (red solid line) passing through the first level L1 was (0, 2, 3), that of the line
element passing through the second level L2 was (00, 02, 03, 22, 23, 30, 31), and that of the line element
passing through the third level L3 was (001, 002, 020, 022, 023, 031, 220, 231, 232, 303, 310, 311).

Figure 3. Spatial information coding.

In this study, the S2 spatial index was extended to establish a quadtree + Hilbert curve with finite
depth (quadruple Height ≤ depth threshold Heightthresh), and the spatial information was represented
by multi-level Hilbert coding. For vector objects, supposing its hierarchy is limited to Lm–Ln (0 ≤ m
< n ≤ 30), then taking the code of spatial information at the lower m level as the partition key, and
the sorting key is the code at the higher n level. The coding of spatial information part in Row Key is
shown in Figure 4.

Figure 4. Spatial information part in Row Key (‘ . . . . . . ’ refers to other parts in Row Key).

3.1.3. Feature Identification Information Coding

The feature identification (FID) includes five parts: Identification (ID), Timestamp Identification
(TI), Cluster Identification (CID), Node Identification (NID), and Counting Sequence Identification
(CSI), as shown in Figure 5. The FID was generated using the SnowFlake algorithm by Twitter [29],
which was sorted by ID value in general and further identified by CID and NID to ensure that no
duplicate FID could be generated in the entire P2P network.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 7 of 19

Figure 5. Feature identification (FID) part in Row Key.

3.1.4. Organization of Row Key Coding

Integrating the aforementioned time coding, spatial coding, and FID to form a unified structure
of Row Key coding, the organization mode is as follows. (1) The partition key is jointly determined
by larger time granularity and parent spatial cell identification to ensure that features with adjacent
relationships are distributed in the same or adjacent logical partitions. (2) The sort key in the partition
is a unique feature of the elements and needs to exhibit both spatio-temporal characteristics. The
design of the sort key is expressed by smaller time granularity, child spatial cell identification and
feature identification.

For an element, assume that the time granularity is i and spatial level is j, the parent spatial cell
is defined as m-level, and the n-level is the child spatial cell after further division, then the complete
structure of spatio-temporal coding in Row Key is as shown in Figure 6.

Figure 6. Design of Row Key.

3.2. Expression of Spatio-Temporal Elements

3.2.1. Spatio-Temporal Expression of Point Elements

In this study, point elements were expressed approximately by using the center point of a certain
level of cell. When the grid division level is high, every point can be ensured in a cell. Therefore,
the spatial information of the partition key in this study was determined according to the distribution
and intensity of the point elements.

Taking the point of interest (POI) of a toll station as an example, assume that the update time
scale is a month and the optimal division level of the layered city area is 9–10. Then, the time
information of “2016-02” and the cell ID “35f0ec” of the spatial information at the ninth level are
taken as its partition key. The sort key in the partition is a combination of the timestamp “01 13:00:00”
(day-hour-minute-second), the cell ID of spatial information at the 10th level “35f0eb0”, and the FIDs,
as shown in Figure 7.

Figure 7. Row Key of point element.

3.2.2. Spatio-Temporal Expression of Non-Point Elements

For non-point elements (line and polygon elements), the spatial encoding can be represented
by a collection of multiple spatial cells. Therefore, a non-point element can correspond to multiple
key-value combinations. The partition key was represented by the time granularity g(i) and the spatial
coding of the cell covering the non-point element at the lower level. The sort key in the partition
was represented by the time difference between the current time and the time in the partition key,
the spatial coding at the higher level, and the FIDs.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 8 of 19

Taking the road element data as an example, assume that the update time scale is a month and
the optimal division grid level of the layer where the road is located is 4–7. The cell ID of the MBR
of the line element in level 4 was 35b, and the corresponding cell IDs at the levels 5, 6 and 7 were
35acc, 35ac9b, and 35accf; the expression of the road in Row Key is shown in Figure 8. In this paper,
a geometry is replicated entirely in each cell, which will take up more storage space, while significantly
improving query efficiency.

Figure 8. Row Key of line element.

3.3. Spatio-Temporal Index Construction Algorithm in Peer-to-Peer (P2P) Network

3.3.1. Determination of Time Granularity

The basic idea to determine the time granularity for dynamic and continuous spatio-temporal
data is as follows: if the data generated by multiple data acquisition sources is the optimal partitioned
data block size under the P2P network at the specified sampling interval within T (ms) time interval,
then the time granularity in Table 1 which corresponds to T more closely is the optimal time level.

