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Abstract: Biodiversity is declining at an unprecedented rate with infrastructure development being
one of the leading causes. New infrastructure, such as roads, provides new access and results in
increased land clearing and wildlife hunting. A number of large infrastructure projects, including new
roads and rail, are being planned in Nepal. We show the application of readily available remotely
sensed data and geospatial tools to assess the potential impact of these future developments on
habitat quality under three protection-level scenarios. Our findings reveal that there is currently
large spatial heterogeneity in habitat quality across the landscape as a result of current anthropogenic
threats, and that three areas in particular could have up to 40% reduction in habitat quality as a result
of the planned infrastructure. Further research is required to determine more precisely the impact on
key species. Strengthening protected areas and buffer zones will contribute to mitigating degradation
to some degree, however, large areas of biologically significant areas outside protected areas will
be affected without new controls. Our geographic information systems (GIS) based methodology
could be used to conduct studies in data poor developing countries, where rapid infrastructure
development across ecological sites are ongoing, in order to make society, policy makers, and
development planners aware.

Keywords: remote sensing; spatial modelling; infrastructure threats; habitat quality; biodiversity
conservation

1. Introduction

Biodiversity is declining across the globe at an unprecedented rate [1,2]. The key drivers of
biodiversity loss have been identified as land use and land cover changes, pollution, climate change,
and infrastructure development [3–7]. Linear infrastructures such as roads, railways, powerlines,
pipelines, and irrigation canals have negative impacts [8,9], including habitat loss and fragmentation,
disturbance due to barrier and edge effects, encroachments, road mortality, enhancement of invasive
species, and increased illegal activities such as poaching and logging [9–11]. These sorts of development
also alter and reshape habitats [12], which result in reduced wildlife population sizes and viability [13].
Understanding the possible impacts of proposed and planned linear structural projects passing
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through biologically significant landscapes is crucial [14]. These kinds of assessments could indicate to
policymakers and land planners the implications of proposed development and suggest how to better
reconcile biodiversity conservation [15].

Globally, a number of factors, such as the quest for resources such as minerals, oil, and timber to
means of transportation for people and goods, are driving the expansion of linear infrastructure [16,17].
About 90% of all new infrastructure is built in developing nations [9], mostly tropical and subtropical
countries that have the most diverse ecosystems [18]. New roads are penetrating wilderness areas
including the Amazon and the Congo Basin. In Asia, large infrastructure projects are being planned
including the One Belt, One Road initiative of China that crosses important regional biodiversity
hotspots [19]. Nepal is recognized as being a global leader in nature conservation. Unlike many parts
of the world, it has a recent record of increased populations of tigers and one-horned rhinoceros [20,21]
species that require large intact ecosystems. While actively working to conserve biodiversity for more
than 50 years, a paradigm shift in conservation occurred when Nepal started on a landscape approach
by forming the Terai Arc Landscape (TAL) with India in 2001.

However, Nepal’s conservation success is threatened by proposed infrastructure development
highlighted in the conservation area Strategic Plan [22]. There is a real risk that the governments in the
newly formed federal system of Nepal may build these without proper consideration of biodiversity
and the environment in order to achieve long-awaited development. If not planned properly,
the proposed infrastructure may erode previous conservation success achieved through a landscape
approach [22]. Certainly, infrastructure development brings prospects for accelerating economic
growth and alleviating poverty in developing countries, but should be planned to minimize the impact
on biodiversity. In fact, if properly planned, infrastructure development could reduce human pressure
on forest margins and other ecological zones [3]. There has been no attempt to explicitly map the
impact of the proposed infrastructure development on biodiversity in the TAL and this is a major
oversight for spatial planning of infrastructure development in Nepal. Therefore, this study aims to
investigate the impact of the proposed infrastructure development on the biodiversity conservation of
the TAL in Nepal under three different protection level scenarios.

