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Abstract: Connectivity modeling approaches for abandoned mine lands (AML) patches are limited
in post-mining landscape restoration, especially where great land use changes might be expected due
to large-scale land reclamation. This study presents a novel approach combining AML patch sizes
with a proximity index to characterize patch-scaled connectivity for determining the spatial positions
of patches with huge sizes and high connectivity. Then this study propose a scenario-based method
coupled with landscape-scale metrics for quantifying landscape-scaled connectivity, which aims
at exploring the optimal reclamation scheme with the highest connectivity. Using the Mentougou
District in Beijing, China, as a case study, this paper confirmed which patches should be reclaimed first
to meet the predetermined reclamation numbers; then this paper tested three different reclamation
scenarios (i.e., cultivated land-oriented, forest-oriented, and construction land-oriented scenarios) to
describe the impact of the different development strategies on landscape connectivity. The research
found that the forest-oriented scenario increased connectivity quantitatively, showing an increase in
the integral index of connectivity (IIC) and other landscape-scale metrics. Therefore, this paper
suggests that future land-use policies should emphasize converting AML into more forest to
blend in with the surrounding land-use categories. The findings presented here can contribute
to better understanding the quantitative analysis of the connectivity of AML patches at both the
patch scale and the landscape scale, thus providing scientific support for AML management in
mine-site rehabilitation.

Keywords: land reclamation; abandoned mine land; connectivity; proximity index; scenario simulation

1. Introduction

Large-scale mining activities have led to a great number of abandoned mine lands (AML),
which refers to idle or abandoned lands after mining or exploration activities that cannot be reused
without remediation [1–3]. The sizes of AML patches vary and the patches are widely dispersed.
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In China, rules for AML reclamation are that patches with high connectivity and large areas should
be given priority and that the patch restoration should coincide with the surrounding land cover
category to achieve high landscape connectivity. Though this management strategy is frequently
recommended, only limited qualitative analyses have been conducted as quantitative methods for
measuring connectivity in the field of mining landscape restoration are commonly not used in China
and internationally.

Landscapes have been referred to as complex adaptive systems, in which patterns at higher
levels emerge from localized interactions at lower levels [4]. Landscape metrics could be used as
indicators to describe, characterize and quantify the pattern, composition and configuration of the
biotope and landscape structure of some region on various spatial and temporal scales. At the
patch-scale, Gustafson and Parker developed the proximity index to describe the aggregation degree
of the patches of the same land-use type [5–7]. The index can be used to distinguish isolated
patches from those which are components of complex patches, which and it provide a way to
evaluate the aggregation levels of the scattered AML patches with high connectivity values for
priority reclamation. At the landscape scale, contagion, aggregation index, shape index, etc. are
usually selected to measure the degree of aggregation and clumpiness of the overall landscape
patterns [8–11]. The landscape-scale indices could be used to assess the reclaimed post-mining
landscape. Leitão and Muge revealed landscape ecological metrics can be useful in each mine
planning phase, i.e., allocation, development, exploitation, and closure, to address the environmental
component [12]. Herzog et al. tested the usefulness of geometry-based landscape metrics for
monitoring landscapes in a heavily disturbed environment caused by surface mining and agri-cultural
intensification in Saxony, eastern Germany [13]. Kirmikil and Arici investigated the utility of metric
parameters such as the shape index and fractal dimension for analyzing parcel conditions pre- and
post-land consolidation in four villages within the county of Karacabey in Bursa, Turkey, aiming at
eliminating scattered land forms [14].

Moreover, graph theory has also significantly contributed to the development of modeling
functional connectivity of landscapes, which characterizes spatial relationships among focal patches,
nodes, and links of a network [15–17]. Currently, the study of land connectivity is primarily conducted
in the research areas of conservation planning, protection of ecological species and habitats, and forest
management. Lechner et al. studied the influence of future development and public orientation
on landscape connectivity under different scenarios [18,19]. Nogués and Cabarga-Varona (2014)
established a variety of scenarios to model land-use changes for landscape connectivity, with the aim
of improving the connectivity of a forest habitat network [20]. Ernst (2014) quantified connectivity in
complex landscapes via graph-based connectivity response curves under a range of simulated forest
management scenarios for biodiversity conservation [21], and Pirnat (2000) proposed a connectivity
model based on GIS (Geographic Information System) to confirm core forest patches and corridors [22].
Especially, the integral index of connectivity (IIC) is suggested to assess the complex functional
connectivity of landscapes [23,24]. Although these methods provide systematic ways of understanding
connectivity based on landscape pattern theory and graph metric theory, there are comparatively few
approaches for spatially evaluating the degrees of spatial aggregation of existing AML patches.