Taking the Cassandra database as an example, when a single partition of this database exceeds
100 MB, a large partition will be generated, causing relatively large garbage collection pressure
on Cassandra during compression and cluster expansion and leading the database performance to
decrease. Thus, this feature can be used as a constraint to calculate the time granularity. Define the
sampling interval as I (ms), the number of sensors as N (number), and the space required to store a
single record as S (MB). The value of T (ms) which is calculated by following Equation (1) can then be
used to determin the optimal time granularity:

T
I
·N·S ≤ 100 (1)

3.3.2. Determination of the Spatial Grid Hierarchy

The basic idea to determine the spatial grid hierarchy is as follows: setting a number threshold of
initial cells, if the objects within the layer are covered by the cells approximating the threshold at N
level, then N is the optimal initial space hierarchy, then divided the cell further according to the density
of elements in each cell at N level. In specific calculation, the determination of the spatial grid level
requires consideration of the element distribution and storage costs, as well as the query time. Assume
that Ecell represents a set of elements contained or intersected in a cell and that Equery represents a set of
elements contained or intersected within the query scope.

Definition 1. An effective query cell Celleffective is a cell that contains or intersects the query range and satisfies
Ecell ∩ Equery , Φ.

Definition 2. An ineffective query cell Cellineffective is a cell that intersects the query range and satisfies
Ecell ∩ Equery = Φ.

The query time Tk for the k-th spatial query can be expressed as the sum of the time consumptions
for the i-th effective query cell (TE f f i

k) and the j-th ineffective query cell (TIne f f j
k ). For the NoSQL



ISPRS Int. J. Geo-Inf. 2019, 8, 512 9 of 19

database, the time it takes to query a certain region of data is mainly determined by the amount of
data. Therefore, it can be simulated that TE f f i

k and TIne f f j
k are determined by the number of cell

elements and the time required to query each element, Ei
k and E j

k, and ∆TE f f i
k and ∆TIne f f j

k indicate
the respective time consumptions. Then, assume that it takes the same amount of time to query a
single element in the same level l, which is expressed as ∆Tl. Thus, the query time can be simplified as:

Tk =
m∑

i=1
TE f f i

k +
n∑

j=1
TIne f f j

k

≈

m∑
i=1

Ei
k∆TE f f i

k +
n∑

j=1
E j

k∆TIne f f j
k

≈ (
m∑

i=1
Ei

k +
n∑

j=1
E j

k)∆Tl

(2)

where m and n are the number of effective query cells and ineffective query cells.
The total time required to minimize k-th query can be expressed as:

min
K∑

k=1

Tk ≈ min
K∑

k=1

(
m∑

i=1

Ei
k +

n∑
j=1

E j
k)∆Tl (3)

Assume the adopted hierarchical set Li (Li ∈ L,1 ≤ l ≤ thresh), that the number of elements in each
cell in Li is equal, and that the query time has a linear correlation with the number of elements in the
cell. Then, Equation (3) can be expressed as:

min
K∑

k=1
Tk ≈ min

K∑
k=1

∑
l∈L

Nl
k∆El·∆Tl

≈ min∆E·∆T·
K∑

k=1

∑
l∈L

Nl
k

≈ minλ· S
N1
·∆T·

K∑
k=1

∑
l∈L

Nl
k

(4)

where Nl
k represents the number of l-level cells in the k-th query and ∆El represents the number of

elements in each cell. ∆E and ∆T represent the average number of cell elements in set L and the average
time of querying a single element, respectively. These quantities are linearly related to the cell number
of level 1, N1, and λ is a linear correlation coefficient, where,

N1 + 2·thresh ≤
∑
l∈L

Nl
k ≤ 4thresh

·N1 (5)

This problem can be simplified by selecting an appropriate value of N1 and multi-level thresh (i.e.,
tree depth) to traverse the minimum number of cells as much as possible to reach the query coverage,
thereby minimizing the total query time. For a given dataset, the value of N1 is inversely proportional
to the average number of elements in a single cell. The appropriate value of N1 is an empirical value,
which depends on the spatial range of the data, spatial query type and the hardware environment.
In this paper, the value is obtained by a large number of actual data experiments, and the detailed
calculation is shown in Section 4.2.

These parameters of N1 and thresh are used to calculate the multi-level spatio-temporal index
tree in our paper. For a new input data, the first spatial index level can be determind by the MBR
of its spatial range and N1, and thresh is a constraint of split operation of index tree. Split operation
will repeat for the sub-cells until the number of elements is less than the threshold or the depth of
the sub-tree reaches the depth threshold Heightthresh(thresh). The detailed calculation is shown in
Section 3.3.3. The index tree obtained by these two parameters will ensure that spatio-temporal queries
are limited to a certain range and a large number of invalid queries are avoided.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 10 of 19

3.3.3. Multi-Level Spatio-Temporal Index Tree

Based on the method of determining the index hierarchy, this paper proposes a multi-level
spatio-temporal index tree, which is suitable for spatial-temporal query and adaptive hierarchical
partitioning, as shown in Figure 9. Considering the absoluteness and non-repeatability of time,
the data will increase with time. To build a unified index structure for massive spatio-temporal data,
the time dimension is more suitable for the initial division basis than the space dimension. Hence,
the first-level node is a time information node with larger granularity, corresponding to the time
information coding in the partition key of the Row Key, represented as Ti; the second-level node is the
cell level, corresponding to the spatial information coding in the partition key, represented as Ci; and the
third-level node is also a time information node with smaller granularity and corresponds to the time
information coding of the sort key, represented as Ti+1. These three levels are initial hierarchies, and
other levels can be adaptively divided according to the spatial and temporal distribution characteristics
of the data, corresponding to the spatial information coding in the sort key, represented as Ci+1,2, . . . .