Here, we use spatial data and tools to assess the impact of infrastructure development
on biodiversity conservation. Although progress has been made in measuring and valuing
biodiversity [23], it remains a challenging task [24,25]. Most approaches seek to quantify biodiversity
either as the diversity of distinct “taxa” (e.g., species, functional groups) present in the defined
location or the ideal reference state of the ecosystem under study [25,26]. Within these approaches,
remote sensing of biodiversity involves two methods; direct mapping of species [27] or communities
or indirect sensing of biodiversity using environmental parameters or proxies [26,27]. The second
method involves assessing habitat quality, which is the ability of the ecosystems to provide appropriate
conditions for individual and population persistence and is a reliable indicator of biodiversity [28].
Clearly quantified habitat quality maps allow biodiversity to be assessed in a spatially explicit
way [25]. Thus, examining changes in habitat quality can be used as a proxy to assess the impact on
biodiversity conservation.

Measuring habitat quality requires incorporating many properties of the ecosystems that are
complex, and traditional ground-based terrestrial data collection methods have proven to be extremely
costly and time-consuming [25,29,30]. Thus, remote sensing and geographic information systems (GIS)
methods for habitat quality analysis has evolved into an active community with wide-scale operational
applications [28]. Habitat can be inferred either directly from land cover or through integration with
other environmental factors [26,31]. There are several remote sensing based tools and methods available
for habitat assessment, each with their own strengths and limitations [26]. However, despite the
progress in remote sensing based habitat assessment, the costs for data and software continue to pose
challenges [26]. Here, we used the freely available InVEST Habitat Quality (HQ) model that utilizes
readily available spatial data on land use and land cover (LULC), anthropogenic threats to biodiversity,
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and expert knowledge to provide a reliable indicator of changes in habitat quality as a proxy for
biodiversity conservation [32,33].

2. Materials and Methods

2.1. Study Area

Established in 2001, TAL is a transboundary landscape between Nepal and India and was based
on the distribution of tigers along with other ecological characteristics. It extends along the Gangetic
plain of India from Bagmati to Yamuna and includes 15 protected areas, 6 of which are located in
Nepal. In Nepal, it stretches in the southern lowlands across 18 districts and occupies an area of
24,710 sq. km [22] (Figure 1). TAL harbours critical natural habitats supporting globally important
biodiversity including some endangered wildlife. It holds meta-populations of important mega-fauna
such as tiger, elephant, and rhinoceros. It also supports the highest human population densities and is
among the most productive regions of Nepal. The six protected areas of TAL in Nepal are the following:
five national parks (Chitwan National Park, Bardia National Park, Banke National Park, Suklaphanta
National Park, and Parsa National Park) and a conservation area (Blackbuck Conservation Area).
These protected areas are reinforced with adjacent buffer zones. The landscape is affected by many
disturbances such as agriculture, settlements, and associated infrastructure.

Figure 1. Map of Terai Arc Landscape.

2.2. Data Collection and Processing

We used maximum cloud-free Landsat 8 Operational Land Imager images (OLI) from the year
2016 from the United State Geological Survey (USGS) (https://earthexplorer.usgs.gov). For land cover
classification, four scenes (path/row: 141/41 dated 25 October, 142/41 dated 22 March, 143/ 41 dated
23 October, and 144/40 dated 1 and 17 February) were used. All images were verified for geometric
accuracy and processed in environment for visualizing images (ENVI) [34]. During the analysis, scenes
144/40 were divided into two parts to remove the minor cloud cover area. After classification of LULC,
all classified images were mosaiced and analyzed in ENVI environment. We developed five LULC
classes; agriculture, forests, built-up, shrubland, and others (Table 1). A supervised approach maximum
likelihood algorithm was used for the classification of LULC [35]. The maximum likelihood approach
is widely used in remote sensing [35]. Training samples for the classification were collected using
high-resolution images from Google Earth (http://earth.google.com) and ground-truthed using global
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positioning system data during field visits and verification in 2016. The LULC accuracy assessment
was verified using random sampling point and at least 50 sample points were sampled per LULC class
per tile. The overall classification accuracy, user’s accuracy, and producer’s accuracy for the LULC
maps are observed and a minimum of 84% to 88% of overall accuracy was identified.

