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Abstract: High-resolution drone aerial surveys combined with object-based image analysis are
transforming our capacity to monitor and manage aquatic vegetation in an era of invasive species.
To better exploit the potential of these technologies, there is a need to develop more efficient
and accessible analysis workflows and focus more efforts on the distinct challenge of mapping
submerged vegetation. We present a straightforward workflow developed to monitor emergent and
submerged invasive water soldier (Stratiotes aloides) in shallow waters of the Trent-Severn Waterway
in Ontario, Canada. The main elements of the workflow are: (1) collection of radiometrically
calibrated multispectral imagery including a near-infrared band; (2) multistage segmentation of the
imagery involving an initial separation of above-water from submerged features; and (3) automated
classification of features with a supervised machine-learning classifier. The approach yielded excellent
classification accuracy for emergent features (overall accuracy = 92%; kappa = 88%; water soldier
producer’s accuracy = 92%; user’s accuracy = 91%) and good accuracy for submerged features (overall
accuracy = 84%; kappa = 75%; water soldier producer’s accuracy = 71%; user’s accuracy = 84%).
The workflow employs off-the-shelf graphical software tools requiring no programming or coding,
and could therefore be used by anyone with basic GIS and image analysis skills for a potentially wide
variety of aquatic vegetation monitoring operations.

Keywords: environmental monitoring; freshwater ecosystems; OBIA; random forests; remote sensing;
rivers; unmanned aircraft; UAS; UAV; wetlands

1. Introduction

A third of the world’s worst aquatic invasive species are directly linked to the aquarium and
ornamental industry [1]. Once these species are introduced into natural waterways, they extensively
modify the biological communities and disrupt many of the important ecological and cultural services
that we have come to depend upon from our freshwater inland ecosystems. They also cause significant
economic impacts, both in terms of the costs associated with management/eradication, as well as
the overall “devaluation” that is associated with presence of the invader. Rockwell [2] estimated that
over US$100 million is being spent annually in the United States to control and manage invasive
aquatic plants.
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Water soldier (Stratiotes aloides) (Figure 1) is a perennial aquatic plant species native to Europe
and northwest Asia that was introduced into the Trent-Severn Waterway in Ontario, Canada, likely as
a result of its popularity as an ornamental plant in water gardens before being banned [3]. It grows
most effectively at water depths up to 2.5 m, but has been found at depths up to 5 m. It becomes
buoyant during the summer season, with plants reaching above or near the surface where it can
form dense mats that crowd out native vegetation, alter water chemistry, and consequently modify
phytoplankton populations and potentially other aquatic organisms. Its sharp serrated leaves can
injure swimmers, and generally the plant hinders various other aquatic activities, such as boating and
angling [3]. Because the Trent-Severn Waterway is the only place in North America where water soldier
is known to occur, it is considered a high priority to prevent it from spreading to new locations, notably
the nearby Great Lakes. Since water soldier was discovered in the waterway, resource managers and
their partners have been trying to eradicate the plant through repeated large-scale applications of
chemical herbicide (diquat), but have been met with mixed results as the plant continues to show up
farther downstream.
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Figure 1. Field photographs showing a dense population of emergent water soldier (A) and submerged
plants (B). Figure reproduced from Snyder et al. [3] (© Canadian Science Publishing or its licensors).

Current boat-based detection and monitoring methods in the area of infestation and locations
downstream include both systematic (whole lake surveys) and opportunistic monitoring (incidental
spotting); however, the type of data collected, although helpful, can be limited and unreliable [4].
In particular, the point-based sampling method provides incomplete coverage of surveyed areas,
and deeper (>1 m) submerged vegetation can sometimes be difficult to detect. Due to the nature of
the Trent-Severn Waterway, many sampling sites are inaccessible, as they are too shallow, blocked by
obstacles, or in remote regions, making boat-based monitoring time-consuming and expensive [5].

In recent years, there has been burgeoning use of small drone aircraft systems to conveniently
collect timely, very high spatial-resolution (<20 cm) imagery of hard-to-access or -navigate aquatic
environments, including wetlands [6–8], bogs [9–11], lakes [12–14], rivers [15–17], coasts [18–20],
and general hydrological and water resource monitoring [21–23]. As high-resolution drone imagery
tends to be laborious to analyze manually, increasingly sophisticated approaches have been developed
and tested to automate such tasks as aquatic vegetation detection and classification, many of them
founded on object-based image analysis (OBIA) [24–28]. However, few studies have involved the
distinct challenge of automated classification of submerged vegetation [29–31]. Moreover, although
drones themselves are becoming increasingly accessible and easy to use, there is a need to establish
more accessible workflows for efficiently analyzing the imagery they generate.

