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Abstract: With the rapidly increasing popularization of the automobile, challenges and greater
demands have come to the fore, including traffic congestion, energy crises, traffic safety,
and environmental pollution. To address these challenges and demands, enhanced data support
and advanced data collection methods are crucial and highly in need. A probe-car serves as
an important and effective way to obtain real-time urban road traffic status in the international
Intelligent Transportation System (ITS), and probe-car technology provides the corresponding
solution through advanced navigation data, offering more possibilities to address the above problems.
In addition, massive spatial data-mining technologies associated with probe-car tracking data have
emerged. This paper discusses the major problems of spatial data-mining technologies for probe-car
tracking data, such as true path restoration and the close correlation of spatial data. To address the
road-matching issue in massive probe-car tracking data caused by the strong correlation combining
road topology with map matching, this paper presents a MapReduce-based technology in the second
spatial data model. The experimental results demonstrate that by implementing the proposed
spatial data-mining system on distributed parallel computing, the computational performance was
effectively improved by five times and the hardware requirements were significantly reduced.

Keywords: Probe-car track; spatial data-mining; big data; MapReduce

1. Introduction

With the rapid development of urbanization and the economy, the automobile has become
essential in everyday life. For example, China’s national motor vehicle ownership reached 310 million
as of the end of 2017, which includes 217 million cars [1]. As a consequence, various problems
have emerged, including traffic congestion, energy crises, traffic safety, and environmental pollution.
The increasing traffic demands and tightened automotive emission standards urge infrastructure
operators and the automotive industry to act. Faced with these problems, urgent demands have been
set on green driving, safe driving, congestion relief, and so on. To meet these demands, more advanced
navigational data are needed, including dynamic traffic status information, passage cost information,
road accident information, and road fuel consumption information. Probe-cars provide an opportunity
to obtain these data by participating in the traffic flow and determining self-experienced traffic
conditions, and transmitting these to a traffic center.
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The probe-car, known as the Global Positioning System (GPS) rover, is an important and effective
way to obtain urban road traffic status in the international Intelligent Transportation System (ITS) [2].
It is an advanced road traffic information collection technology in the field of international ITS [3].
By mounting a GPS device on a vehicle, the vehicle’s position information, behavioral information,
and event information are transferred to a data center in real time or offline. By combining massive
probe-car tracks and behavioral data obtained from the data center with the existing map data, a variety
of advanced navigation data can be mined to address certain problems, including the discovery of new
roads, the actual cost of road traffic, the peak periods of roads, and accident-prone areas. Probe-car
data can range throughout the region and be collected 24/7. This technology greatly improves the
efficiency of information collection by wireless real-time transmission and center-through processing.
Meanwhile, it lowers the cost of maintenance of acquisition equipment by the installation of GPS and
other communication network resources [4].

A probe-car system consists of a wireless communication network that includes GPS and wireless
communication capabilities and an information processing center. Probe-car data (PCD) systems
are composed of three parts: the data acquisition system of the probe-car, the traffic information
processing system, and the real-time traffic information distribution system. The probe-car is driven
on city roads and uploads the collected real-time raw data to the probe-car data acquisition system.
The traffic information processing system is responsible for the raw data preprocessing, coordinate
conversion, geographic information system (GIS) electronic map matching, as well as travel time
calculation. The information distribution system releases the traffic information by the processing
system to provide the public with real-time road traffic reference information by General Packet Radio
Service (GPRS), the Internet, and other means. The architecture of a probe-car data system is shown
in Figure 1.
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As an important component of ITS, the urban traffic dynamic route guidance system obtains
vehicle locations under real-time road traffic conditions and provides the best route guidance
information. It helps direct travelers in order to improve traffic conditions, reduce traffic congestion,
and achieve a reasonable distribution of traffic flow on the roads. ITS experts and enterprises have
conducted theoretical research and developed applications based on vehicle locations. Countries
in Europe have developed various new technologies and made intelligent road transport systems
available in various cities. The ADVANCE real-time traffic releasing system for probe-cars was initiated
by the State of Illinois with the US Federal Highway Administration as its partner [5]. The purpose of
this system is to determine whether drivers need real-time information to avoid congestion, in order to
increase capacity. The UK traffic master offers a series of traffic information services, where the data
are mainly provided from fixed sensors and supplemented by PCD [6].
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To the authors’ knowledge, research on large-scale PCD processes is still in the preliminary stages.
The existing research mainly focuses on cost, probe-car size, system architecture, and precision [7,8].
With the development of PCD technology and the popularity of GPS devices, the amount of data will
grow dramatically. Due to the specific mobility of probe-car data and the limitation of the size of the
cars, real-time probe-car data is unable to cover all of the road network. It is essential to address the
missing data issues in the road network analysis and improve the application’s efficiency.