Table 1. Land use and land cover classification scheme in the study area.

S.N. Land Cover Description

1. Forests Land dominated by trees (evergreen broad leaf forest and deciduous forest)
2. Shrubland Bush, grasslands, shrub cover, and degraded forests
3. Agriculture Land under cultivation of agricultural crops
4. Built-up Urban and rural settlements and commercial area
5. Others Water bodies, wetlands, barren lands/sand

Administrative boundary vector data were acquired from the Survey Department of Nepal [36].
Vector data for existing and proposed roads and railways were acquired from the Department of Roads
and Department of Railways, respectively. Data for different InVEST parameters were extracted from
studies that used the InVEST HQ model to map terrestrial biodiversity and adjusted using the data
elicited from expert knowledge (Appendix A). We consulted experts with a background in biodiversity
conservation and ecological modelling from government agencies and conservation organizations
in Nepal. Details of the sources and parameter values are provided as supplementary materials
(Appendix A).

2.3. GIS Based Modelling Using InVEST

We used the spatially explicit habitat quality module of InVEST version 3.4.4 to model the change
in distribution of habitat quality levels in three different protection level scenarios [37]. The model is
based on the hypothesis that LULC types with higher habitat quality have higher richness of species
and a lower or decline in habitat quality have a low persistence of species. The model considers habitat
quality as a function of habitat suitability and four threat parameters; (i) the relative impact of each
threat, (ii) the relative sensitivity of each habitat type to each threat, (iii) the distance between the
habitats and sources of threats, and (iv) the degree to which the land is legally protected.

We considered general terrestrial biodiversity to determine whether the particular LULC type is
considered a suitable habitat or not [38]. We assigned different habitat suitability scores (Hj) in the
range of 0–1 for the five LULC classes (j) (Appendix A). The values for each class are relative to each
other. Forest was assigned the terrestrial habitat type with the highest habitat suitability for native
species as it is considered the least modified of the habitats, followed by shrublands and agriculture.
Because we considered only general terrestrial biodiversity, the habitat suitability score for the LULC
class ‘others’, which includes water bodies, wetlands, and barren lands, was assigned low values.
Based on the literature and available data sources for the area, we selected four threats to biodiversity
(i) agriculture, (ii) settlements, (iii) roads, and (iv) railways [39]. The source of each threat was mapped
on a raster in which the value of the grid cell indicated the presence (1) or absence (0) of each threat.
Four factors were used to determine the impact of each of these threats on the different habitat types.

First, the relative impact of each threat was determined to capture the different damage potentials
of each threat on the habitat. The threat’s weight (wr) is the relative impact score to all threats
(i.e., if agriculture has a weight of 1 and settlement has a weight of 0.5, then agriculture causes
degradation twice as much as the settlements). Second, the maximum effective distance of each
threat was determined, that is, the maximum distance over which the threat affects habitat quality.
If the habitat is within the impact distance of the threats, then it is within the threat’s degradation
zone. The impact of each threat on habitat in general decreases as the distance from the threat source
decreases. We used the exponential distance-decay rate, an indicative pattern seen in ecology [40],
to explain how the spatial impact of the threat diminishes. For instance, if the maximum distance of
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the threat is set to 1 km, then its impact will decrease by about 50 percent on the habitat pixel that is at
200 m from the threat.

The impact of threat r that lies in the grid cell y, ry, on habitat in grid cell x is given by irxy and is
represented by the following equation:

irxy = exp
(
−
(

2.99
dr max

)
dxy

)
(1)

where dxy is the linear distance between grid cells x and y, and dr max is the maximum effective distance
of threat r.