The index tree can be adjusted flexibly according to the data context. For the data that pays more
attention to spatial information, this index tree can be converted to the one in which spatial dimension
is taken as the main partition by setting the time information in the first-level as a single node.

Figure 9. Multi-level spatio-temporal index tree (T is related to time and C is related to space).

The specific steps of the MLS3 indexing algorithm based on the multi-level spatio-temporal index
tree are as follows.

Step 1 Determine the time granularity Tpartition(gi) used in the partition key and construct a first-level
node, as shown by Ti in Figure 9.

Step 2 According to the idea of the S2 index, define the MBR of a certain spatial range as Rect
and convert its four-corner latitude and longitude coordinates (Rectk, k = 0, 1, 2, 3) into
three-dimensional coordinates. The rectangular spatial range Rect is used as the root node of
index tree.

Step 3 Divide the projected four-corner coordinate into different levels n, n ∈ [0, 30]. The value range
of n is determined by the spatial range of cell in each level of S2 index, as shown in Table 2 [15],
the minimum area that a single grid can describe in level 30 is 0.43 cm2, which means every
cm2 can be represented using a 64-bit integer and this is fine enough for the common spatial
data management scenarios [30,31]. Starting from level n = 0, the current Region(face, ik, jk) can
be covered by m cells, if m > threshold (N1), the current level is the desired level and it is used as
the second-level node Ci.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 11 of 19

Table 2. Spatial range of cell in each level of S2 index.

Level Min Area Max Area Avg. Area

0 85,011,012.00 km2 85,011,012.00 km2 85,011,012.00 km2

1 21,252,753.00 km2 21,252,753.00 km2 21,252,753.00 km2

2 5,313,188.25 km2 5,313,188.25 km2 5,313,188.25 km2

. . . . . . . . . . . .
29 1.77 cm2 3.71 cm2 2.95 cm2

30 0.43 cm2 0.93 cm2 0.74 cm2

Step 4 Construct the time granularity information in the sort key, i.e., Tsort(gi), as a third-level node,
as shown by Ti+1 in Figure 9.

Step 5 Sample the elements in the entire layer and count the number of elements in the cell. If the
number is larger than the threshold Splitthresh, Ci is split further. The threshold Splitthresh is an
empirical value, which we obtained through a large number of actual data experiments. In
this paper, we set it as 30% of the total elements. Different from the quadtree split of four cells,
the only sub-cell that is split is that covering the element as sub-tree nodes of the third-level
node Ti+1, and the maximum number of sub-cells is 4. Step 5 is then repeated for the sub-cells
until the number of elements is less than the threshold or the depth of the sub-tree reaches the
depth threshold Heightthresh(thresh). The level is set as sublevel, and the splitting is stopped.

Step 6 By mapping the m-th quadtree unit cells identified by (face, ik, jk) to the Hilbert curve of sublevel,
the corresponding cell ID set Scell is calculated. Scell can uniquely represent the query area,
where each cell ID of Scell represents a sub-area of a query. All the cell IDs in Scell are used as
the level nodes and serve as the encoding of the spatial information in the sort key.

Step 7 According to the first- and second-level nodes, the Murmur Hash function is substituted to
calculate the corresponding partition location, and the locations of the third-level node and its
sub-tree leaf node are determined according to the cell ID.

As shown in Figure 9, MLS3 is a global index structure, which is more suitable to the P2P network.
The index is stored as an array in the metadata of the NoSQL database, which includes the node
information and the relationship between each node.

3.3.4. Dynamic Update and Maintenance of Multi-Level Sphere 3 (MLS3)

The update and maintenance of MLS3 can be divided into three basic operations: insert, delete
and split of nodes. The detail algorithms are as follows:

• Insert operation: for the new added data, the cell ID will be calculated first. If the time information
does not belong to the current index tree, a new first-level node and a new index tree branch will
be added. Otherwise, determine the first-level node of the new data according to the cell ID, and
then traverse the sub-tree layer by layer from the first-level node to the leaf node to find whether
the node containing the new data exists. If not, insert the new data as a new leaf node; if it exists,
the node is no longer need to insert [4,6].

• Delete operation: if the deleted node is a leaf node, it can be deleted directly; otherwise it cannot
be deleted. If the deleted leaf node has the same level node, the delete operation is terminated and
if there are no other nodes in the same level of the leaf node, the parent node is deleted. Traverse
the sub-tree in turn and repeat the above step [4,6].