We describe the basic principles and key issues of mining probe-car data in Section 2. Section 3
describes a MapReduce approach to accelerate the map-matching of massive probe-car tracking data.
Section 4 demonstrates the experimental results of the MapReduce approach. Section 5 concludes the
research and introduces future work.

2. Literature Review and Key Issues of Mining Probe-Car Data

2.1. Literature Review

Probe-car technology research can be traced back decades. Considering the complex construction
of intelligent transportation systems, the relevant agencies have internationally conducted a great
amount of research and application, as shown in Table 1. For example, the UK’s probe-car data
system was developed to collect and analyze traffic information and was invested in by ITIS Holdings
Plc, a typical successful probe-car system [6]. The data sources include both real-time and historical
information from the Automobile Association Traffic Control Centre (AATCC). The probe-car data
system uses the GPS/wireless data transmission mode. After the acquired data are processed,
the system predicts the traveling time for users in real time and continues to update the information.
Another example is the American ADVANCE system, which was an experimental project of dynamic
road induction in an Illinois suburban area conducted by the Federal Highway Administration (FHA),
Illinois Transportation Authority (ITA), Motorola, Transportation Research Institute at Illinois State
University, and other agencies in 1991. Its goal was to determine whether traffic guidance information
is helpful to avoid traffic congestion and improve driving quality [6]. The Vehicle Information and
Communication System (VICS) in Japan is one of the successful applications in the field of intelligent
transportation. VICS acquires traffic data via GPS navigation devices and releases accurate traffic
guidance information and real-time traffic information to travelers by FM radio and wireless data
transmission [9]. The Korea Road Traffic Information Center(KORTIC) system of Korea, developed by
the Korean Road Safety Association (KRSA), combines toroidal coil, GPS probe-car, and Closed-Circuit
Television(CCTV) surveillance equipment for traffic information collection. Then it extracts traffic
information after data fusion, analysis, and processing, and determines the traffic status to reduce
the estimated error probability for obtaining road travel time to 10% or less [10]. In 2001, the German
Space Center Transportation Institute (GSCTI) integrated probe-cars with 300 floating taxis to collect
and analyze their location, speed, and other information in Berlin [11]. Jan Fabian Ehmke predicted
time-dependent travel time and assessed the resulting road information using data-mining methods
through different levels of aggregation for the large amount of probe-car data [12]. With its acquisition
of Waze in 2013, Google added a human element to its traffic calculations. Drivers can use the Waze
app to report traffic incidents including accidents, disabled vehicles, slowdowns, and even speed
traps [13].
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Table 1. Research and applications of intelligent transport systems. AATCC, Automobile Association
Traffic Control Centre; FHA, Federal Highway Administration; ITA, Illinois Transportation Authority;
GPS, Global Positioning System; VICS, Vehicle Information and Communication System.