Third, the level of accessibility to threats was determined. The model assumes that the greater
physical, social, or legal protection the habitat pixel has, the less it will be affected by the nearby
threats. βx ∈ [0,1] indicates the level of accessibility in the grid cell x; where 1 indicates complete
accessibility and 0 indicates no accessibility. The impact of the threat decreases with the decrease in
the accessibility of the threat. We used the boundary of protected areas (PAaccess) and buffer zones
(BZaccess) as accessibility to threat layers. Buffer zones are human-dominated landscapes adjacent to
protected areas that provide additional protection, but are subject to pressure from anthropogenic
threats. Poaching, illegal logging, and invasive species continue to challenge protected areas in
Nepal, so we estimate the existing level of accessibility to threats to be as follows: PAaccess = 0.4 and
BZaccess = 0.8. In addition, taking the reference of the existing protection levels, we assume lower
protection scenario values to be PAaccess = 0.8 and BZaccess = 1, and higher protection scenario values
to be PAaccess = 0.2 and BZaccess = 0.6.

Fourth, the relative sensitivity of the habitat to all of the threats was determined. The InVEST
model assumes that the more sensitive a habitat is to a threat, the more degradation will occur in that
habitat from the degradation source. For example, a forest habitat may suffer more degradation from
adjacent agriculture (higher sensitivity) than disturbances from settlements (lower sensitivity).

Sjr = ∈ [0, 1] indicates the sensitivity of habitat type j to the threat r, where the values closer
to 1 indicate greater sensitivity to the threat.

Further, the total threat level in the grid cell x with the habitat type j is calculated as Dxj.

Dxj =
R
∑

r=1

Yr
∑

y=1
wrry irxy βx Sjr

Dxj =
R
∑

r=1

Yr
∑

y=1

(
wr

∑R
r=1 wr

)
ry irxy βx Sjr

(2)

where y indexes all grid cells on r’s raster map and Yr indicates the set of grid cells on r’s raster map.
The quality of habitat in the parcel x of LULC j is Qxy, where

Qxj = Hj

(
1−

(
Dz

xj

Dz
xj + kz

))
(3)

z and k are scaling parameters (or constants) used by the model.
Therefore, when Qxj = 1, the quality of the habitat in the grid cell x is at its maximum. The model

parameters and steps are detailed in the model guidebook [37].
Finally, we categorized the habitat quality scores for the landscape into five classes: poor (0–0.2),

low (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8), and high (0.8–1), and examined the resulting changes.

3. Results

The current and proposed infrastructure cross several ecosystems including those in protected
areas (Figure 2). There is a considerable spatial variability in habitat quality across the landscape due
to differences in land use and land cover (Figure 3), and the predicted effects of different threats in the
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landscape (Figure 4). As a result, the landscape is mainly dominated by both high and low habitat
quality classes. At a landscape level, the proposed infrastructure will cause habitat quality losses
primarily of the high-quality classes in all protection level scenarios; existing protection (770 km2 or 8%),
lower protection (1138 km2 or 12%), and higher protection (584 km2 or 6%) (Table 2). Habitat quality
losses at pixel levels are more pronounced and reach up to 40% in several areas in each of the scenarios
(Figure 5). The results suggest that the proposed infrastructure will cross and disproportionately
degrade high quality habitat areas regardless of protection levels.

Figure 2. Protected areas and current and proposed infrastructure network of the Terai Arc Landscape.

Table 2. Losses in habitat quality (HQ) scores in the landscape (“-” = No Loss).

HQ Classes Existing Protection (S1) Lower Protection (S2) Higher Protection (S3)

Area (km2) % Loss Area (km2) % Loss Area (km2) % Loss

Poor (0–0.2) - - - - - -
Low (0.2–0.4) - - - - - -

Moderate (0.4–0.6) −42 −1 - - −52 −2
Good (0.6–0.8) - - - - - -
High (0.8–1) −770 −8 −1138 −12 −584 −6

Our analysis of changes in habitat quality inside the protected areas and their adjacent buffer zones
within TAL shows that habitat quality remains relatively intact in the high protection scenario when
compared with other scenarios (Table 3). In the existing protection scenario, the loss in mean habitat
quality is notable in the protected areas and is relatively higher than the buffer zones: for example,
losses in Suklaphanta NP, Chitwan NP, and Blackbuck Conservation Area. However, in the low
protection scenario, large losses are experienced in both the protected areas and their buffer zones.
This finding suggests that different levels of protection have a varied impact of infrastructure on the
protected areas and their buffer zones. While increasing the current levels of protection within the
protected areas and buffer zones will contribute to preventing some levels of habitat quality loss,
further decreases in protection levels will cause significant loss.
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Figure 3. Land use and land cover (LULC) of the Terai Arc Landscape.