• Split operation: if the number of elements in a cell is larger than the threshold Splitthresh, this
cell is split further. Different from the quadtree split of four cells, only the sub-cell that covering
the element as sub-tree nodes of the third-level node Ti+1 is split, and the maximum number of
sub-cells is 4. The split operation is repeated for the sub-cells until the number of elements is less
than the threshold or the depth of sub-tree reaches the depth threshold Heightthresh(thresh).



ISPRS Int. J. Geo-Inf. 2019, 8, 512 12 of 19

In addition, the update and maintenance of the index algorithm constructed in this paper does
not include merge operation. MLS3 is present as a way of spatio-temporal information encoding in
Row Key, and the Row Key is hashed to achieve distributed storage of spatio-temporal data in the P2P
network, as shown in Figure 1. Merge operation will change the Row Key value that has been assigned
to the storage node, which will result in the data retrieval error. Hence, if a certain number of delete
operations are performed, and only one leaf node is left in a level, we will not merge it into its parent
node to ensure the stability of index.

This index tree propose in this paper is stored in the corresponding metadata as an index strategy
and serves as a foundation for dividing the query range into several cell areas during querying.
The traversal query time complexity is O(n), where n is the number of cells in the query range.

4. Results and Discussion

4.1. Experimental Data and Environment

To verify the validity and rationality of the MLS3 index proposed in this paper, comparative
analysis with the XZ3 index was implemented with the same dataset and test environment. The P2P
structure was used to build a Cassandra cluster. with a total of five database nodes, and the redundant
backup factor was 2. The performance of a single node was based on an IBM X3850 Server, with 16G of
memory, and a central processing unit (CPU) with 16 cores × 2.294 GHz.

The test dataset (TDrive dataset) was obtained from the global positioning system (GPS) trajectory
(point element) data of 10,357 taxis in Beijing from 2 February to 8 February 2008, provided by Microsoft
Research Asia [32,33]. The dataset contained 15 million pieces of data with a mileage of about 9 million
kilometers. Data from November 2017 to March 2018 (5 months) in Beijing provided by Open Street
Map (OSM) were also considered, including 227,258 buildings (polygon elements) and 309,314 roads
(line elements) (OSM dataset) [34,35].

To test the query effect in a concurrent access environment, 200 spatio-temporal query windows
for the two aforementioned datasets were generated randomly, as shown in Figure 10.

Figure 10. Cont.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 13 of 19

Figure 10. Two hundred space-time query windows distribution: (a) TDrive dataset and (b) Open
Street Map (OSM) dataset.

4.2. Rationality Verification of Hierarchy Determination

To verify the rationality of the division algorithm proposed in this study, the TDrive dataset
was selected for testing. More than 15 million GPS data were randomly sampled, the sampling rate
was 20%, and the cell splitting threshold Splitthresh was set to 30% of the sample. Setting the tree
depth threshold to 2, the optimal initial level of the data set was determined to be level 9, which was
calculated by using the MLS3 algorithm, the multi-level division range included levels 9–11. The time
used to determine the optimal level is 1601 ms.

To verify that level 9 was the optimal level, we selected seven different levels, levels 6, 7, 8, 9, 10, 11,
and 12, setting them as the initial level in the same data set. The level yielding the lowest average time
consumption of 200 spatio-temporal queries among these levels was identified as the optimal level.
The experimental results are shown in Figure 11. It is evident that with increasing level, the average
time consumption of the query first decreases and then increases. The average time consumption
gradually decreases from level 6 to level 9, and the minimum is reached at level 9. This is because with
the increase of the level, the query scope was gradually refined, the partitioned ineffective query cell
was gradually reduced, and the amount of query data was reduced. However, from level 9 to level
12, the average time consumption gradually increases, reaching 3520 ms at level 12. A large number
of queries led to an increase of disk input and output (IO) and communication costs, resulting in a
significant increase in query time. Therefore, it can be concluded that the MLS3 indexing method is
effective and is well balanced between reducing the number of ineffective query cells and increasing
the number of effective query cells.

Figure 11. Average time consumption at different levels.