Building upon a previous pilot trial [32], our aim was to develop an efficient and readily accessible
drone imagery acquisition and OBIA workflow for monitoring emergent and submerged water soldier.
In this paper, we present and assess our workflow, which we believe could be broadly adapted to
other shallow-water aquatic vegetation monitoring operations. The principal elements of the workflow
are: (1) collection of radiometrically calibrated multispectral imagery, including a near-infrared (NIR)
band; (2) multistage segmentation of the imagery involving an initial separation of above-water from
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submerged features; and (3) automated classification of image features by means of a supervised
machine-learning classifier.

2. Materials and Methods

2.1. Study Area

This study focused on the region of the Trent-Severn Waterway known as Seymour Lake (Figure 2),
which is considered to be ground zero of the water soldier infestation. Five discrete study sites totaling
≈60 ha were selected for drone aerial surveys, each representing a previously established experimental
water soldier treatment site. They are largely dominated by water soldier, where total plant biomass
can approach levels up to 8000 g·m−2 (wet weight). Water depths in all sites range between 0.5–2.0 m,
and other co-occurring aquatic plant species include Vallisneria americana, Myriophyllum spicatum,
Elodea canadensis, Ceratophyllum demersum, Potamogeton zosteriformis, Nymphaea odorata, Nuphar variegata,
Brasenia schreberi, Pontederia cordata, and Typha spp. The cumulative biomass of these other species is
typically 300–500 g·m−2 (wet weight). A field survey of the study sites was conducted during August
2016 as part of a separate project. A 33 × 33 m grid of sampling points covering each site was created in
a geographic information system (GIS), and the points were navigated to in the field using a handheld
global position system (GPS) receiver. At each point, the dominant vegetation (if any) was recorded,
providing a coarse dataset to aid in the interpretation of fine-resolution aerial imagery.
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Figure 2. Overview of the study area in the Trent-Severn Waterway, Ontario, Canada, showing the five
sites over which aerial imagery was collected with a drone.

2.2. Data Collection and Post-Processing

We collected aerial imagery over the five study sites on 14 October 2016—by which time water
soldier colonies had fully expanded—between 10:00 and 16:00 local time, under mostly overcast sky
conditions with minimal wind. We used an eBee mapping drone (senseFly, Cheseaux-sur-Lausanne,
Switzerland) carrying a Sequoia multispectral camera (Parrot, Paris, France) that captures 40 nm wide
bands centered in the green (550 nm), red (660 nm), and NIR (790 nm) regions, a 10 nm wide band in
the red-edge (735 nm) region, as well as supplementary standard true-color (RGB) imagery through
a dedicated sensor. Although we recognized from the outset that a multispectral camera with a blue
band would likely yield superior detection of submerged vegetation, we did not have access to such
a sensor at the time of the study and decided to use the Sequoia, which was available as a pre-existing
resource. The drone was flown at an altitude of 400 ft (122 m) above ground level, yielding a spatial
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resolution of ≈13 cm for the multispectral imagery and ≈4 cm for the RGB imagery. Images were
captured with 80% forward overlap and 70% lateral overlap.

We performed photogrammetric post-processing of the imagery with Pix4Dmapper Pro 3.0
(Pix4D, Lausanne, Switzerland). We created a basic RGB orthomosaic (Figure 3A) of each of the
five study sites for the purpose of assisting with visual interpretation of the multispectral imagery.
The multispectral imagery was radiometrically calibrated using a combination of data recorded
concurrently with image capture by the Sequoia’s downwelling light sensor mounted on top of the
drone, as well as a spectralon calibration panel (AIRINOV, Paris, France) photographed on the ground
prior to each flight. The images were then mosaicked and rendered into absolute reflectance maps
(pixel values ranging from 0–1) for each of the spectral bands. Using QGIS 2.18 (QGIS Development
Team), we created three-band false-color (i.e., color-infrared; CIR) composite images of the study sites
by merging the NIR, red, and green reflectance maps (Figure 3B), then merged the images of the five
sites into a single raster file. Finally, we clipped out portions of the imagery extending beyond the
boundaries of the study sites, leaving only areas containing water and aquatic vegetation of interest
and excluding extraneous features, such as terrestrial vegetation and man-made structures.
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2.3. Image Segmentation

We performed image segmentation with the Feature Extraction module in ENVI 5.4 (Exelis Visual
Information Solutions, Boulder, CO, USA), which employs a “watershed” segmentation algorithm [33]
and allows quick testing of segmentation parameters by previewing results in a small window that
can be panned over the input image prior to fully executing segmentation. Following segmentation,
a set of classification attributes is calculated for every resulting object—including 14 spatial attributes
(variously describing object size, dimensions, and shape), four spectral attributes per band (minimum,
maximum, mean, and standard deviation), and four first-order texture attributes per band (mean, range,
variance, and entropy within a texture kernel of adjustable size [34])—and recorded in an attribute
table accompanying the outputted polygon shapefile containing the objects. The multistage image
segmentation approach we employed is summarized in Figure 4 and detailed below.