Figure 4. Spatial distribution of current habitat quality in Terai Arc Landscape.

Table 3. Mean percent habitat quality loss in the protected areas and buffer zones.

Sn. Protected Area and Buffer Zones Existing Protection Lower Protection Higher Protection

Mean (%) HQ Loss

1 Banke Buffer Zone 0.42 5.48 0.02
2 Banke National Park 0.79 3.49 0.12
3 Bardia Buffer Zone 0.23 8.23 0.04
4 Bardia National Park 1.99 5.78 0.54
5 Blackbuck Conservation Area 2.36 5.54 0.57
6 Chitwan Buffer Zone 0.98 8.81 0.06
7 Chitwan National Park 4.43 10.59 1.03
8 Parsa Buffer Zone 0.37 7.36 0.03
9 Parsa National Park 1.69 3.47 0.54

10 Suklaphanta Buffer Zone 0.70 5.90 0.09
11 Suklaphanta National park 5.41 13.33 0.13
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Figure 5. Habitat quality (HQ) loss (in percent) for three protection level scenarios (low protection,
current protection, and high protection) with insets for three areas that are precited to be most affected
by new infrastructure development.

4. Discussion and Conclusion

We show that although there is a large proportion of the TAL that provides a suitable habitat for
biodiversity conservation, the area is under pressure from different anthropogenic threats, resulting in
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a large spatial heterogeneity in habitat quality across the landscapes. In particular, the proposed new
road and rail infrastructure are predicted to reduce habitat quality in pixel levels by up to 40% in three
main areas within and close to current National Parks, as shown in Figure 5. As many large mammals,
such as tiger and rhino, require large areas for conservation, the long-term viability of their populations
may be threatened as a result of habitat loss and fragmentation, particularly in these three focal areas.
Although increasing the level of protection in the protected areas may mitigate degradation within
the protected areas at some levels, other biologically important areas such as the high-quality habitat
areas shown in our study will still be vulnerable to degradation. In addition, the identification of
hotspots for habitat quality loss could be used to best orient conservation efforts to the most vulnerable
sites in the landscape. This information is critical to align the current conservation efforts of the
Government of Nepal such as in maintaining corridor connectivity, bottlenecks, protection forests,
and community forests.

There is growing evidence showing the negative impact of infrastructure such as roads and
railways on habitat quality [11,41]. Our findings are consistent with several other similar spatial
modelling studies. Sallustio, et al. [42] found that habitat quality depends on the location of
anthropogenic threats such as urban areas and roads, and decreases when areas are more accessible or
less restrictive. They confirm that high levels of protection ensure improved conservation outcomes.
Others have similarly recorded the spatial distribution of habitat quality losses in biologically rich
areas due to anthropogenic threats such as in Central Kalimantan of Indonesia [32].

We recognize that our study has several limitations. Although there are a number of threats that
may affect the landscape [22], we only considered a limited number of threats such as agriculture,
settlements, and infrastructure because we lacked data for other threats. Further, the model assumes
that each threat will have similar degradation impacts. However, in reality, each threat will have
different levels of impact and will most likely act synergistically [43]. As well as the immediate
loss of habitat, new infrastructure can have a long-term impact on the biodiversity by increasing
economic activities and the spread of settlements [44]. The TAL continues to face pressure due to
unprecedented growth in human population and urban expansion [35] and further infrastructure
development will escalate this process. Our study did not capture these factors. We acknowledge
these as major limitations of this study. Thus, our findings could be further enhanced by utilizing
other threat data and modeling population growth and economic activities. This would provide a
more refined evaluation of the impact of new infrastructure on biodiversity.