At the same time, land-use changes (i.e., converting AML into cultivated land, forest land
or built-up land) can also have a positive or negative impact on connectivity. Scenario planning
approaches can be effective for considering the potential influence of reclamation on connectivity
across the landscape scale. Three different land-use-type-oriented scenarios have been designed per
land requirements. As the land-use type of adjacent patches could also change during the period
of rehabilitation, it is necessary to predict future land-use shifts [25] via land-use models [26,27].
The Conversion of Land Use and its Effects at the Small Regional Extent (CLUE-S) model has been
widely used for simulating the regional changes of land-use cover [28–32]. CLUE-S is an empirical
analysis-based model that considers the influences of geophysical and socioeconomic driving factors
on land-use category changes [33–40]. Hence, the CLUE-S model is used to simulate the land-use
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types transformations. After reclamation, the separated reclaimed patches, adjacent patches, and the
matrix are considered as a whole post-mining landscape. So, after reclamation, the connectivity would
be analyzed using a range of graph metrics from the landscape scale but not from the patch scale.

In brief, this paper tries to combine landscape connectivity and pattern indices with scenario
analysis to determine priorities for reclamation, using the Mentougou District in Beijing, China, as
a case study, aiming to answer the following issues: (i) how to investigate connectivity modeling to
determine the spatial locations of AML patches for reclamation priority; (ii) how to design simulated
management scenarios for AML reclamation; and (iii) how to assess different scenarios from the
perspective of connectivity.

2. Materials and Methods

2.1. Study Area

The Mentougou District is in the west of Beijing, China (Figure 1), with rich mining resources.
Coal and limestone dominate. The Mentougou District was the energy source base of Beijing for
a long time. However, from 2007, the Beijing municipal government converted its emphasis from
mining extraction to ecological environment preservation in the district. A total of 267 mines were
closed, leaving 4130 ha of AML for land reclamation. According to the General Land-Use Plan in
Mentougou District (2006–2020), 3573 ha of AML will be reclaimed by the year 2020. Most AML
patches are distributed in the east, with mainly small ones in the west. The 2007 land-use map was
classified into eight types, including cultivated land, garden land, forest land, grassland, construction
land, AML, water, and unutilized land. The respective numbers of the eight land-use categories are
1735 ha, 3925 ha, 101,904 ha, 19,805 ha, 3596 ha, 4130 ha, 1914 ha, and 7806 ha, respectively, as shown in
Figure 2. Land use information was obtained from Beijing Municipal Bureau of Land and Resources.
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2.2. Methods

This paper first incorporates the patch sizes and the proximity index to characterize the
connectivity of AML patches prior to reclamation. Then it sets a range of reclamation scenarios based on
different reclamation targets. Finally, it assesses the scenarios through selected landscape-scale graphics
to demonstrate landscape connectivity. The technical flow of this study is illustrated in Figure 3.
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2.2.1. Patch-Scale Connectivity Approach for Identifying AML Patches for Reclamation

Gustafson and Parker developed the proximity index in 1992 [5–7]. This index considers the
size and proximity of all patches of the same category with edges that fall within a specified search
radius of the focal patch. The index can be used to distinguish isolated patches from those which
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are components of complex patches and to describe the aggregation degree of patches of the same
land-use type. The proximity index is calculated using the following equation:

Proximity index =
n

∑
i=1

 A(i)/NND(i)
N
∑

i=1
A(i)/NND(i)

 (1)

where A(i) is the area (m2) of patch i and NND(i) is the nearest-neighbor distance between that patch
and each neighboring patch of the same type with edges that fall within the specified neighborhood
(m) of the patch indexed. The value ranges from 0 to 1. A higher value means that the patches are
closer and more contiguous (or less fragmented) in the spatial distribution.

However, patch metrics are often calculated using the software of FRAGSTATS 4.0 (UMass
Landscape Ecology Lab, Amherst, MA, USA) in the research work [10], which is a set of spatial
statistics that are automatically implemented by ecologists. The value is calculated using the following
equation:

Proximity index =
n

∑
s=1

aijs

hijs
2 (2)

where aijs is the area (m2) of patch ijs within the specified neighborhood (m) of patch ij; hijs is the
distance (m) between patch ij and patch ijs, based on patch edge-to-edge distance, computed from cell
center to cell center. Here, the search radius is set to 1000 m per the reclamation work practice.