ISPRS Int. J. Geo-Inf. 2018, 7, 294 5 of 15

ISPRS Int. J. Geo‐Inf. 2018, 7, x FOR PEER REVIEW    5 of 14 

 

 

Figure 4. Flowchart of multistage image segmentation. The polygon mask layer created in step 3 is 

used to separately segment above‐water and submerged features in steps 4 and 5, respectively, which 

then separately undergo classification. 

2.3.1. Separation of Above‐Water and Submerged Features 

Because  submerged  features  have  a  significantly muted  and  less  contrasting  appearance  in 

imagery  compared  to  above‐water  features, wholesale  segmentation  of  imagery  containing  both 

above‐water and  submerged  features of  interest  tends  to entail an unworkable  trade‐off between 

over‐segmentation of the former (features are subdivided into numerous small objects) and under‐

segmentation  of  the  latter  (features  are  lumped  into  larger  objects  containing  other  adjacent  or 

encapsulating features) [32]. To circumvent this issue, we exploited the extremely high absorption of 

NIR radiation in water, resulting in submerged areas having a nearly to completely black appearance 

in the NIR band. We performed an initial segmentation of the CIR imagery in the NIR band only, in 

which object demarcation was strongly favored along the highly contrasting edges between bright 

above‐water features and very dark submerged features. We found that a segmentation scale level of 

85  produced  the most  adequate  delineation  of  the water’s  edge  throughout  the  imagery. Using 

ENVI’s  “rule‐based  feature  extraction”  tool, we  then  applied  a  simple  classification  rule  to  the 

resulting set of objects whereby all objects with a mean spectral reflectance <0.15 in the NIR band 

were classified as “submerged”. The resulting set of submerged objects could then be used as a mask 

layer to effectively segregate the above‐water and submerged features from each other in the imagery 

(Figure 5) and perform further processing and analysis on them separately. 

 

Figure 5. Close‐up view of the CIR imagery of study site 2, showing the demarcation (yellow lines) 

between above‐water (redder/brighter) and submerged features (darker) produced by performing a 

watershed segmentation of  the NIR band and classification of  the resulting objects based on  their 

mean NIR reflectance. 

Figure 4. Flowchart of multistage image segmentation. The polygon mask layer created in step 3 is
used to separately segment above-water and submerged features in steps 4 and 5, respectively, which
then separately undergo classification.

2.3.1. Separation of Above-Water and Submerged Features

Because submerged features have a significantly muted and less contrasting appearance
in imagery compared to above-water features, wholesale segmentation of imagery containing
both above-water and submerged features of interest tends to entail an unworkable trade-off
between over-segmentation of the former (features are subdivided into numerous small objects)
and under-segmentation of the latter (features are lumped into larger objects containing other adjacent
or encapsulating features) [32]. To circumvent this issue, we exploited the extremely high absorption of
NIR radiation in water, resulting in submerged areas having a nearly to completely black appearance
in the NIR band. We performed an initial segmentation of the CIR imagery in the NIR band only,
in which object demarcation was strongly favored along the highly contrasting edges between bright
above-water features and very dark submerged features. We found that a segmentation scale level of
85 produced the most adequate delineation of the water’s edge throughout the imagery. Using ENVI’s
“rule-based feature extraction” tool, we then applied a simple classification rule to the resulting set of
objects whereby all objects with a mean spectral reflectance <0.15 in the NIR band were classified as
“submerged”. The resulting set of submerged objects could then be used as a mask layer to effectively
segregate the above-water and submerged features from each other in the imagery (Figure 5) and
perform further processing and analysis on them separately.
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2.3.2. Further Segmentation of Above-Water and Submerged Features

Using the mask layer delineating submerged features, we then separately segmented the
above-water and submerged portions of the CIR imagery. For the above-water features, we additionally
created a normalized difference vegetation index (NDVI) band (computed from the red and NIR bands)
and incorporated it into the segmentation, as it appeared to improve demarcation of discrete patches
of vegetation. Using the four bands (NIR, red, green, and NDVI), we found that optimal segmentation
results throughout the imagery were achieved at a scale level of 20 followed by application of the
“full lambda schedule” merge algorithm [35] at a level of 90, which helped to reduce clutter and
over-segmentation by merging small contrasting objects that could be regarded as noise into larger
encapsulating objects. For the submerged features, we only included the red and green bands in the
segmentation since submerged features were virtually indiscernible in the NIR band. In this case,
we found that a scale level of 0 and merge level of 80 worked best overall, although study site 1 that
was imaged last during the late afternoon turned out under-segmented with these settings, likely
owing to reduced illumination of submerged features under the dwindling daylight. Consequently,
we separately segmented this site with a reduced merge level of 70 and amalgamated the resulting
objects with those generated from the four other sites. Finally, we were interested in assessing whether
the size of the kernel used to calculate texture attributes impacted object classification performance.
Thus, for both the above-water and submerged features, we computed object texture attributes using
two alternative kernel sizes: 5 × 5 pixels, corresponding to a real-world area of ≈65 × 65 cm in the
imagery, and 7 × 7 pixels, corresponding to ≈90 × 90 cm.