Further, although we considered habitat suitability for biodiversity, we did not examine how
individual species will be affected. In the future, modelling could be improved by using species-specific
data to develop habitat suitability models for key species. This could give data of a finer resolution on
how each species and their habitats will be affected by the proposed infrastructure. However, at this stage,
there are limited data and resources to conduct such detailed analysis. As infrastructure development in
Nepal is on-going, our primary goal was to reveal a first rapid assessment of impact of such infrastructure
on general terrestrial biodiversity. Although there are several limitations, our study added to the
dimension of using readily available GIS based data to quantify the impact of infrastructure development.
This methodology will help other researchers to conduct studies in other countries, particularly
developing countries, where there is scarcity of data and resources to conduct a detailed analysis.

Poorly planned infrastructure development will not only have immediate consequences for
biodiversity, but also increase the risk of permanently locking continuous threats to biodiversity for the
future. Traditional environmental impact assessments (EIAs), generally fast and based on inadequate
data, are sometimes seen as short-sighted in showing the full extent of negative consequences of
infrastructure development [18]. An integration of best practice in environmental planning such
as strategic environmental assessments (SEAs), which have broader spatial and temporal focus
than EIAs [45], and other proactive land use and infrastructure planning, are more desirable [18].
We suggest our assessment of habitat quality can be used as a basis for developing a more detailed SEA.
We recommend that policymakers, development planners, and conservation agencies consider habitat
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quality during the spatial planning process and work together to ensure that proper environmental
planning is followed. In fact, given the importance of biodiversity in the landscape and to honor
current conservation commitments, we strongly recommend integrating biodiversity conservation in
planning and implementing infrastructure development in the region.
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Appendix A.

Table A1. InVEST Data Parameters for threats, maximum distance of threats, weight of threats,
habitat suitability, and relative sensitivity of habitats to threats.

Threats (r)
Maximum Effective
Distance of Threat

(dr max) (kms)

Weight
(wr)

LULC Classes

Agriculture Forest Built-Up Shrubland
Others (Waterbody,
Wetlands, Barren

Lands)

Habitat Suitability Score (Hj)

0.3 1 0 0.6 0.2

Sensitivity of Habitats to Threats (Sjr)

Agriculture 4 0.8 0 0.7 0 0.6 0.8

Settlements 5 1 0.5 0.8 0 0.7 0.6

Existing Road Network 3 0.8 0.5 0.8 0 0.7 0.5

Proposed

Postal Road 2 0.7 0.4 0.6 0 0.5 0.3

Fast Track 3 0.8 0.5 0.8 0 0.7 0.4

Railways 2 0.7 0.4 0.6 0 0.5 0.3

Source: [37,38,46–48].

Table A2. Summary of the input data types and description for InVEST HQ parameters.

Data Description

LULC raster for 2016
A LULC raster map for 2016 was produced by using freely available Landsat 8
OLI images. The raster map was classified into 5 LULC classes with a code/id for
each land cover type cells.

Threat raster

The raster threats to biodiversity were defined as agriculture, primary and
secondary roads, rail networks and settlements. Agriculture and settlement maps
were acquired through the current LULC maps. The road map was acquired
through the Department of Roads and the rail map was acquired through the
Department of Railways.

Habitat Suitability Score
The habitat suitability scores range from 0 to 1. 0 represents non-habitat land use
type, and 1 represents perfect habitat. Habitat suitability score was determined
through secondary sources, stakeholder consultation, and expert knowledge.
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Table A2. Cont.

Data Description

Sensitivity of habitat
types of each threat

Sensitivity values range from 0 to 1; where 0 represents no sensitivity to a threat
and 1 represents the greatest sensitivity. The score for sensitivity was determined
through expert knowledge and secondary literature [37,38,46,47].

Half-saturation constant

The InVEST habitat model uses a half-saturation curve to develop HQ values
from habitat degradation scores. To calibrate the value for k the model was run
once and the value was set as half of the highest grid-cell degradation level;
which is equal to the grid cell degradation score that returns a pixel habitat
value [37].
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