System Country Developer Main Characteristics/Data Source

Probe-car data UK ITIS Holdings Plc From AATCC and real-time and
historical data

ADVANCE system USA FHA, ITA, and other agencies Avoid traffic congestion, improve
driving quality

VICS Japan \ From GPS navigation devices

KORTIC Korea Korean Road Safety Association From the toroidal coil, GPS
probe-cars, and so on

Probe-car Data System Germany Space Center Transportation Institute From floating taxis

Google Maps USA Google
A human element is added to its
traffic calculations, report traffic
incidents from drivers

Probe-car technology research in China started relatively late, but the progress is rapid. Various
research institutes and scholars have made great achievements in theory and practice. Based on GPS
navigation and the positioning of vehicles, Li [14] used velocity and time information to obtain the
average speed, traffic, travel time, and other traffic information through a mathematical model to
achieve real-time road detection. With the urban road network data acquired by probe-cars equipped
with GPS devices, Dong [15] analyzed the road network level and obtained the travel conditions and
functioning of the road network at different levels. Zhang [16] used pattern recognition, statistical
forecasting, time series, and intelligent algorithms through traffic parameters of probe-car data
acquisition to detect traffic incidents. Xin [17] analyzed the space and time distribution characteristics
of urban road networks based on probe-car data, adopting the coverage and intensity in a certain
coverage as indicators. Xin pointed out that the coverage and intensity of probe-car data have similar
peak hours on weekdays. The higher the level of the road, the higher the coverage and intensity of
probe-car data. Li [18] presented a mathematical model of probe-car coverage in a single section and
the whole road network on the basis of the minimum requirements for probe-car samples in a single
section and verified it by simulation. This model considered various factors such as computing interval,
average traffic flow density, average travel speed, mistake matching scores of probe-cars, and so on.
The simulated results showed that the coverage rate calculated by this model can ensure a 93.7%
link of the road network through collecting data. Zhang [19] described the composition of probe-car
systems and the optimization theory for probe-car sampling. By considering velocity and analyzing
the random signal and the spectrum of the Fourier transform, the optimal sampling frequency is
determined by the Shannon sampling theory. The results showed that the more optimal the sampling
frequency obtained, the higher the data accuracy, which is suitable for practical applications. Weng [20]
categorized probe-car data into three stages, historical data applications, historical traffic state data
applications, and dynamic traffic state data applications, on the basis of summarizing the research of
probe-car traffic information applications. He analyzed the urban transport operating characteristics
of probe-car data in Beijing, such as the distribution characteristics of road traffic and the utilization of
different levels of road mileage. Feng [21] proposed a probe-car map-matching algorithm based on the
search for local paths by analyzing the characteristics of the collection of raw data. Making use of GPS
points matched previously, it greatly reduces the search space to achieve better positional accuracy of
probe-car data, so as to determine the vehicle track.

As the probe-car tracking data is massive, the above traditional data-processing methods cannot
meet the current data-processing needs. This paper proposes a parallel algorithm combined with cloud
computing technology to process the data.
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2.2. Probe-Car Collection Interval

The timeliness and reliability of traffic status identification can be largely impacted by the
configuration of essential parameters based on the data collection of GPS probe-cars, including the
data-sampling interval and the sampling ratio. The collection interval refers to the time interval of
uploading the collected data of the probe-car to the information processing center; in other words,
the time period of the probe-car data collection. Generally speaking, the higher the frequency of data
collection, the more accurate the real-time road traffic information.

However, if the acquisition time interval is too short, it will not only increase the cost of acquisition,
but also result in higher data redundancy, and the road traffic conditions will be very similar. On the
contrary, if the time interval is too long, it will miss important data, which would lead to not reflecting
the dynamic traffic conditions precisely. Therefore, it is very important to set an appropriate collection
interval for probe-car data.

Yamane conducted research on urban probe-cars in Osaka, Japan [22], and found that different
data-collection intervals would result in different road map matching results. Researchers also found
that the longer the time interval of probe-car data acquisition, the worse the accuracy of the reflection
of real-time road traffic conditions, in spite of the relatively low cost of the acquisition. If the probe-car
collection interval is short, the reflected effect of real-time road traffic conditions is better. Though
the time cost of the acquisition will be relatively higher, the effect of GIS map-matching is better.
From different tests, we found that when the probe-car collection interval is 30 s, we can achieve the
best balance among the acquisition cost, the reflection accuracy of real-time traffic conditions, and the
results of matching. Therefore, the optimal sampling interval of the probe-car is 30 s in this research.