2.4. Object Classification

We performed supervised classification of the objects generated through image segmentation,
requiring an initial sample of manually classified objects to train a machine-learning classifier [36].
The uniquely high spatial resolution of drone imagery facilitates direct visual interpretation with far
less reliance on field observations than is typically required for coarser-resolution conventional aerial
and satellite imagery. We had already developed familiarity with the appearance of the main target
features in our previous trial [32], and the large rosettes formed by water soldier plants (Figure 1B)
were particularly recognizable in the imagery and distinct from all other types of vegetation in the
study area. Although the field data collected prior to our drone surveys were useful for preliminary
qualitative verification of our image interpretations, they were unsuitable for direct training and
validation of the classification for various reasons: (1) the 33 × 33 m grid over which they were
collected was too coarse, with only 512 total sampling points across the five study sites, the majority of
which missed the main vegetation classes of interest, notably water soldier, which mostly occurred
in dense clusters, while much of the bottom was devoid of vegetation; (2) it was evident that the
field survey had failed to detect some deeper patches of submerged vegetation that were clearly
visible in the imagery, which is an inherent challenge of aquatic vegetation surveys using traditional
methods; and (3) it was evident that many sampling points—located in the field using a basic handheld
GPS—were significantly out of alignment (up to a few meters) with the imagery. Thus, we relied
on manual interpretation of the imagery, further aided by the very high-resolution RGB imagery,
for classification training and validation. Using QGIS, we selected a large set of confidently identifiable
objects representing the target feature classes in the imagery, with objects of each class distributed
across all five study sites. We classified above-water features into: (1) emergent water soldier,
(2) other emergent vegetation, and (3) floating-leaved vegetation; and classified submerged features
into: (1) submerged water soldier, (2) other submerged vegetation, (3) floating-leaved vegetation
(small isolated floating leaves were sometimes classified as submerged during the initial separation of
above-water and submerged features), and (4) other submerged features. More detailed descriptions
of the classes are provided in Table 1. We visually interpreted and manually classified a total of
640 above-water objects and 2450 submerged objects (the vast majority of the total study area was
submerged), then randomly selected 50% of objects in each class to serve as training samples (for a total
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of 320 above-water and 1225 submerged training samples) and set the other 50% aside to serve as
validation samples for subsequent assessment of the performance of the trained classifier models.

Table 1. Description of classes used in object classification. “Emergent” classes were used in the
classification of above-water objects, “submerged” classes were used in the classification of submerged
objects, and the floating-leaved vegetation class was used in both (see text).

Class Description

Emergent water soldier S. aloides

Submerged water soldier S. aloides

Floating-leaved vegetation Plants whose leaves float flat on the water surface,
e.g., N. odorata, N. variegata, B. schreberi

Other emergent vegetation Plants that protrude above the water surface,
e.g., Pontederia cordata, Typha spp.

Other submerged vegetation Completely submerged plants, e.g., V. americana,
M. spicatum, E. canadensis, C. demersum, P. zosteriformis

Other submerged features Bare bottom (mud, sand, gravel), rocks, submerged
driftwood, very deep areas with indiscernible bottom

We used the Orfeo ToolBox 6.0 (CNES, Paris, France), which can be run within QGIS, to train and
execute classification via the “train vector classifier” and “vector classification” tools. We used the
“random forests (RF)” classifier [37,38], which has been found to deliver the best overall object-based
classification performance among established classifiers in remote sensing [36], and has recently been
employed to classify aquatic vegetation in drone imagery [14,25,32,39]. We experimented with the
“maximum depth of the tree” and “maximum number of trees in the forest” parameters, varying the
former from the default value of 5 up to 20 in increments of 5, and varying the latter from the default
value of 100 up to 250 in increments of 50. We used the default values for all other RF parameters.
We tested the trained classifier models on the visually interpreted objects set aside as validation samples,
assessing classification performance by means of confusion matrices and associated standard metrics,
namely the user’s accuracy (UA; also known as the precision) and producer’s accuracy (PA; also known
as the recall) of each class, the overall accuracy (OA) of the classification, and the kappa statistic, which
takes into account the probability of correctly classifying objects by pure chance [40].