The value of proximity index equals the sum of the patch area (m2) divided by the nearest
edge-to-edge distance squared (m2) between the patch and the focal patch of all patches of the
corresponding patch type whose edges are within a specified distance (m) of the focal patch [41].
FRAGSTATS uses the distance between the focal patch and each of the other patches within the search
radius, rather than the nearest-neighbor distance of each patch within the search radius (which may
indicate a patch other than the focal patch), as in Gustafson and Parker [5]. The value equals 0 if a
patch has no neighbors of the same patch type within the specified search radius. The value increases
as the neighborhood (defined by the specified search radius) becomes increasingly occupied by patches
of the same type and as those patches become closer in distribution [41].

Since the sizes of AML patches vary, reclamation priorities should be set for large patches.
Then the connectivity of the remaining AML patches is computed according to Equation (2) and
the values are sorted in descending order. Patches with high connectivity values are assigned to be
reclaimed to meet pre-determined reclamation numbers.

2.2.2. Land Reclamation Scenarios

According to the results of the mined land suitability assessment, AML in the study region can be
rehabilitated into cultivated land, forest land and construction land [11]. The potential uses of AML
patches using three different modeling scenarios are evaluated.

Scenario 1 (fertility dependent cultivation or forestry): Since cultivated resources are limited
in China, land consolidation has maintained the provision of additional arable land as its primary
target [42]. Thus, in this scenario, AML patches would be reclaimed into cultivated land if it has a
high soil fertility. In order to distinguish which patches are suitable for reclamation into cultivated
land, an evaluation indicators system was built for assessment. First, the graph overlay method
was adopted to divide the evaluation units, which referred to the superposition of the land-use map
and the corresponding soil map to obtain separate patches as evaluation units. Then six indicators,
i.e., soil texture, elevation, slope, aspect, soil organic matter, and available phosphorus, are used to
build the indicators system according to The Rules for Cultivated Land Productivity Assessment in
Beijing, China (DB11/T 1083-2014) and relative literature [40]. The weights are 0.251, 0.195, 0.152, 0.103,
0.196, 0.103, relatively. Afterwards, the additive method was used to compute the integrated index of
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each unit. Finally, patches with a score higher than 75 could be transformed into cultivated land to
supplement arable land resources, whereas patches with the scores lower than 75 could be changed
into forest land. The data used for the evaluation system, were obtained from the Beijing Digital
Soil System. All data were converted for the same projection with an equal grid size of 100 × 100 m.
According to the land use scheme, the patches in Yongding with low elevation and good transport
accessibility would be transformed to construction land to meet the demand of the industry.

Scenario 2 (elevation dependent cultivation or forestry): In China, one rule for the reclamation of
AML is that reclaimed patches should be line with the surrounding land-use types, according to the
Management Approach to The Reclamation and Utilization of Abandoned Mine Land. The typical
land-use type in the study region is forest, and thus converting AML patches into forest patches would
be consistent with the policy. The elevations of patches could be calculated in the ArcGIS 10.2 software.
In this scenario, AML patches with an elevation higher than 30 m would be reclaimed into forests,
whereas AML patches with an elevation lower than 30 m and high soil attributes would be reclaimed
into cultivated land. Based on land use planning, only selected patches in Yongding are to be reclaimed
into construction land, with neighboring patches of the same type.

Scenario 3 (urbanization, cultivation and forestry): According to General Land-Use Plan in
Mentougou District (2006–2020), the four townships of Longquan, Datai, Wangping, and Yongding
aim to develop new factories and infrastructural facilities to realize industrial transformation.
Thus, the patches within the four townships would be transformed into built-up lands. Scattered
patches with high soil fertility in Miaofengshan and Junzhuang would be changed into cultivated land.
Other patches that are left over would be shifted to forest.

2.2.3. Prediction of Other Land-Use Cover Changes in 2020

Considering that the land-use types in the research area will change during the period of
reclamation, it is necessary to predict the land-use types in the study area to precisely calculate
the connectivity of the reclaimed AML patches and their surrounding patches.