The reference value of the number threshold of the cells in the first level is calculated as follows: for
the experiment environment in this paper, we used a CPU with 16 cores, which can offer 16 concurrent



ISPRS Int. J. Geo-Inf. 2019, 8, 512 14 of 19

threads parallel computing capability. In general, the acceptable time of a single query response in the
database is less than 5 s [36,37]. For common spatio-temporal queries, as we can see in the experiment
in this paper (Table 3), the query time of a single thread is about 400–500 ms. Hence, the upper and
lower limits of query times in 5 s are 5 s × 1000/400 ms × 16 ≈ 200 and 5 s × 1000/500 ms × 16 ≈ 160,
which are considered as the optimal level cell number threshold in this paper. In addition, considering
that not every spatio-temporal query needs to traverse all cells, so the threshold value is set to 200
in this paper, and this value is also verified in the aforementioned TDrive dataset of Beijing, the
experimental results show that this value is available. For new input data, we can quickly determine
the optimal index level according to the data spatial range and the empirical value of 200. Assuming
that the spatial region area is S, the corresponding MBR area is SMBR, the average cell area in each level
is ASlevel(i), then calculate the minimum value of the differences between SMBR/200 and ASlevel(i) as
following formula (6). The level corresponding to the minimum value is taken as the most suitable
level for the new data.

min(
SMBR

200
−ASlevel(1),

SMBR

200
−ASlevel(2), . . . ,

SMBR

200
−ASlevel(i), . . . ,

SMBR

200
−ASlevel(30)) (6)

According to this algorithm, we have ascertained that the most suitable level for the national
layer (such as in the Chinese national range) is 4–5, for the provincial layer (such as in the Shandong
Province range) is 7–8, and for the city layer (such as in the Beijing area) is 9–10. The level ranges have
been verified in the projects of spatio-temporal information cloud platform construction in Smart Linyi
and Smart Zibo, which are two cities in Shandong province of China.

4.3. Comparison of Index Performance

The XZ3 spatio-temporal index algorithm (Source code: https://github.com/locationtech/geomesa/

releases/tag/geomesa_2.11-2.3.1), which was published in 2019, is selected to compare with the proposed
MLS3 algorithm using the same data set and environment for query performance testing. The latest
upadate of XZ3 algorithm is Version 2.3.1, and in this version GeoMesa gives the default parameter
values which show the optimal performance of the algorithm to developers. Hence, these default
parameter values will be used in this paper. The performance of our index is tested from three aspects:
index query efficiency, construction efficiency and space consumption ratio.

4.3.1. Index Query Efficiency

Since the XZ3 algorithm defaults to a single thread with page size 1, which is provided by
GeoMesa, we first compared the performances of the two algorithms under the default parameter
settings. The TDrive and OSM datasets were used as the experimental data. Multiple sets of concurrent
query access were assigned granularity of 1, 5, 10, 15, 20, 25, 30, 35, and 40.

As shown in Table 3, with an increase in concurrent query access tasks, the average query time
consumptions of the MLS3 and XZ3 indexing algorithms both increase, but the MLS3 algorithm
requires less time than the XZ3 algorithm. As shown in Table 3, for the query of the spatio-temporal
GPS trajectory points in the TDrive dataset, the time consumption of the XZ3 algorithm is 1.7–3.4 times
greater than that of the MLS3 algorithm. For non-point layer elements such as lines and polygons
in particular, the MLS3 algorithm exhibits more significant improvement. The MLS3 algorithm
greatly alleviated the pressure of complex spatio-temporal query operations under high concurrency
conditions, and its time consumption was about 1/7–1/2 that of the XZ3 algorithm.

In addition, we optimized the parameters of our method and compared it with the XZ3 method.
The MLS3 approach used five threads, with a page size of 1024, while the XZ3 algorithm employed
the default parameters. The experimental results are shown in Figures 12–14. It can be seen that for
three types of data (points, lines, and polygons), the query time consumption with the XZ3 algorithm
fluctuates considerably, which is due not only to the amount of data used in the query process, but also

https://github.com/locationtech/geomesa/releases/tag/geomesa_2.11-2.3.1
https://github.com/locationtech/geomesa/releases/tag/geomesa_2.11-2.3.1


ISPRS Int. J. Geo-Inf. 2019, 8, 512 15 of 19

to the type of SFC utilized in the indexing algorithm. The XZ3 algorithm uses the Z-order curve, which
has the problem that the spatial relationships of adjacent data may hop.

Table 3. Comparison of average query time-consuming under different number of tasks concurrency.

Number of Concurrent Tasks 1 5 10 15 20 25 30 35 40

Average time
consumption

(ms)

TDrive Taxi
(Point)

XZ3 1623 1628 2165 2285 2317 2401 2245 2606 2373
MLS3 526 625 642 788 676 981 1011 1461 1216

OSM Roads (line) XZ3 2213 1931 2632 4177 4948 5106 5422 4036 5729
MLS3 520 626 694 836 872 1953 2861 3365 3958

OSM Buildings
(polygon)

XZ3 2215 1869 2365 3239 3662 4477 4270 4417 4430
MLS3 374 446 459 521 523 622 595 993 969

In this study, the Hilbert curve was used in the MLS3 algorithm to ensure that the spatial adjacent
elements were encoded adjacently. For the three types of data, the time consumption of the MLS3
algorithm fluctuates within 2000 ms (Figure 12), 630 ms (Figure 13) and 500 ms (Figure 14). Overall,
the MLS3 algorithm exhibits greatly improved performance under the condition of multi-threading and
appropriate page size, the query efficiency is improved by 4–7 times, and the query time consumption
is stable, which is better suited for practical scenarios.