3. Results

Classification performance under varying parameters (texture kernel size and RF parameters)
is shown for above-water features in Table 2 and for submerged features in Table 3. Overall higher
accuracy was achieved for above-water features (OA = 89–92%, kappa = 84–88%) than submerged
features (OA = 74–84%, kappa = 58–75%), with kappa values indicating “almost perfect” agreement
between manual and automated classifications for above-water features and “substantial” agreement
for submerged features [40]. For above-water features, classifications based on a 5 × 5 pixel texture
kernel consistently outperformed those based on a 7 × 7 pixel kernel by a slight margin (Table 2),
while for submerged features neither kernel size clearly outperformed the other, although the overall
top three submerged classifications were based on a 7 × 7 pixel kernel (Table 3). Varying the “maximum
depth of the tree” and “maximum number of trees in the forest” RF parameters generally had little
discernible effect, with the exception of a significant boost in submerged classification performance
when increasing the former parameter from 5 to 10 (Table 3). Otherwise, classification performance
seemed to plateau at a maximum tree depth of 15 for both above-water and submerged features
(Tables 2 and 3). For a given maximum tree depth, there was overall no clear effect of varying the
maximum number of trees, although the top classifications of above-water and submerged features
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had maximums of 200 and 250 trees, respectively, suggesting marginal benefit from increasing this
parameter (Tables 2 and 3).

Table 2. Automated classification performance for above-water features across all five study sites
under varying random forest (RF) parameter values and texture kernel sizes, with the top classification
bolded. OA = overall accuracy.

RF Parameters 5 × 5 Pixel Texture Kernel 7 × 7 Pixel Texture Kernel

Max Tree Depth Max No. of Trees OA Kappa OA Kappa

5 100 91.56% 87.03% 90.31% 85.12%
5 150 90.94% 86.06% 90.00% 84.64%
5 200 90.31% 85.11% 89.69% 84.15%
5 250 90.00% 84.63% 89.38% 83.66%

10 100 91.88% 87.50% 90.94% 86.08%
10 150 91.25% 86.54% 90.63% 85.62%
10 200 91.56% 87.04% 90.94% 86.09%
10 250 91.25% 86.56% 90.63% 85.61%
15 100 91.25% 86.55% 89.38% 83.65%
15 150 91.88% 87.50% 89.69% 84.14%
15 200 92.19% 87.97% 90.63% 85.58%
15 250 91.88% 87.49% 90.00% 84.60%
20 100 91.25% 86.55% 89.38% 83.65%
20 150 91.88% 87.50% 89.69% 84.14%
20 200 92.19% 87.97% 90.63% 85.58%
20 250 91.88% 87.49% 90.00% 84.60%

Table 3. Automated classification performance for submerged features across all five study sites under
varying random forest (RF) parameter values and texture kernel sizes, with the top classification
bolded. OA = overall accuracy.

RF Parameters 5 × 5 Pixel Texture Kernel 7 × 7 Pixel Texture Kernel

Max Tree Depth Max No. of Trees OA Kappa OA Kappa

5 100 74.04% 57.75% 75.51% 60.98%
5 150 74.29% 58.37% 75.27% 60.39%
5 200 74.86% 59.41% 75.43% 60.80%
5 250 74.86% 59.42% 75.43% 60.81%

10 100 82.12% 72.69% 81.39% 71.46%
10 150 82.29% 72.88% 82.37% 73.11%
10 200 82.78% 73.65% 81.88% 72.25%
10 250 82.45% 73.09% 82.04% 72.52%
15 100 83.35% 74.63% 82.53% 73.38%
15 150 82.94% 74.03% 83.43% 74.71%
15 200 83.10% 74.33% 83.67% 75.09%
15 250 83.10% 74.31% 83.76% 75.22%
20 100 82.12% 72.69% 83.18% 74.37%
20 150 81.88% 72.38% 83.18% 74.38%
20 200 81.80% 72.25% 82.78% 73.73%
20 250 81.96% 72.51% 82.78% 73.73%

The top above-water and submerged classifications are shown for study site 2 in Figure 6, and their
respective confusion matrices for the validation samples distributed across all five study sites are
shown in Tables 4 and 5. For above-water features, user’s and producer’s accuracies were all-around
strong (87–98%) for all three classes, with emergent water soldier occasionally misclassified as other
emergent vegetation and vice versa, and other emergent vegetation also occasionally misclassified as
floating vegetation and vice versa (Table 4). For submerged features, the principal sources of error were
misclassification of submerged water soldier (PA = 71%) and especially other submerged vegetation
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(PA = 48%) as miscellaneous other submerged features, signifying appreciable omission error rates for
these two classes. However, commission error rates were relatively low and comparable among all
four classes (UA = 82–87%) (Table 5).ISPRS Int. J. Geo‐Inf. 2018, 7, x FOR PEER REVIEW    9 of 14 

 

 

Figure 6. Top classification (above‐water and submerged features combined) of study site 2. 

Table  4. Confusion matrix  for  the  top  above‐water  classification  across  all  five  study  sites. PA  = 

producer’s accuracy; UA = user’s accuracy; OA = overall accuracy. 

