

Annex: IMPLEMENTATION OF METRIC S

This annex collects the (PostgreSQL) SQL scripts that implement the computation of metric S. The solution is

general, so the scripts are-usable for carrying out specific case studies. The Spatial DataBase (briefly SDB) is

called Violation.

The SDB’s tables:

CREATE TABLE GeoArea(

 id serial PRIMARY KEY,

 geom geometry(MultiPolygon, SRS_code)

);

SRS_code is the number of a metric Spatial Reference System (for instance, in the case of Italy: 32633).

CREATE TABLE ContourLines (

id serial PRIMARY KEY,

elevation numeric,

geom geometry(MultiLineString, SRS_code)

);

CREATE INDEX ContourLines_geom_gist

 ON public.ContourLines

 USING gist (geom);

CREATE TABLE Rivers (

 id integer,

 name character varying(35),

 geom geometry(MultiLineString, SRS_code),

 river_buffer geometry(Polygon, SRS_code)

);

CREATE TABLE Buildings(

 id serial PRIMARY KEY,

 geom geometry(Point, SRS_code),

 status bool,

 elevation numeric,

 S numeric

);

CREATE INDEX Buildings_geom_gist

 ON public.Buildings

 USING gist (geom);

Column status holds true if the building intersects the strip of respect of some river, in other word if it is

an IB.

Fig.A shows the screen of the PostgreSQL tables of the Violation SDB.

Fig. A The tables of the Violation SDB.

Initialization (to a dummy value) of columns status, S and elevation:

UPDATE Buildings

SET status = false, S=-1, elevation=-1;

Creation of the rivers’ buffer

UPDATE Rivers

SET river_buffer = ST_Buffer (geom, w)

WHERE id BETWEEN 1 AND totalNumberOfRivers;

w is the width (in meters) of the strip of territory where it is forbidden to build (according to the Italian Law

n.42 w = 150); while totalNumberOfRivers denotes the total number of the rivers that crosses the

GeoArea.

Consistent with the DB-centric architecture adopted in the paper, the implementation of metric S is carried out

in terms of spatial SQL queries. The invocation of several spatial SQL functions greatly simplified the

implementation of metric S. In details, the following functions were used: ST_Buffer(), ST_Area(),

ST_Centroid(), ST_ClosestPoint(), ST_Distance(), ST_DWithin(), ST_Intersects(),

ST_Intersection(). In the implementation, we made large use of the WITH clause. WITH provides a way

to write auxiliary statements for use in a larger query. These statements, which are often referred to as Common

Table Expressions (CTEs), can be thought of as defining temporary tables that exist just for one query.

The queries

Creation of a working view aimed at simplifying the code of queries.

Q1
CREATE VIEW workingView (

river_id, river_name, river_geom, river_buffer,

building_id, building_geom, status,

P, distance, S, elevation) AS

SELECT

r.river_id, r.name, r.geom, r.river_buffer,

b.id, b.geom,

ST_Area(ST_Intersection(river_buffer, b.geom)) /

ST_Area(b.geom) AS P,

ST_Intersects (river_buffer, b.geom) AS status,

ST_Distance(r.geom, b.geom) AS distance,

S, elevation

FROM Rivers AS r, Buildings AS b

WHERE ST_Intersects(river_buffer, b.geom) = true

In Q1 P implements Eq.1 (of the paper), while distance denotes the Euclidian distance between the

boundary of the generic IB and the geometry that models the river bed. The tuples selected by workingView
concern the IBs because of the condition ST_Intersects(river_buffer, b.geom) = true.

STEP 1: census of the IBs

Queries Q2A returns the total number of IBs, while query Q2B returns their list and the (WGS 84 long-lat)

coordinates of their centroid.

Q2A (Number of IBs)
SELECT COUNT(DISTINCT(building_id))

FROM workingView

Q2B (IBs listing)
SELECT DISTINCT building_id,

ST_AsText(ST_Transform(ST_Centroid(building_geom), 4326))

FROM workingView

In Q2A and Q2B the clause DISTINCT is used to display only once the IBs that have a non-empty intersection

with more than one river buffer. This circumstance takes place when two distinct rivers join in one point.

Query Q3 updates column status (of table Buildings) for each IB.

Q3
UPDATE Buildings AS b

SET status = w.status

FROM workingView AS w

WHERE b.id = w.building_id;

STEP 2: ranking of the IBs

For the generic building (bi), the parameter h (in Eq.2 of the paper) is computed as follows:

a) estimation of the elevation of bi (let us denote it as elev_bi)

b) identification of the point (let denote it as Qj) such that:

− Qj belongs to the river whose buffer has no intersection with the geometry of bi;

− Qj is at the minimum distance from bi;

c) estimation of the elevation of Qj (let as denote it as elev_Qj);

d) computation of h = (elev_bi - elev_Qj).

To semplify the formulation of the remaining SQL queries, we added the columns: partial_S, cp_cr (the

Closest Point, to building bi, on the Closest River) and e_cp_cr (the elevation of point cp_cr) to the table

Buildings. In these columns they will be copied, in order: MAX(P/d) (see Eq.2), the coordinates of point

Qj and its elevation.