Figure 12. Query time consumption comparison of the global positioning system (GPS) points in the
TDrive dataset.

Figure 13. Query time consumption comparison of the road layer in the OSM dataset.



ISPRS Int. J. Geo-Inf. 2019, 8, 512 16 of 19

Figure 14. Query time consumption comparison of the building layer in the OSM dataset.

4.3.2. Construction Efficiency and Space Consumption Ratio

Taking the generation time of experimental data index as the construction efficiency and the
ratio of index data volume to corresponding vector data volume as the space consumption ratio, the
calculation results of the two index methods in each indicator are shown in Table 4. It can be found
that for point, line and polygon elements, the spatial consumption ratio of our method is slightly
higher than that of XZ3 index, which increases by 7.49%, 1.54% and 3.02%, respectively. However,
compared with the total storage space of 120G, the data volume of the two indexing methods accounts
for about 0.5%, which indicated the space consumption rate is acceptable in the existing hardware
storage environment. In addition, in terms of index construction efficiency, the construction time of
this method is higher than XZ3, and the increased time is positively correlated with the number of data
elements. This is because XZ3 only calculates the Row Key value, while MLS3 needs to construct a
multi-level index tree and determine the optimal index level. However, it is worth pointing out that
the construction process does not take more than 1/10 of the total time of data import.

Table 4. Comparison of index space consumption rate and construction efficiency.

Indicator Index Method TDrive Taxi
(Point) OSM Roads (Line) OSM Buildings

(Polygon)

Space consumption ratio XZ3 31.14% 7.37% 10.68%
MLS3 38.63% 8.91% 13.70%

Construction efficiency (s) XZ3 63 2 2
MLS3 147 23 19

5. Conclusions

To address the issues existing in traditional spatio-temporal indexing, an adaptive hierarchical
spatio-temporal index algorithm was developed in this study. This algorithm can not only describe
vector data reasonably, but also improves the efficiency of spatio-temporal retrieval and avoids storage
hotspots in P2P networks. Compared with the XZ3 spatio-temporal index, the MLS3 index proposed
in this paper has three main advantages: (1) in the time dimension, the hierarchical index structure
with different granularity is added to improve query efficiency; (2) in the space dimension, the Z-order
curve is replaced by a Hilbert curve to solve the querying hopping problem; (3) the temporal and
spatial index are integrated into a spatio-temporal index, which does not simply sequence a spatial
index or a time index, to support joint spatio-temporal query.

Based on validation with a large number of actual data, the main contributions of this study can
be summarized as follows:



ISPRS Int. J. Geo-Inf. 2019, 8, 512 17 of 19

(1) To determine the optimal hierarchy, the spatial distribution and density of the entire layer of
elements were considered. The most suitable level for the national layer is 4–5, for the provincial
layer 7–8, and for the city layer 9–10.

(2) In terms of query efficiency, the average time consumption of the proposed MLS3 algorithm is
about 1/7–1/2 of that of the XZ3 algorithm with the same parameters, and the query efficiency of
the MLS3 index can be improved by 4–7 times after parameter optimization.

(3) In terms of query stability, the MLS3 index with a Hilbert filling curve can better describe the
continuity of spatio-temporal data than the XZ3 index with a Z-order filling curve. The MLS3 index
shows more stable query performance and is more suitable for distributed storage management
of massive multi-scale data.

(4) In terms of space consumption ratio, our method sacrifices part of the storage space for an efficient
query; however, the storage space of the index accounts for about 0.5% of total hardware storage
space, which is acceptable for the spatio-temporal big data storage and management.

In future work, the construction efficiency and space consumption ratio will be optimized and we
will extend the MLS3 index algorithm to the distributed NoSQL databases of client servers. In addition,
the index algorithm proposed in this paper is mainly used to locate the storage nodes on P2P networks
quickly and efficiently retrieve the data on the nodes, but the data spread between each node is not
discussed. Addressing this issue is beyond the scope of this research, but it is a promising direction for
further exploration.

Author Contributions: C.L. proposed the original concept for the study. All co-authors conceived and designed
the methodology. Z.W. and Z.Z. were responsible for the processing and analysis of data. C.L. and P.W. drafted
the manuscript. All authors read and approved the final manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number 41871375,
National Key Research and Development Program of China, grant number 2018YFB2100700, and Basal Research
Fund of CASM, grant number AR 1909/1916/1917/1935.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cornelli, F.; Damiani, E.; Di Vimercati, S.D.C.; Paraboschi, S.; Samarati, P. Choosing reputable servents in a
P2P network. In Proceedings of the 11th International Conference on World Wide Web, Honolulu, HI, USA,
7–11 May 2002; pp. 376–386.