In this paper, the CLUE-S model [28,30,31,43,44] is adopted to predict future land-use changes,
excluding AML, in the study region. Conversion of other land-use types into AML, and conversion of
AML types into other land-use types were not allowed. The spatial location of AML was defined as
per the area restrictions. Therefore, the CLUE-S model only simulated the distribution of the other
seven land-use types without AML. The model is divided into the non-spatial and spatial modules.

1. The non-spatial module

It calculated the demands for seven land-use types and the demands were taken from the general
land-use plan of the study area and different scenarios characteristics.

2. The spatial module

Ten driving variables were selected considering the data availability, stability, and relevance.
Elevation (X1), slope (X2), distance to the nearest road (X3), distance to the nearest river (X4), distance
to the nearest main township (X5), distance to the nearest rural residential site (X6), soil organic
matter (X7), population density (X8), per capita income (X9), and annual rainfall (X10) were selected
as the driving factors. X1 and X2 were acquired from DEM (Digital Elevation Model). X3 to X6 were
calculated via ArcGIS 10.2. X7 was obtained from a 1:5 million soil map in the Beijing Digital Soil
System. Other variables (i.e., X8–X10) were from the Statistical Yearbooks of the Mentougou District,
Beijing. Specifically, X1 and X2 were used to describe terrain conditions, and X3, X4, X5, and X6 were
used to describe transportation accessibility. X7 is an important indicator of soil property, which largely
decides whether the AML patches are suitable for cultivation. X8, X9, and X10 are key socioeconomic
factors influencing the social development of townships.

The detailed principles of the CLUE-S model can be found in the relative literature [11,32,35,45–48].
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2.2.4. Landscape-Scale Connectivity Modeling after Reclamation

After obtaining the future land-use changes of the study region by the CLUE-S model and
transformations of AML by scenarios analysis, the research combined them together and used several
landscape-scale indices to assess connectivity from a landscape view. Six landscape graph metrics, i.e.,
the mean patch size (MPS), number of patches (NP), contagion index (CONTAG), aggregation index
(AI), shape index (SHAPE), and integral index of connectivity (IIC), were used to measure connectivity.
Table 1 shows the landscape-scale graph metrics and their ecological significance.

Table 1. The ecological descriptions of landscape-scale graph metrics.

Landscape-Scale
Graph Metrics Ecological Description References

Mean patch size (MPS) The area occupied by a particular patch type divided by the number
of patches of that type. [8]

Number of patches (NP) Total number of patches in the landscape. A simple measurement of
subdivision and other measures of aggregation. [10]

Contagion (CONTAG) Measuring the degree of aggregation and clumpiness of the overall
landscape patterns. [9]

Aggregation index (AI)
Quantification of the level of aggregation of spatial patterns.
In addition, it provides a quantitative basis for correlating spatial
patterns with processes that are typically class specific.

[9]

Shape index (SHAPE)
It measures the degree of departure of a spatial pattern from
geometric shapes. Higher values indicate a shape further differing
from the standard shape(square).

[9]

Integral index of
connectivity (IIC)

The probability that two dispersers randomly located in the landscape
can access each other. [23,24]

3. Results

3.1. Connectivity Values of Existing AML Patches before Reclamation

The AML patch sizes were calculated in ArcGIS 10.2. Table 2 shows the descriptive statistics
of the different sizes of AML patches. Six AML patches were larger than 100 ha in 2007, and most
of them passed through the coal mining industrial region located in the eastern part of the research
area. The spatial distribution of AML patches is shown in Figure 4. Small plots were mainly scattered
around the townships of Qingshui, Zhaitang, and Yanchi. These three townships have higher elevation
and they primarily relied on forestry rather than coal mining for their economic survival.

Table 2. The descriptive statistics of different sizes of patches after reclamation.

Classifications
of Patches 1

Number of
Patches

Rate (%) Area of
Patches (ha) Rate (%)

Patch-Scale Proximity Index

Minimum Maximum Mean

huge patches 6 0.02 2319 56.15 2.43 42.81 18.22
large patches 7 0.02 432 10.46 0 148.14 40.34

medium patches 37 0.10 631 15.28 0 131.28 19.09
small patches 305 0.86 748 18.11 0 133.22 8.37