2.3. The Key Issues in Probe-Car Data Mining

Probe-car track data consists of sampling points with a series of latitude and longitude information
and other vehicle behavior information. The characteristics of probe-car data are as follows [23,24]:

(1) Position information (latitude and longitude).
(2) Position information with noise, and the noise is affected by a variety of factors (GPS noise,

clouds, the status of buildings nearby, indoor and outdoor conditions, and so forth).
(3) Loss of spatial information: the sampling interval of probe-car tracks is usually long (tens of

seconds or minutes), which will result in the loss of shape information.
(4) Spatial information redundancy caused by intensive sampling and low speed.
(5) The temporal correlation between some series of track points.
(6) Additional property information: incidental event information, driving behavior information,

sensor parameters while sampling points.

For the above features of probe-car data tracks, the first five characteristics are the inherent basic
properties of time and space, which will be fully considered during the data matching. The last
characteristic is the additional information provided by the probe-car, which may vary greatly
(not available for all vehicles) according to the vehicle’s own situation, but it can be used to mine more
behavioral factors.

In the spatial data mining of probe-car tracks, there are several key issues for the above data
features [25,26]:

(1) The close correlation of spatial data. Since the electronic map of the road network topology has
a close correlation, it often needs to load all of the road network data into memory to handle
all the tracks. Since the road network data is massive, it demands high performance for the
hardware. Moreover, it results in low performance for searching the matching data in the entire
road network to process each specific track, which is a fatal flaw for the massive spatial data
mining of the probe-car track.
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(2) True path restoration for the probe-car track. It is crucial to combine the electronic map to restore
the true path of probe-car tracks as accurately as possible. Since the sampling interval is sparse,
the distance between two adjacent track points might be far. Due to data noise, the position of
each track point may greatly deviate from the position of the real road, so large errors result from
the conventional method, which matches the best roads according to each track point location on
an electronic map. As shown in Figure 2a, if it is a partial match, a part marked I in the whole
track will be matched to road 1. However, the whole track should be matched to road 2, as shown
in Figure 2b. Therefore, combining the spatial characteristics of the entire track optimally and
globally restores the path, while the local single track point cannot be matched to the best road.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  6 of 17 

 

  
(a) (b) 

Figure 2. (a) Global Positioning System (GPS) track; (b) track point matching. 

To obtain city-wide real-time traffic information, large-scale data in are collected in real time and 
analyzed to ensure the timely release of traffic information. Using a general process to deal with these 
data, PCD will encounter great bottlenecks, thus the real-time data cannot be obtained, and there is 
no way to use a more sophisticated processing algorithm to improve the accuracy of the processing 
results. MapReduce adopts a distributed parallel computing model and makes it easy to implement 
parallel computing, load balancing, and other excellent properties [27–30], thus it is very suitable for 
big data mining. However, due to the close spatial correlation characteristic of the probe-car track 
data, the entire road network of the electronic map data needs to be read for each computing node to 
handle the massive track, which increases the hardware requirements for each computing node and 
impairs computing performance. 

To address the above-mentioned problems of spatial data mining on probe-car tracks, massive 
probe-car track data and map data need to be loaded. By combining road topology with map 
matching, strong correlations can be made between track and map data. When matching and 
analyzing the data, the data are not locally matched, but globally matched, so as to avoid the case of 
Figure 2. For high data throughput and limited computing performance, we propose a parallel 
processing algorithm to reduce the probe-car tracks, namely, two-step MapReduce technology in the 
spatial data model.  

3. Methodology 

Two types of data were processed by different MapReduce algorithms to enable parallel 
computing of spatial data. A two-step MapReduce was conducted: (1) for space partitioning to 
analyze the relatively independent data, that is, the full tracks in one spatial division range that can 
be matched with the real road net, which is global matching; (2) for the cross-regional track 
processing to match with the road network of the electronic map in the designated cross-region. 