2. Kostakis, V.; Bauwens, M.; Niaros, V. Urban Reconfiguration after the emergence of peer-to-peer infrastructure:
Four future scenarios with an impact on smart cities. In Smart Cities as Democratic Ecologies; Palgrave Macmillan:
London, UK, 2015; pp. 116–124.

3. Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. Fog computing: Enabling the management and orchestration
of smart city applications in 5g networks. Entropy 2018, 20, 4. [CrossRef]

4. Alarabi, L.; Mokbel, M.F.; Musleh, M. St-hadoop: A mapreduce framework for spatio-temporal data.
GeoInformatica 2018, 22, 785–813. [CrossRef]

5. Shen, D.; Yu, G.; Wang, X.; Nie, T.; Kou, Y. Survey on NoSQL for management of big data. J. Softw. 2013, 24,
1786–1803. (In Chinese) [CrossRef]

6. John, A.; Sugumaran, M.; Rajesh, R.S. Indexing and query processing techniques in spatio-temporal data.
ICTACT J. Soft Comput. 2016, 6. [CrossRef]

7. Aguilera, M.K.; Golab, W.; Shah, M.A. A practical scalable distributed B-tree. In Proceedings of the VLDB.
Morgan Kaufmann, Auckland, New Zealand, 24–30 August 2008.

8. Cary, A.; Sun, Z.; Hristidis, V.; Rishe, N. Experiences on processing spatial data with MapReduce.
In Proceedings of the Scientific and Statistical Database Management, International Conference (SSDBM
2009), New Orleans, LA, USA, 2–4 June 2009; pp. 302–319.

9. Mouza, C.; Litwin, W.; Rigaux, P. Large-scale indexing of spatial data in distributed repositories: The SD-Rtree.
VLDB J. 2009, 18, 933–958. [CrossRef]

http://dx.doi.org/10.3390/e20010004
http://dx.doi.org/10.1007/s10707-018-0325-6
http://dx.doi.org/10.3724/SP.J.1001.2013.04416
http://dx.doi.org/10.21917/ijsc.2016.016
http://dx.doi.org/10.1007/s00778-009-0135-4


ISPRS Int. J. Geo-Inf. 2019, 8, 512 18 of 19

10. Wu, S.; Jiang, D.W.; Ooi, B.C.; Wu, K.L. Efficient B-tree based indexing for cloud data processing. Proc. VLDB
Endow. 2010, 3, 1207–1218. [CrossRef]

11. Eldawy, A.; Mokbel, M.F. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the
2015 IEEE 31st International Conference on Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 1352–1363.

12. Yu, J.; Zhang, Z.; Sarwat, M. Spatial data management in apache spark: The geospark perspective and
beyond. Geoinformatica 2019, 23, 37–78. [CrossRef]

13. Fox, A.; Eichelberger, C.; Hughes, J.; Lyon, S. Spatio-temporal indexing in non-relational distributed databases.
In Proceedings of the IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013;
pp. 291–299.

14. Le, H.V.; Atsuhiro, T. An efficient distributed index for geospatial databases. In Database and Expert Systems
Applications; Springer: Cham, Switzerland, 2015; pp. 28–42.

15. Google Corporation. S2 Geometry Library. 2015. Available online: http://s2geometry.io/ (accessed on 6 April
2019).

16. Procopiuc, O. Geometry on the Sphere: Google’s S2 Library. 2011. Available online: https://docs.google.com/

presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/view#slide=id.i22 (accessed on
7 April 2019).

17. Hughes, J.N.; Annex, A.; Eichelberger, C.N.; Fox, A.; Hulbert, A.; Ronquest, M. GeoMesa: A Distributed
Architecture for Spatio-Temporal Fusion. In Geospatial Informatics, Fusion, and Motion Video Analytics V;
International Society for Optics and Photonics: Baltimore, MD, USA, 20 April 2015.

18. Böxhm, C.; Klump, G.; Kriegel, H.P. XZ-Ordering: A space-filling curve for objects with spatial extension.
In International Symposium on Advances in Spatial Databases; Springer: Berlin, Germany, 1999.

19. Zhang, R.; Qi, J.; Stradling, M.; Huang, J. Towards a painless index for spatial objects. ACM Trans. Database
Syst. 2014, 39, 19. [CrossRef]

20. Fecher, R.; Whitby, M.A. Optimizing Spatiotemporal Analysis Using Multidimensional Indexing with
GeoWave. Free Open Source Softw. Geospat. Conf. Proc. 2017, 17, 12.

21. Eldawy, A.; Alarabi, L.; Mokbel, M.F. Spatial partitioning techniques in SpatialHadoop. Proc. VLDB Endow.
2015, 8, 1602–1605. [CrossRef]

22. Eldawy, A. SpatialHadoop: Towards flexible and scalable spatial processing using MapReduce. In Proceedings
of the Sigmod PhD Symposium, Snowbird, UT, USA, 22 June 2014; pp. 46–50.