  Automated Classification     

Manual Classification 
Emergent 

Water Soldier 

Other Emergent 

Vegetation 

Floating‐Leaved 

Vegetation 
Total  PA 

Emergent water soldier  67  6  0  73  91.78% 

Other emergent vegetation  7  103  9  119  86.55% 

Floating‐leaved vegetation  0  3  125  128  97.66% 

Total  74  112  134  320   

UA  90.54%  91.96%  93.28%    OA: 92.19% 

Table  5. Confusion matrix  for  the  top  submerged  classification  across  all  five  study  sites.  PA  = 

producer’s accuracy; UA = user’s accuracy; OA = overall accuracy. 

  Automated Classification     

Manual Classification 

Submerged 

Water 

Soldier 

Other 

Submerged 

Vegetation 

Floating‐Leaved 

Vegetation 

Other 

Submerged 

Features 

Total  PA 

Submerged water soldier  135  7  2  46  190  71.05% 

Other submerged vegetation  14  79  10  62  165  47.88% 

Floating‐leaved vegetation  0  0  279  11  290  96.21% 

Other submerged features  12  6  29  533  580  91.90% 

Total  161  92  320  652  1225   

UA  83.85%  85.87%  87.19%  81.75%    OA: 83.76% 

4. Discussion 

We  developed  and  executed  a  relatively  simple  and  accessible  object‐based  image  analysis 

workflow for mapping shallow‐water emergent and submerged aquatic vegetation in discrete‐band 

multispectral aerial imagery collected by a small drone. The workflow yielded excellent automated 

image classification performance (OA > 90%, kappa > 80%) for emergent/above‐water features and 

comparatively  lesser, but still  fair, performance  for submerged  features. These results represent a 

major  improvement  over  those  of  our pilot  trial, which  involved uncalibrated  imagery  of  lower 

spectral  resolution and wholesale  segmentation and classification of above‐water and  submerged 

features  combined, yielding  an overall  accuracy of  78%  and kappa value of  61%  [32]. They  also 

compare  favorably  to  the  few  previous  implementations  of  automated  image  analysis  to map 

submerged vegetation in drone imagery [29,30]. 

Identification of submerged features in aerial imagery is inherently challenging because of the 

variable attenuation of  tones and contrasts of  features depending on  their depth below  the water 

surface, which  can be  compounded by  turbidity as well as  surface disturbances,  such as  ripples, 

waves,  or  glint.  It  is  therefore  desirable  to  collect  imagery  in  low wind  and  cloudy  or  overcast 

conditions  as we did,  although we observed  a  significant  reduction of glint  in  the multispectral 

imagery compared to the RGB imagery, indicating that sky conditions were only partly responsible 

for the incidence of glint, and that multispectral image acquisition under sunny conditions may still 

Figure 6. Top classification (above-water and submerged features combined) of study site 2.

Table 4. Confusion matrix for the top above-water classification across all five study sites.
PA = producer’s accuracy; UA = user’s accuracy; OA = overall accuracy.

Automated Classification

Manual Classification Emergent
Water Soldier

Other Emergent
Vegetation

Floating-Leaved
Vegetation Total PA

Emergent water soldier 67 6 0 73 91.78%
Other emergent vegetation 7 103 9 119 86.55%
Floating-leaved vegetation 0 3 125 128 97.66%

Total 74 112 134 320
UA 90.54% 91.96% 93.28% OA: 92.19%

Table 5. Confusion matrix for the top submerged classification across all five study sites.
PA = producer’s accuracy; UA = user’s accuracy; OA = overall accuracy.

Automated Classification

Manual Classification Submerged
Water Soldier

Other
Submerged
Vegetation

Floating-Leaved
Vegetation

Other
Submerged

Features
Total PA

Submerged water soldier 135 7 2 46 190 71.05%
Other submerged vegetation 14 79 10 62 165 47.88%
Floating-leaved vegetation 0 0 279 11 290 96.21%
Other submerged features 12 6 29 533 580 91.90%