3.1. MapReduce Parallel Distributed Computing Model 

Dean and Ghemawat proposed a MapReduce distributed computing model for the analysis of 
web log files [27]. The Hadoop project implemented this computational model, which used a cluster 
consisting of thousands of computers to analyze the massive server files. The MapReduce model is 
realized mainly through two functions: mapping (Map) and reduction (Reduce). The main process 
[31] is shown in Figure 3. 

Figure 2. (a) Global Positioning System (GPS) track; (b) track point matching.

To obtain city-wide real-time traffic information, large-scale data in are collected in real time and
analyzed to ensure the timely release of traffic information. Using a general process to deal with these
data, PCD will encounter great bottlenecks, thus the real-time data cannot be obtained, and there is
no way to use a more sophisticated processing algorithm to improve the accuracy of the processing
results. MapReduce adopts a distributed parallel computing model and makes it easy to implement
parallel computing, load balancing, and other excellent properties [27–30], thus it is very suitable for
big data mining. However, due to the close spatial correlation characteristic of the probe-car track data,
the entire road network of the electronic map data needs to be read for each computing node to handle
the massive track, which increases the hardware requirements for each computing node and impairs
computing performance.

To address the above-mentioned problems of spatial data mining on probe-car tracks, massive
probe-car track data and map data need to be loaded. By combining road topology with map matching,
strong correlations can be made between track and map data. When matching and analyzing the data,
the data are not locally matched, but globally matched, so as to avoid the case of Figure 2. For high
data throughput and limited computing performance, we propose a parallel processing algorithm to
reduce the probe-car tracks, namely, two-step MapReduce technology in the spatial data model.

3. Methodology

Two types of data were processed by different MapReduce algorithms to enable parallel
computing of spatial data. A two-step MapReduce was conducted: (1) for space partitioning to
analyze the relatively independent data, that is, the full tracks in one spatial division range that can be
matched with the real road net, which is global matching; (2) for the cross-regional track processing to
match with the road network of the electronic map in the designated cross-region.
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3.1. MapReduce Parallel Distributed Computing Model

Dean and Ghemawat proposed a MapReduce distributed computing model for the analysis of
web log files [27]. The Hadoop project implemented this computational model, which used a cluster
consisting of thousands of computers to analyze the massive server files. The MapReduce model is
realized mainly through two functions: mapping (Map) and reduction (Reduce). The main process [31]
is shown in Figure 3.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  7 of 17 
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Google’s MapReduce programming model serves to process large datasets in a massively parallel
manner (subject to a MapReduce implementation). The programming model is based on the following
simple concepts: (i) iteration over the input; (ii) computation of key/value pairs from each piece
of input; (iii) grouping of all intermediate values by key; (iv) iteration over the resulting groups;
and (v) reduction of each group.

The model is stunningly simple and effectively supports parallelism. The programmer may
abstract from the issues of distributed and parallel programming, because MapReduce implementation
takes care of load balancing, network performance, fault tolerance, and so forth. The seminal
MapReduce paper [28,32,33] described one possible implementation model based on large networked
clusters of commodity machines with local storage. The programming model may appear restrictive,
but it provides a good fit for many problems encountered in the practice of processing large datasets.
Additionally, expressiveness limitations may be alleviated by decomposing problems into multiple
MapReduce computations or by escaping to other (less restrictive, but more demanding) programming
models for subproblems.