1 The patches are divided into four categories according to the patch area: huge patches (greater than 100 ha), large
patches (50–100 ha), medium patches (10–50 ha) and small patches (less than 10 ha).
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The AML patches in Figure 4 were input into FRAGSTATS 4.0. The connectivity value for each
patch in 2007 was computed using Equation (2). The computed values were sorted in descending
order and classified into 9 grades, as shown in Figure 5. If a focal patch had no neighbors of the
same patch type within the search radius of the focal patch, it received a value of zero, i.e., the spatial
connectivity was low. Conversely, the values were high if the patch has a large-area surrounding
patches. The reason for this observation was that based on Equation (2), a large patch area (aijs) within
the search radius and a short interpatch distance (hijs) results in a large value. The proximity index
values of AML patches in the banded region in the northeast of Datai (in dark blue) were high because
a patch as huge as 733 ha was close to these patches. Furthermore, the values for several patches in
Yongding were high because a huge patch with the area of 501 ha falls within the search radius.
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Therefore, priorities were set for the six huge patches. Next, the computed values were sorted in
descending order. The patches with relatively high values were selected for reclamation to meet the
demand for reclaimed areas in the general land-use plan (to be exact, 3573 ha). The spatial allocations
of patches that were to be reclaimed and not reclaimed are shown in Figure 6.
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3.2. AML Transformation under Different Reclamation Scenarios

The reclaimed areas and their percentages under different scenarios can be found in Table 3.
The spatial transformation of AML patches under different scenarios are shown in Figure 7. In scenario
1, the reclaimed cultivated land was mainly in Yongding (in the east), Junzhuang and Datai, with high
values in soil attributes. Large patches in Datai were converted to forests because of the low soil fertility.
The patches in the middle of Yongding (in the east) were transformed into built-up areas due to the low
elevation and good transport condition for industry development. In scenario 2, most of the patches
were converted into forest per the nature of this scenario. Only a small percentage, approximately 8%,
of patches were reclaimed into cultivated land due to the low elevation and only about five percent of
AML were shifted into built-up areas. In scenario 3, construction land dominated. The patches located
in Datai, Wangping, Yongding, and Longquan were changed to built-up areas to meet the demand of
industrial transformation according to the local land-use plan.
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Table 3. The reclaimed areas and their percentages under different scenarios after reclamation.

Scenarios Reclaimed
Cultivated Land (ha)

Percentage
(%)

Reclaimed Forest
Land (ha)

Percentage
(%)

Reclaimed
Construction Land (ha)

Percentage
(%)

Scenario 1 2092 58.55 1084 30.34 397 11.11
Scenario 2 312 8.73 3078 86.15 183 5.12
Scenario 3 281 7.86 721 20.18 2571 71.96

3.3. Prediction of Land-Use Changes Via the CLUE-S Model

The simulated distribution of the seven land-use types in 2020 was obtained using the CLUE-S
model. After overlapping Figure 7 with the simulated map, the spatial distribution of all land-use
types in 2020 was shown in Figure 8.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 15 

 

 

Figure 8. Land-use maps of the entire study region in 2020 under different scenarios: (a) Scenario 1: 
fertility dependent cultivation or forestry; (b) Scenario 2: elevation dependent cultivation or forestry; 
(c) Scenario 3: urbanization, cultivation and forestry. 

3.4. Connectivity Modeling after Reclamation 

Connectivity characteristics of the three scenarios can be seen in Table 4. 

Table 4. The connectivity characteristics of the three scenarios after reclamation. 

Landscape Indices Scenario 1 Scenario 2 Scenario 3 
MPS 91.8890 98.5807 98.1131 
NP 1576 1469 1476 

CONTAG 68.2594 69.8066 68.4399  
AI 91.6931 92.0096 91.8645 

SHAPE 1.2067 1.1974 1.2021 
IIC 0.6397 0.6644 0.6497 

As shown in Table 4, scenario 2 had the largest MPS and the lowest NP, whereas scenario 1 had 
the smallest MPS with the highest NP. The CONTAG and AI both ranked from highest to lowest in 
the order of scenario 2, scenario 3, and scenario 1. The SHAPE is the simplest and perhaps most 
straightforward measure of shape complexity, and the value for scenario 2 was the lowest, which 
means the landscape was the most aggregated. Scenario 2 showed an advantage in IIC, which 
quantifies the importance of habitat areas and links for the improvement of landscape connectivity. 
Therefore, based on the comparisons of graph metrics, these rankings suggest that scenario 2 had the 
most contiguous units, with most of the units exhibiting a greater aggregation trend, that is, higher 
connectivity. 
  