23. Whitman, R.T.; Park, M.B.; Ambrose, S.M.; Hoel, E.G. Spatial indexing and analytics on Hadoop.
In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Dallas, TX, USA, 4–7 November 2014; pp. 73–82.

24. Lakshman, A.; Malik, P. Cassandra: A structured storage system on a P2P network. In Proceedings of the
ACM Symposium on Parallelism in Algorithms and Architectures, Calgary, AB, Canada, 10–12 August 2009;
p. 47.

25. Lakshman, A.; Malik, P. Cassandra: A decentralized structured storage system. ACM SIGOPS Oper. Syst.
Rev. 2010, 44, 35–40. [CrossRef]

26. Brahim, M.B.; Drira, W.; Filali, F.; Hamdi, N. Spatial data extension for Cassandra NoSQL database. J. Big
Data 2016, 3, 1–16. [CrossRef]

27. Chebotko, A.; Kashlev, A.; Lu, S. A big data modeling methodology for Apache Cassandra. In Proceedings
of the IEEE International Congress on Big Data, New York, NY, USA, 27 June–2 July 2015; pp. 238–245.

28. Belussi, A.; Migliorini, S.; Eldawy, A. Detecting skewness of big spatial data in SpatialHadoop. In Proceedings
of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Seattle, WA, USA, 6–9 November 2018; pp. 432–435.

29. González, R.; Munoz, A.; Hernández, J.A.; Cuevas, R. On the tweet arrival process at Twitter: Analysis and
applications. Trans. Emerg. Telecommun. Technol. 2014, 25, 273–282. [CrossRef]

30. Shaw, B.; Shea, J.; Sinha, S.; Hogue, A. Learning to rank for spatiotemporal search. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; pp. 717–726.

31. Weyand, T.; Kostrikov, I.; Philbin, J. PlaNet—Photo Geolocation with Convolutional Neural Networks.
In European Conference on Computer Vision; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham,
Switzerland, 2016.

http://dx.doi.org/10.14778/1920841.1920991
http://dx.doi.org/10.1007/s10707-018-0330-9
http://s2geometry.io/
https://docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/view#slide=id.i22
https://docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/view#slide=id.i22
http://dx.doi.org/10.1145/2629333
http://dx.doi.org/10.14778/2824032.2824057
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1186/s40537-016-0045-4
http://dx.doi.org/10.1002/ett.2772


ISPRS Int. J. Geo-Inf. 2019, 8, 512 19 of 19

32. Yuan, J.; Zheng, Y.; Zhang, C.; Xie, W.; Xie, X.; Sun, G.; Huang, Y. Tdrive: Driving directions based on taxi
trajectories. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS’10, San Jose, CA, USA, 2–5 November 2010; pp. 99–108.

33. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. Driving with knowledge from the physical world. In Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’11,
San Diego, CA, USA, 21–24 August 2011; pp. 316–324.

34. Curran, K.; Fisher, G.; Crumlish, J. OpenStreetMap. Int. J. Interact. Commun. Syst. Technol. 2012, 2, 69–78.
[CrossRef]

35. Haklay, M.; Weber, P. OpenStreetMap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

36. Shao, J.; Liu, X.; Li, Y.; Liu, J. Database performance optimization for SQL Server based on hierarchical
queuing network model. Int. J. Database Theory Appl. 2015, 8, 187–196. [CrossRef]

37. Cao, Y.; Ritz, C.; Raad, R. How much longer to go? The influence of waiting time and progress indicators
on quality of experience for mobile visual search applied to print media. In Proceedings of the 2013 Fifth
International Workshop on Quality of Multimedia Experience (QoMEX), Klagenfurt am Wo¿rthersee, Austria,
3–5 July 2013; pp. 112–117.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4018/ijicst.2012010105
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.14257/ijdta.2015.8.1.19
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	XZ3 Spatio-Temporal Index 
	S2 Spatial Index 

	Methodology 
	Joint Coding of Spatio-Temporal Information 
	Time Information Coding 
	Spatial Information Coding 
	Feature Identification Information Coding 
	Organization of Row Key Coding 

	Expression of Spatio-Temporal Elements 
	Spatio-Temporal Expression of Point Elements 
	Spatio-Temporal Expression of Non-Point Elements 

	Spatio-Temporal Index Construction Algorithm in Peer-to-Peer (P2P) Network 
	Determination of Time Granularity 
	Determination of the Spatial Grid Hierarchy 
	Multi-Level Spatio-Temporal Index Tree 
	Dynamic Update and Maintenance of Multi-Level Sphere 3 (MLS3) 


	Results and Discussion 
	Experimental Data and Environment 
	Rationality Verification of Hierarchy Determination 
	Comparison of Index Performance 
	Index Query Efficiency 
	Construction Efficiency and Space Consumption Ratio 


	Conclusions 
	References