3.2. MapReduce Method for Data Mining in Probe-Car Tracks

The size division is based on the distribution and density of the trajectory. After dividing the total
area into the target areas as described above, a nested MapReduce approach can be used to achieve
spatial data mining for the probe-car tracks. The implementation is described as follows:

(1) Level-1 Map function design

The Level-1 Map function is mainly responsible for dealing with the track in a small designated
area of the probe-car, and the algorithm flow is shown in Figure 4.
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The pseudocode is as follows:

Enter the range A1 to be processed;
A2 = A1 + 0.1 ◦ // Extend the range A1 as A2
M = LoadData (A2); // Load the map data of the range A2 into memory
Enter the track collection D
While(D != NULL)
{

P = Read(D); // Read one track in M in order
if (P ∈ A1) // Track P belongs to the range A1
{

Match track P with the electronic map M;
If (matched)

{
log(P and M match relations);

}
else
{

log (non-matched trajectory P);
}

}
else if (Part of P belongs to A1) / / Track P is cross-regional
{

log(Track P, the latitude, and the longitude of track P);
}
D = D – P;

}

The algorithm is explained as follows:
Step 1: A small area is to be assigned and processed, such as the example of the spatial

division range (8◦ × 5◦20′), extended to a range (for example, 0.1◦) on the basis of a small area
range. The algorithm will read the road network data in the electronic map of the extended region
into memory.

Step 2: The algorithm will sequentially read all the probe-car tracks and determine whether the
probe-car track is in the scope of the small area being processed currently.

Step 3: If the tracks of the probe-car are entirely in the small area, then it will match the track data
with the road network data and record the matching relationship and a portion of the nonmatching to
the road network in the electronic map.

Step 4: If the track of the probe-car is partly in the small area or out of the small area to be
processed, it will record the track and range of latitude and longitude.

Step 5: If the tracks of the probe-car are entirely outside the small area to be processed, then it will
do nothing.
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(2) Level-1 Reduce function design

The Level-1 Reduce function is responsible for writing the results processed for the probe-car
tracks within the designated area to the master server. The algorithm is as follows:

Step 1: Write the correspondence relation for matching the local probe-car track and the electronic
road map to the master server.

Step 2: Write the local records that the probe-car track does not match with the road in the
electronic map into the master server.
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(3) Level-2 Map function design

The Level-2 Map function is mainly responsible for processing the existence of probe-car tracks
across the region of the designated small area currently. The algorithm is shown in Figure 5.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 17 
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The pseudocode is as follows:

Enter the range A1 to be processed;
Enter the set D of the cross-regional tracks to be processed

Read the latitude and longitude range A2 in D;
A3 = A1 + A2;

M = LoadData(A3); // Load the map data of A3 into memory
While(D != NULL)
{
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P = Read(D); // Read one of the cross-region tracks in M in order
Match track P with the electronic map M;
If(matched)
{

log(P and M match relations);
}
else
{

log (non-matched trajectory P);
}
D = D – P;

}
while (log != NULL)
{

l = Read(log); // read a log in the log, matched relationship or non-matched track P

if (l not in ControlServe)
{

l in the ControlServe;
}
log = log − l;
}

The algorithm is explained as follows:
Step 1: According to the latitude and longitude range A2 across the whole region for probe-car

tracks, extended on the current designated area A1, the algorithm will read them into the memory for
all the road network data A3(A3 = A1 + A2) in the electronic map of the extended region.

Step 2: Sequentially read all the probe-car tracks across the region.
Step 3: Match the track data with the road network data, then record the matching relation and

nonmatching relation to the road network of the electronic map to the machine.

(4) Level-2 Reduce function design

The Level-2 Reduce function is mainly responsible for writing the matching relation and
nonmatching relation to the road network of the electronic map in the designated cross-area to
process into the master server and remove the duplicate part. The algorithm is explained as follows:

Step 1: Read the results of the probe-car track in the cross-region.
Step 2: Check whether the processing results of the probe-car track are on the master server.
Step 3: If the results of the track handling do not exist in the master server, write the results to the

master server. Otherwise, handle the next track.