Figure 8. Land-use maps of the entire study region in 2020 under different scenarios: (a) Scenario 1:
fertility dependent cultivation or forestry; (b) Scenario 2: elevation dependent cultivation or forestry;
(c) Scenario 3: urbanization, cultivation and forestry.

The results of logistic regression were examined through receiver operating characteristic (ROC)
curves [49]. If the ROC is greater than 0.7, it suggests strong correlations and an ability to explain shifts
among the different types via the driving factors. The ROCs for the seven land use categories were
all above 0.7. The accuracy of predicting future land-use types could be tested by Kappa index [50].
The predicted map for 2013 was compared with the actual map, and the Kappa index was 0.89 (should
be larger than 0.85), suggesting that the model could capture future trends.

3.4. Connectivity Modeling after Reclamation

Connectivity characteristics of the three scenarios can be seen in Table 4.
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Table 4. The connectivity characteristics of the three scenarios after reclamation.

Landscape Indices Scenario 1 Scenario 2 Scenario 3

MPS 91.8890 98.5807 98.1131
NP 1576 1469 1476

CONTAG 68.2594 69.8066 68.4399
AI 91.6931 92.0096 91.8645

SHAPE 1.2067 1.1974 1.2021
IIC 0.6397 0.6644 0.6497

As shown in Table 4, scenario 2 had the largest MPS and the lowest NP, whereas scenario 1 had
the smallest MPS with the highest NP. The CONTAG and AI both ranked from highest to lowest
in the order of scenario 2, scenario 3, and scenario 1. The SHAPE is the simplest and perhaps most
straightforward measure of shape complexity, and the value for scenario 2 was the lowest, which means
the landscape was the most aggregated. Scenario 2 showed an advantage in IIC, which quantifies the
importance of habitat areas and links for the improvement of landscape connectivity. Therefore, based
on the comparisons of graph metrics, these rankings suggest that scenario 2 had the most contiguous
units, with most of the units exhibiting a greater aggregation trend, that is, higher connectivity.

4. Discussion

4.1. The Limitation of the Proximity Index When Assessing the Connectivity of Existing AML Patches

Although the index can quantitatively describe the spatial inner structure of patches of the
same type, a potential problem remains with Equation (2) when used with FRAGSTATS 4.0. Indeed,
the problem is regarding cases involving widely varying patch sizes. Consider the spatial case
involving 10 patches of the focal class in which 9 of the 10 patches are small and equal in size (e.g., 1 ha
each), whereas the tenth patch is large (e.g., 1000 ha). If all of the small patches are located close to the
large patch (within the search distance), the value for each of the 9 small patches will be high because
the single large patch will be reflected in the index; however, the value for the single large patch will
be low because the only neighboring patches are small (1 ha each).

To overcome this problem, in this study, both the sizes of the patches and the proximity index
were taking into account to determine the spatial distribution of potential reclaimed AML patches.
Priority for reclamation was first assigned to huge patches; then, patches with higher values were
reclaimed to meet the demand of predetermined numbers. For different study regions, the classification
of patches, i.e., the definition of huge patches, can be determined according to the features (e.g., size,
distribution) of existing AML patches in the targeted landscape.

Furthermore, the values are influenced by the threshold distance (i.e., search radius). Nogués and
Cabarga-Varona (2014) examined the effect of the search radius (e.g., 2000, 5000, 10,000, and 20,000
meters) on connectivity indices (i.e., integral index of connectivity and probability of connectivity) [20].
In the present study, the search radius was set to 1000 m in consideration of the relationships between
the focal patch and the surrounding patches per the reclamation work practice. If the AML patches
were scattered throughout the research area, their mutual influence could be neglected for the patches
are located far from each other. The influence of the search radius on proximity values was also tested.
The search radius was initialized at only 500 m and was increased stepwise (100 m step−1) to 2000 m
for comparative purposes. The observed differences in proximity values under different stepwise
conditions were not significant. Therefore, in connection with working practice, the search radius was
finally set to 1000 m.

4.2. Selection of Landscape Metrics Characterizing Connectivity in the Post-Mining Landscape

Despite the proliferation of connectivity modeling approaches, there are limited studies about the
spatial structural information of AML patches in the field of land restoration.
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As this paper aims to explore suitable landscape-scale metrics to reveal the formation of spatial
aggregation in the post-mining landscape, six indices were chosen based on their ecological significance,
which is consistent with some relevant work [8–10,23,24]. The application of these indices achieved
a distinct and comparable evaluation of the landscape metrics of different land-use-type-oriented
scenarios. The results indicated that the indices selected were valid after incorporating land-use cover
changes following land rehabilitation.