Total 161 92 320 652 1225

UA 83.85% 85.87% 87.19% 81.75% OA:
83.76%

4. Discussion

We developed and executed a relatively simple and accessible object-based image analysis
workflow for mapping shallow-water emergent and submerged aquatic vegetation in discrete-band
multispectral aerial imagery collected by a small drone. The workflow yielded excellent automated
image classification performance (OA > 90%, kappa > 80%) for emergent/above-water features and
comparatively lesser, but still fair, performance for submerged features. These results represent a major
improvement over those of our pilot trial, which involved uncalibrated imagery of lower spectral
resolution and wholesale segmentation and classification of above-water and submerged features
combined, yielding an overall accuracy of 78% and kappa value of 61% [32]. They also compare
favorably to the few previous implementations of automated image analysis to map submerged
vegetation in drone imagery [29,30].
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Identification of submerged features in aerial imagery is inherently challenging because of the
variable attenuation of tones and contrasts of features depending on their depth below the water
surface, which can be compounded by turbidity as well as surface disturbances, such as ripples,
waves, or glint. It is therefore desirable to collect imagery in low wind and cloudy or overcast
conditions as we did, although we observed a significant reduction of glint in the multispectral
imagery compared to the RGB imagery, indicating that sky conditions were only partly responsible
for the incidence of glint, and that multispectral image acquisition under sunny conditions may still
produce workable imagery. Also, our experience highlights the preferability of collecting imagery
around peak daylight hours—perhaps within ±2 h of solar zenith—when submerged features are
receiving maximum illumination. Joyce et al. [41] recently published a practical guide to collecting
optimal quality drone imagery in marine and freshwater environments. Although our multistage
approach to image segmentation enabled much more effective segmentation of submerged features,
some trade-off between over-segmentation of shallower, brighter features and under-segmentation
of deeper, darker features could not be avoided without venturing into more elaborate analyses
that we judged to be out of keeping with the efficient workflow we were aiming for. Even at the
classification stage, the varying spectral and textural characteristics of features at varying depths pose
a distinct challenge for machine-learning classifiers. Despite selecting an ample number of submerged
water soldier and other vegetation training samples at varying depths, relatively high omission error
rates for these classes (water soldier = 29%, other vegetation = 52%) mainly resulted from deeper
patches of vegetation being misclassified as miscellaneous other submerged features (e.g., bare bottom),
presumably due to decreasing distinctness of submerged vegetation with increasing depth. It should
be noted again that the Sequoia multispectral camera we employed lacked a blue band, as it was
primarily designed for crop monitoring applications, for which there is typically little need to record
blue-region radiation. With only two bands to work with (red and green) to characterize submerged
features, the object attribute set was relatively limited, and superior performance of both segmentation
and classification could likely be achieved in future work by using a camera that additionally records
a blue band, as blue-region radiation also has greater water penetration potential. Furthermore,
it may be possible to use band-differencing techniques to create a depth-invariant index of bottom
reflectance [42].

For this study, we experimented with varying values for a limited number of analysis parameters.
It has previously been noted that the numerous customizable steps and parameters encountered
over the course of an OBIA workflow can end up consuming a large amount of time in systematic
experimentation and refinement [26], and we wanted to keep such exercises to a reasonable minimum
so as to present a relatively straightforward workflow and not overwhelm potential adopters with
analysis considerations. The size of the texture kernel is a distinctly important consideration in
adequately capturing any textural information that may help differentiate feature classes [34], and it is
instructive to relate the kernel size in pixels to the real-world area it covers in the imagery as a function
of the spatial resolution. In our case, we judged a priori that the minimum kernel size of 3 × 3 pixels
(≈40 × 40 cm in our multispectral imagery) would likely be insufficient to capture the distinctive
textures of the vegetation of interest, particularly the dense mats of large rosettes formed by water
soldier plants. Our results indicated that the optimal texture kernel size for capturing this pattern and
those of the other types of vegetation was 5 × 5 pixels (≈65 × 65 cm) for emergent plants, while the
7 × 7 pixel kernel size (≈90 × 90 cm) performed comparatively better for submerged features, which
may be regarded as a predictable consequence of the reduced definition of the fine-scale texture of
submerged features. We also experimented with varying values of two of the most fundamental RF
parameters, the maximum number of trees in the forest and the maximum depth of the tree [38], finding
in our case that increasing the former yielded negligible to marginal improvement of classification
performance, while increasing the latter yielded an initially significant boost to submerged classification
performance before plateauing (little effect was observed on above-water classification performance).
We chose the RF classifier on the basis of its well-recognized strong performance for remote sensing
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image classification and capacity to handle large numbers of variables (i.e., object attributes) as well as
multicollinearity among variables, although other popular classifiers such as support vector machines
(SVM), decision trees (DT), and artificial neural networks (ANN) have also proven effective in many
cases [36].

A notable aspect of our analysis workflow is its use of off-the-shelf graphical software tools
requiring no programming or coding, therefore making it readily accessible to anyone possessing at
least basic GIS and image analysis skills. We opted to use a commercial software package (ENVI)
available to us to perform image segmentation because of its convenient previewing feature and
automatic calculation of a relatively rich set of object attributes for classification. Object classification
can also be performed within ENVI (although it lacks the RF classifier, which is why we opted to
use different software for classification) as well as other “all-in-one” commercial OBIA software
packages, such as eCognition (Trimble, Sunnyvale, CA, USA). However, it would also be feasible to
perform the entire image analysis workflow using free software. For example, the Orfeo ToolBox
we used to train and execute the RF classification also includes an image segmentation tool with
the watershed algorithm in addition to several alternative algorithms. More time would likely be
required to establish optimal segmentation parameters due to the lack of a quick previewing feature,
and several further operations and decisions on the part of the user would be required to subsequently
compute classification attributes for the objects. A variety of spatial, spectral, and texture (including
second-order texture) attributes can be calculated for polygons (i.e., objects) overlaying imagery
using an assortment of native QGIS tools and QGIS-integrated third-party tools, including from the
Orfeo ToolBox, GRASS GIS tools (GRASS GIS Development Team), and SAGA GIS tools (SAGA User
Group Association). Although these tools may be less efficient to use than turnkey commercial OBIA
software, they do collectively offer a high degree of workflow and parameter customizability that
could potentially benefit analysis performance.