4. Experimental Results and Discussion

4.1. Experiment Scenarios

In the experiment, the test environment is the Hadoop platform. The computer is configured with
the following specifications: CPU Core Duo 2.7 GHz, memory 8 GB DDR3, Windows operating system;
one is the master node server, the other three are the computing node servers. First, all the nodes on the
master node are directly calculated for the execution time. Second, the dataset is divided into N ×M
intervals by the method described. The two-time MapReduce algorithm is used to compute the nodes
in different operations. It is obtained through the experiment that the use of this algorithm can improve
the operation time of each node in the computing process and cannot lose effective association rules.
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The PCD parallel processing system consists of the collection server software, data preprocessor
program, server-side program, node calculation program, database storage, and other components.
The PCD acquisition server receives real-time transmissions of a large number of PCDs, establishes
a database, and saves all the original PCD collected by the system. The collection server has
a high-speed connection to the master server and is convenient for data to be transported to the
processing center quickly.

The preprocessing program includes two parts. First, the map data are preprocessed, generating
map grid information. This part belongs to the offline calculations, which are only done once. Second,
each of the real-time PCD records obtained is pretreated, which removes some obviously wrong invalid
records caused by equipment failure.

The server program runs on the master server KD50, which is responsible for the PCD tasks of
decomposition, scheduling, and consolidating the results. The node program on each computing node
will allocate computing resources in accordance with the instructions on the server side of the program.
In addition, the server program needs to initialize the system and load the configuration file, map file,
and historic mining information, initiate the shutdown node, and so on. The node program distributes
each computing unit over KD50, which is used to complete the map-matching data-processing tasks
distributed by the master server. KD50 has many computing units. After task scheduling by the master
server, there will be multiple node programs running processing tasks for the computing units. Thus,
it can achieve basic PCD parallel processing.

4.2. Results

Based on the methods described in the paper, the experimental verification is conducted based on
the probe-car tracks during one month in Japan. The experimental data are the long-distance freight
data shown in Table 2. Table 3 shows the PCD sample data format. The probe-car tracks are composed
of the PCD data in Table 3, and are shown on the map in Figure 6.

Table 2. Source data.

Number of Probe-Car Tracks Number of Vehicles Number of Roads in the Electronic Map Total Road Length (km)

2,056,489 51,973 12,538,343 21,453,863

Table 3. Probe-car sample data format.

RecordID GpsDateTime GpsLatitude GpsLongitude GpsAzimuth GpsSpeed

204451900001 2017/8/31 4:24 38.45707628 141.2965907 49◦ 39.6 km/h
204451900002 2017/8/31 4:25 38.45992784 141.3001752 45◦ 37.8 km/h
204451900003 2017/8/31 4:33 38.46099555 141.3012858 347◦ 9.9 km/h
204451900004 2017/8/31 4:34 38.4589209 141.2973367 164◦ 45 km/h
204451900005 2017/8/31 4:35 38.46034831 141.2877371 166◦ 57.6 km/h
204451900006 2017/8/31 4:36 38.46274794 141.2803071 155◦ 10 km/h
204451900007 2017/8/31 4:37 38.46221842 141.2794217 255◦ 36 km/h
204451900008 2017/8/31 4:38 38.45871636 141.279031 276◦ 44.1 km/h
204451900009 2017/8/31 4:39 38.45225857 141.2803076 276◦ 4.5 km/h
204451900010 2017/8/31 4:40 38.44693848 141.2823128 272◦ 42.3 km/h
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The different distributions and densities of the trajectories lead to different division sizes.
The experiment for the different sizes of the divided region (m × n) is shown in Figure 7. There are
4 machines to process the data by the proposed distributed parallel processing mode based on
MapReduce. As shown in Figure 7, it uses the least time for 2◦ × 1◦20′ and the percentage of the
cross-regional trajectories is 23.1%. It uses the most time for 12◦ × 8◦ and the percentage of the
cross-regional trajectories is 5.3%. The size division for m and n is based on the actual situation,
such as the length, distribution, and density of the trajectory. Generally, the region should not be too
small. It does not reflect the effect of MapReduce while the proportion of the cross-regional track is
significant. Then the region should not be too large for the limitation of the consumption memory and
computing resources.