MPS and NP provided simple statistics for the gross differences among the three scenarios.
The higher value in scenario 2 can be attributed to the large number of forest land due to reclamation,
which further enlarged the areas of forest in the entire study region. CONTAG measures the extent
to which patch types are aggregated; higher values may result from a few large and contiguous
patches in the landscape, whereas lower values generally characterize the landscape with many
small and dispersed patches. CONTAG can generate an effective summary of overall clumpiness
on categorical maps. The values ranked from highest to lowest in the order of scenario 2, scenario 3,
and scenario 1. AI measures the aggregation levels of spatial patterns: it equals 0 when the patches
greatly disaggregated, and it rises as the landscape becomes increasingly aggregated. The AI value
of scenario 2 was the highest of the three scenarios. Large contiguous forest patches could result in
large aggregation index values. The SHAPE measures the complexity of the patch shape compared to
a standard shape (square) of the same size and therefore alleviates the size dependency problem of the
perimeter-area ratio index. Scenario 2 had the lowest shape value, indicating that the landscape was
more aggregated. In scenario 1, cultivated land occupied a comparatively large portion of the entire
landscape, and the patches in the study region were scattered. Adding small and more dispersed
cultivated land patches may lead to greater landscape fragmentation. With regard to IIC, scenario
2 had a higher value compared with other scenarios. The natural forest network occupied almost 70%
of the total study area, indicating the importance of particular patches for maintaining connectivity.
The connection was further increased whenever the reclaimed forest patches were considered, and the
larger reclaimed forest areas, the greater the IIC values.

4.3. Implications for Policy-Making of the Mine-Site Rehabilitation

According to the Management Approach to the Reclamation and Utilization of Abandoned
Mine Land in China, high-connectivity AML patches should be reclaimed first, and the post-mining
landscape should be of high connectivity. However, there is limited domestic research about these
objectives. Thus, the approaches presented here can provide government officers with a systematic and
clear framework for evaluating the connectivity values of existing AML patches and for assessing the
impact of future land-use changes on landscape connectivity due to land restoration. The framework
can be used to guide management decisions by assessing the efficiency of several simulated scenarios
for planning [51–53].

The method for quantifying connectivity coupling patch sizes and the proximity index presented
in this paper constitute an approach for guiding the determination of potential spatial positions of
AML patches before reclamation, which can be effectively applied in working practice. Regarding the
approach for quantifying connectivity after reclamation, the combined connectivity modeling and
scenario-based planning should be iterative and dynamic [19]. Analysis of a range of reclamation
scenarios showed the extent to which connectivity would be enhanced in the study region. Scenario 2
exhibited an advantage with respect to the selected graph metrics, with the patches being the most
combined and aggregated, which would help to enhance connectivity. Therefore, this research
recommends that the government should transform AML into more forest land in the targeted
landscape. As forests comprise a large proportion of study area, increasing the same type of patches
can improve the degree of spatial aggregation. Furthermore, as shown by the rules of management
approaches to AML reclamation, the reclaimed patches should coincide with the surrounding
landscape, and shifting AML patches into forest can also meet this requirement.
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5. Conclusions

In this paper, a novel approach for assessing the connectivity of existing AML patches and for
evaluating the impact on landscape connectivity of future land-use changes caused by land restoration
are presented. This study investigated how the proximity indicator describe the connectivity of the
patches and revealed how the factors of quantity, fragmentation and spatial dispersion can influence
landscape connectivity. The forest-oriented scenario was identified as the optimal scenario, with higher
connectivity than its alternatives. The decreased fragmentation, dispersion indices, and increased
connectivity benefits gained through reclamation are due to the increasing number of the greater
clustering of forest land patches. This study’s findings can be used to provide scientific support for
evaluating the feasibility of reclamation plans and facilitating polices of AML management.

However, it should be emphasized that the results and conclusions here are based on a study
done in a certain area. The results cannot be generalized to other areas with other variables, that is,
it is an example of how to act to recover AML spaces. Further research should be done to select proper
indicators to describe and characterize the landscape connectivity pre- and post-land rehabilitation in
other regions. Moreover, mined land reclamation is subject to a range of suitability factors, such as
environmental hazards, economics, etc. Environmental challenges and economic development should
also be considered in future studies to explore the optimal land reclamation scenarios.
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