ALTER TABLE Buildings

ADD COLUMN partial_S numeric,

ADD COLUMN cp_cr geometry(Point, SRS_code),

ADD COLUMN e_cp_cr numeric;

Initialization of columns cp_cr and e_cp_cr:

UPDATE Buildings

SET cp_cr = ST_GeometryFromText('Point(0.0 0.0)', SRS_code)

WHERE status;

UPDATE Buildings

SET e_cp_cr = -1

WHERE status;

Computation of partial_S

Copy of the value MAX(P/d) in the column partial_S of the tuples referring to IBs.

Q4

WITH CTE1 AS (

SELECT building_id, distance AS d, P

FROM workingView)

UPDATE Buildings AS new

SET partial_S =

(SELECT DISTINCT

CASE

WHEN d BETWEEN 0 AND 0.999 THEN MAX(P)

WHEN d BETWEEN 1 AND 150 THEN MAX(P/d)

END AS partial_S

FROM CTE1 AS cte1

WHERE cte1.building_id = new.building_id

GROUP BY building_id);

Q4 sets the value of partial_S to P if d<1m, otherwise it is set to max(P/d) (see Eq.2).

Estimation of the elevation of the generic building bi

Q5 updates the column elevation (of Buildings).

Q5
WITH CTE2 AS (

SELECT b.id AS building_id, c.id AS CL_id,

 ST_Distance(b.geom, ST_ClosestPoint(c.geom, b.geom)) AS distance,

 c.elevation

FROM Buildings AS b, ContourLines AS c
WHERE status

)

UPDATE Buildings AS b

SET elevation =

(SELECT MIN(elevation) AS elevation

FROM CTE2 AS a

WHERE distance =

(SELECT MIN(x.distance) AS distance

FROM CTE2 AS x

WHERE a.building_id = x.building_id AND

 b.building_id = a.building_id AND b.status

GROUP BY x.building_id

ORDER BY x.building_id ASC)

GROUP BY a.building_id

ORDER BY a.building_id ASC

);

Note

To speed-up the execution of query Q5, it is sufficient to replace in it table ContourLines with table

CL_insideStrip, this latter computed as shown below. The spatial operation

ST_Intersection(ST_buffer(geom, L1), geom) returns, for each contour line in

ContourLines, the geometry of the portion of contour line that falls inside a strip of terrain of a given

width (L1 meters, here); strip centered around the geometry that models the river bed.

CREATE TABLE CL_insideStrip (

id serial PRIMARY KEY,

geom geometry(MultiLineString, SRS_code),

elevation numeric

);

INSERT INTO CL_insideStrip (geom, elevation)

SELECT ST_Intersection(ST_buffer(geom, L1), geom), elevation

FROM ContourLines;

Q6 copies (only for the IBs) the coordinates of point Qj in column cp_cr. The filter

ST_DWithin(river_geom, building_geom, L2) reduces the number of rivers to be taken into

account to those whose (minimum) Euclidean distance from the generic building does not exceed L2 meters.

Q6
WITH CTE3 AS (

SELECT

building_id, river_name,

ST_ClosestPoint(river_geom, building_geom) AS cp_river_IB,

ST_Distance(building_geom, ST_ClosestPoint(river_geom, building_geom))

AS distance

FROM workingView

WHERE ST_DWithin(river_geom, building_geom, L2)

)

UPDATE Buildings AS s

SET cp_cr =

(SELECT cp_river_IB

FROM CTE3 AS a

WHERE distance =

 (SELECT MIN(distance)

 FROM CTE3 AS b

 WHERE s.building_id = a.building_id AND a.building_id=b.building_id

 GROUP BY b. building_id)

GROUP BY a.building_id, river_name, cp_river_IB, distance

);

Q7 updates column e_cp_cr (of table Buildings)

Q7
WITH CTE4 AS (

 SELECT s.id, ST_Distance(c.geom, s.cp_cr) AS distance, c.elevation

 FROM Buildings AS s, ContourLines AS c

 WHERE ST_DWithin(c.geom, s.cp_cr, L2) AND status

)

UPDATE Buildings AS s1

SET e_cp_cr =

 (SELECT DISTINCT elevation

 FROM CTE4 AS a

 WHERE s1.id = id AND a.distance =

 (SELECT MIN(distance)

 FROM CTE4 AS b

 WHERE a.id=b.id AND s1.id = b.id

 GROUP BY b.id)

)

WHERE s1.status;

Computation of S and update of the corresponding column in Buildings.

Q8
WITH CTE5 AS (

SELECT id, elevation, e_cp_cr,

CASE

WHEN (b.elevation - b.e_cp_cr) < 0 THEN

(b.partial_S * (1 -(b.elevation - b.e_cp_cr)))
ELSE (b.partial_S / (1 + (b.elevation - b.e_cp_cr)))

END AS S

FROM Buildings AS b

WHERE b.status

)

UPDATE Buildings AS b1

SET S =

(SELECT S

FROM CTE5 AS a

WHERE b1.id = a.id);