Then the target area is divided into n◦ × m◦ small regions (n and m are positive numbers)
according to the following principles, ensuring that most tracks (70–80%) are divided into no more
than one small lattice:

(1) n and m should not be too small, or the proportion of the tracks across the regions will be very
significant, which cannot reflect the effect of MapReduce. n and m should be chosen so that the
cross-regional trajectory ratio is kept around 25%. m × n is limited by memory limitations.

(2) n and m should not be too large. If m × n is larger, consumption memory and computing
resources will be greater. The maximum of m × n is limited by the resources a single computing
unit can provide.

(3) Within a single computing unit resource, it is not necessarily good to have larger m × n values,
but it would be better to have a greater range for m × n and a lower marginal effect of the
inter-regional track proportion. To meet the conditions in which the cross-regional track ratio is
below a certain range, the smaller m × n, the better.

In general, n and m are preferably larger than 1. The size of the divided region can be appropriately
adjusted according to the number of working machines.
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The traditional single server and the proposed approach in this paper, respectively, are used to
process the road data matching in the electronic map for the probe-car track by the track-matching
algorithm based on the spatial semantic features, where it is divided into the range of 2◦ × 1◦20′ in the
MapReduce model. The test results are shown in Table 4.The traditional single server takes about 10.5 h.
By the proposed distributed parallel processing mode based on MapReduce, when the number of
machines was respectively 4 units→ 8 units, the processing time required was less, from 2.5 h→ 2.1 h.
Thus, the processing efficiency of the distributed parallel processing based on MapReduce shows
great improvement.

Table 4. Experimental results (2◦ × 1◦20′).

Processing Approach Single Processing Distributed Processing Distributed Processing

Machine type IBM server Ordinary desktop Ordinary desktop
Machine physical memory 16 GB 2 GB 2 GB

Machine CPU 2.13 GB, 4-core 3.3 GB, 2 nuclear 3.3 GB, 2 nuclear
Number of machines 1 4 8

Processing time 10.5 h 2.5 h 2.1 h

5. Conclusions

This paper discusses the main issues of spatial data mining of probe-car tracks and presents
the two-time MapReduce technology in a spatial data model to solve map-matching by using the
massive trajectory data of floating vehicles and a special strong correlation of the data. Two types of
data are processed by the MapReduce algorithms to enable parallel spatial data computing. The first
MapReduce is conducted for space region partitioning to analyze relatively independent data, that is,
full tracks as a global matching step. The second MapReduce is conducted for cross-regional track
processing, as the cross-regional track. Experiments confirmed that MapReduce technology can be
successfully used in data mining. Using distributed parallel computing for spatial data mining,
the computing performance is significantly improved from the traditional approach of a single server
and the hardware requirements are reduced. Using the proposed MapReduce model, the master
server can better balance the tasks of a working host and achieve better load balancing and better
stability. Based on the two-time MapReduce technology, the probe-car track is divided into spatial
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region processes and track processes to solve the strong spatial correlation characteristics of the map
data and achieve parallel processing of the probe car track reduction.

Based on the application of the parallel MapReduce algorithms, it is crucial to improve the
probe-car track matching and the reduction algorithms for further research, so as to make better use of
parallel computing to enhance the massive probe-car registration track performance. Based on the
probe-car data and spatial data mining general model, we will conduct floating space vehicle trajectory
data matching with reference to the specific electronic maps. According to the matching information,
the track is divided into matched and not matched track information. From the not matched track
information, new roads, accident-prone areas, and parking Point of Interests (POIs) can be discovered.
From the matched track information, abandoned roads and shape-changing information for the roads
and other map elements can be implied. Utilizing the parallel MapReduce algorithms, the lane path
extracted by the vehicle tracks is the future research issue that emerges from our approach, shown
in Figures 8 and 9. Based on the probe-car data, we will conduct floating space vehicle trajectory
data matching with reference to the specific electronic map. According to the matching information,
combining the spatial data mining model and artificial intelligence, the lane path will be extracted by
the vehicle tracks, which will lay the foundation for the acquisition of high-precision maps.
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