Important questions in the burgeoning use of drones for environmental monitoring revolve
around efficiency and scalability. Drones themselves are becoming more efficient to deploy in the
field thanks to continuously improving performance and ease-of-use, and decreasing costs [43],
as well as streamlining of regulatory frameworks, although regulations remain onerous in some
jurisdictions [44,45]. However, the frequent claims of exceptional efficiency of drone-based monitoring
often overlook or understate the amount of work that can be involved in fully analyzing the typically
large volumes of very high-resolution imagery to extract actionable information. The long-term goal of
our research is to establish an efficient drone-based aquatic vegetation monitoring protocol—including
an image analysis workflow—that can be readily scaled up to numerous additional sites covering
a much larger total area than we surveyed in the present study. Although it is encouraging that we
were able to combine imagery collected in five separate flights over five discrete sites and successfully
perform common segmentations and classifications on all sites simultaneously, it remains to be seen if
it would be feasible to apply a common set of segmentation and classification parameters to a larger
number of discrete image sets collected in multiple localities over multiple days under varying
weather/sky conditions. Working with radiometrically calibrated imagery at a consistent spatial
resolution certainly increases the chances of being able to apply common analysis parameters to
multiple image sets, but potentially only to a certain extent. Moreover, there is a long-term desire to
identify a larger variety of specific categories and species of vegetation, and increasing the number of
classes in a supervised classification generally decreases overall accuracy [36,46].

Although OBIA is regarded as a semi-automated approach to digitizing imagery, a significant
amount of manual effort will nevertheless be required if it is necessary to separately process
numerous image sets with different segmentation parameters and separately trained classification
models. The subjective manner of establishing segmentation parameters and creating a set of object
classification attributes also must be recognized: ultimately, a machine-learning classifier is constrained
by the ability of the user to input a set of objects that appropriately demarcates target features as
well as a set of attributes that contains the necessary information to effectively distinguish among
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feature classes. A promising recent development in this regard are so-called “deep learning” (DL)
algorithms [47], which can automatically pick up on whatever visual information distinguishes objects
and features of interest, thus freeing the user from the burden of subjectively selecting a finite set
of attributes to “propose” to the classifier. Once thoroughly trained, DL classifiers have also shown
an exceptional capacity to recognize target features in new image sets without requiring additional
training, or segmentation of the input imagery. Promising groundwork has been accomplished in
the use of DL algorithms to classify drone imagery, using standard OBIA segmentation methods to
initially delineate training objects [28]. However, a current drawback of DL techniques is that they
are still very far from achieving the same level of accessibility and ease-of-use for non-experts as the
off-the-shelf OBIA tools we employed in our workflow [47].

5. Conclusions

We have shown how it is possible to combine the convenient and high-resolution remote sensing
capabilities of drones with a simple and effective object-based image analysis workflow executed with
off-the-shelf software to map and monitor shallow-water aquatic vegetation, which is particularly
challenging to survey in the field. Our approach does not require a high degree of expertise in
image analysis, geomatics, or programming, and should therefore be accessible to a large pool of
potential users for a wide variety of aquatic vegetation monitoring operations, notably of invasive
species. The basic requirements for successful application of the workflow are: (1) the collection of
radiometrically calibrated multispectral imagery including a near-infrared band and ideally a blue
band, which can be achieved with a growing variety of easy-to-use cameras specifically designed for
drones; and (2) the collection of imagery under suitable weather/sky conditions that maximize the
detectability of submerged vegetation, notably low winds and peak daylight hours, and ideally but
not necessarily cloudy/overcast skies. Ongoing advancements in machine-learning technology are
likely to further improve the efficiency and scalability of the image analysis approach going forward.

Author Contributions: E.P.S.S. conceived the project; A.S., D.C., and N.W. collected the data; D.C. and C.D.
developed and executed the data processing and analysis workflow; D.C. wrote the manuscript with contributions
from C.D. and E.P.S.S.

Funding: Funding for this research was provided by the Great Lakes Guardian Community Fund through the
Ontario Ministry of Environment and Climate Change.

Acknowledgments: The drone used in this study was operated in accordance with a Special Flight Operations
Certificate issued by Transport Canada.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CIR Color-Infrared
DL Deep Learning
DT Decision Tree
GIS Geographic Information System
GPS Global Positioning System
OA Overall Accuracy
OBIA Object-Based Image Analysis
NDVI Normalized Difference Vegetation Index
NIR Near-Infrared
PA Producer’s Accuracy
RF Random Forests
RGB Red-Green-Blue
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SVM Support Vector Machine
UA User’s Accuracy
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
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